From 4d705abd99dbe13fbdb50b5d5e74d6fe8c18f559 Mon Sep 17 00:00:00 2001 From: Adam Date: Tue, 13 Aug 2013 19:59:19 -0700 Subject: Piddly things --- go.html.markdown | 354 +++++++++++++++++++++---------------------- pt-br/elisp-pt.html.markdown | 16 +- 2 files changed, 185 insertions(+), 185 deletions(-) diff --git a/go.html.markdown b/go.html.markdown index e7b35926..4db76a49 100644 --- a/go.html.markdown +++ b/go.html.markdown @@ -18,7 +18,7 @@ help with large-scale programming. Go comes with a great standard library and an enthusiastic community. -```Go +```go // Single line comment /* Multi- line comment */ @@ -29,260 +29,260 @@ package main // Import declaration declares library packages referenced in this file. import ( - "fmt" // A package in the Go standard library - "net/http" // Yes, a web server! - "strconv" // String conversions + "fmt" // A package in the Go standard library + "net/http" // Yes, a web server! + "strconv" // String conversions ) // A function definition. Main is special. It is the entry point for the // executable program. Love it or hate it, Go uses brace brackets. func main() { - // Println outputs a line to stdout. - // Qualify it with the package name, fmt. - fmt.Println("Hello world!") + // Println outputs a line to stdout. + // Qualify it with the package name, fmt. + fmt.Println("Hello world!") - // Call another function within this package. - beyondHello() + // Call another function within this package. + beyondHello() } // Functions have parameters in parentheses. // If there are no parameters, empty parens are still required. func beyondHello() { - var x int // Variable declaration. Variables must be declared before use. - x = 3 // Variable assignment. - // "Short" declarations use := to infer the type, declare, and assign. - y := 4 - sum, prod := learnMultiple(x, y) // function returns two values - fmt.Println("sum:", sum, "prod:", prod) // simple output - learnTypes() // < y minutes, learn more! + var x int // Variable declaration. Variables must be declared before use. + x = 3 // Variable assignment. + // "Short" declarations use := to infer the type, declare, and assign. + y := 4 + sum, prod := learnMultiple(x, y) // function returns two values + fmt.Println("sum:", sum, "prod:", prod) // simple output + learnTypes() // < y minutes, learn more! } // Functions can have parameters and (multiple!) return values. func learnMultiple(x, y int) (sum, prod int) { - return x + y, x * y // return two values + return x + y, x * y // return two values } // Some built-in types and literals. func learnTypes() { - // Short declaration usually gives you what you want. - s := "Learn Go!" // string type + // Short declaration usually gives you what you want. + s := "Learn Go!" // string type - s2 := `A "raw" string literal + s2 := `A "raw" string literal can include line breaks.` // same string type - // non-ASCII literal. Go source is UTF-8. - g := 'Σ' // rune type, an alias for uint32, holds a UTF-8 code point + // non-ASCII literal. Go source is UTF-8. + g := 'Σ' // rune type, an alias for uint32, holds a UTF-8 code point - f := 3.14195 // float64, an IEEE-754 64-bit floating point number - c := 3 + 4i // complex128, represented internally with two float64s + f := 3.14195 // float64, an IEEE-754 64-bit floating point number + c := 3 + 4i // complex128, represented internally with two float64s - // Var syntax with an initializers. - var u uint = 7 // unsigned, but implementation dependent size as with int - var pi float32 = 22. / 7 + // Var syntax with an initializers. + var u uint = 7 // unsigned, but implementation dependent size as with int + var pi float32 = 22. / 7 - // Conversion syntax with a short declaration. - n := byte('\n') // byte is an alias for uint8 + // Conversion syntax with a short declaration. + n := byte('\n') // byte is an alias for uint8 - // Arrays have size fixed at compile time. - var a4 [4]int // an array of 4 ints, initialized to all 0 - a3 := [...]int{3, 1, 5} // an array of 3 ints, initialized as shown + // Arrays have size fixed at compile time. + var a4 [4]int // an array of 4 ints, initialized to all 0 + a3 := [...]int{3, 1, 5} // an array of 3 ints, initialized as shown - // Slices have dynamic size. Arrays and slices each have advantages - // but use cases for slices are much more common. - s3 := []int{4, 5, 9} // compare to a3. no ellipsis here - s4 := make([]int, 4) // allocates slice of 4 ints, initialized to all 0 - var d2 [][]float64 // declaration only, nothing allocated here - bs := []byte("a slice") // type conversion syntax + // Slices have dynamic size. Arrays and slices each have advantages + // but use cases for slices are much more common. + s3 := []int{4, 5, 9} // compare to a3. no ellipsis here + s4 := make([]int, 4) // allocates slice of 4 ints, initialized to all 0 + var d2 [][]float64 // declaration only, nothing allocated here + bs := []byte("a slice") // type conversion syntax - p, q := learnMemory() // declares p, q to be type pointer to int. - fmt.Println(*p, *q) // * follows a pointer. This prints two ints. + p, q := learnMemory() // declares p, q to be type pointer to int. + fmt.Println(*p, *q) // * follows a pointer. This prints two ints. - // Maps are a dynamically growable associative array type, like the - // hash or dictionary types of some other languages. - m := map[string]int{"three": 3, "four": 4} - m["one"] = 1 + // Maps are a dynamically growable associative array type, like the + // hash or dictionary types of some other languages. + m := map[string]int{"three": 3, "four": 4} + m["one"] = 1 - // Unused variables are an error in Go. - // The underbar lets you "use" a variable but discard its value. - _, _, _, _, _, _, _, _, _ = s2, g, f, u, pi, n, a3, s4, bs - // Output of course counts as using a variable. - fmt.Println(s, c, a4, s3, d2, m) + // Unused variables are an error in Go. + // The underbar lets you "use" a variable but discard its value. + _, _, _, _, _, _, _, _, _ = s2, g, f, u, pi, n, a3, s4, bs + // Output of course counts as using a variable. + fmt.Println(s, c, a4, s3, d2, m) - learnFlowControl() // back in the flow + learnFlowControl() // back in the flow } // Go is fully garbage collected. It has pointers but no pointer arithmetic. // You can make a mistake with a nil pointer, but not by incrementing a pointer. func learnMemory() (p, q *int) { - // Named return values p and q have type pointer to int. - p = new(int) // built-in function new allocates memory. - // The allocated int is initialized to 0, p is no longer nil. - s := make([]int, 20) // allocate 20 ints as a single block of memory - s[3] = 7 // assign one of them - r := -2 // declare another local variable - return &s[3], &r // & takes the address of an object. + // Named return values p and q have type pointer to int. + p = new(int) // built-in function new allocates memory. + // The allocated int is initialized to 0, p is no longer nil. + s := make([]int, 20) // allocate 20 ints as a single block of memory + s[3] = 7 // assign one of them + r := -2 // declare another local variable + return &s[3], &r // & takes the address of an object. } func expensiveComputation() int { - return 1e6 + return 1e6 } func learnFlowControl() { - // If statements require brace brackets, and do not require parens. - if true { - fmt.Println("told ya") - } - // Formatting is standardized by the command line command "go fmt." - if false { - // pout - } else { - // gloat - } - // Use switch in preference to chained if statements. - x := 1 - switch x { - case 0: - case 1: - // cases don't "fall through" - case 2: - // unreached - } - // Like if, for doesn't use parens either. - for x := 0; x < 3; x++ { // ++ is a statement - fmt.Println("iteration", x) - } - // x == 1 here. - - // For is the only loop statement in Go, but it has alternate forms. - for { // infinite loop - break // just kidding - continue // unreached - } - // As with for, := in an if statement means to declare and assign y first, - // then test y > x. - if y := expensiveComputation(); y > x { - x = y - } - // Function literals are closures. - xBig := func() bool { - return x > 100 // references x declared above switch statement. - } - fmt.Println("xBig:", xBig()) // true (we last assigned 1e6 to x) - x /= 1e5 // this makes it == 10 - fmt.Println("xBig:", xBig()) // false now - - // When you need it, you'll love it. - goto love + // If statements require brace brackets, and do not require parens. + if true { + fmt.Println("told ya") + } + // Formatting is standardized by the command line command "go fmt." + if false { + // pout + } else { + // gloat + } + // Use switch in preference to chained if statements. + x := 1 + switch x { + case 0: + case 1: + // cases don't "fall through" + case 2: + // unreached + } + // Like if, for doesn't use parens either. + for x := 0; x < 3; x++ { // ++ is a statement + fmt.Println("iteration", x) + } + // x == 1 here. + + // For is the only loop statement in Go, but it has alternate forms. + for { // infinite loop + break // just kidding + continue // unreached + } + // As with for, := in an if statement means to declare and assign y first, + // then test y > x. + if y := expensiveComputation(); y > x { + x = y + } + // Function literals are closures. + xBig := func() bool { + return x > 100 // references x declared above switch statement. + } + fmt.Println("xBig:", xBig()) // true (we last assigned 1e6 to x) + x /= 1e5 // this makes it == 10 + fmt.Println("xBig:", xBig()) // false now + + // When you need it, you'll love it. + goto love love: - learnInterfaces() // Good stuff coming up! + learnInterfaces() // Good stuff coming up! } // Define Stringer as an interface type with one method, String. type Stringer interface { - String() string + String() string } // Define pair as a struct with two fields, ints named x and y. type pair struct { - x, y int + x, y int } // Define a method on type pair. Pair now implements Stringer. func (p pair) String() string { // p is called the "receiver" - // Sprintf is another public function in package fmt. - // Dot syntax references fields of p. - return fmt.Sprintf("(%d, %d)", p.x, p.y) + // Sprintf is another public function in package fmt. + // Dot syntax references fields of p. + return fmt.Sprintf("(%d, %d)", p.x, p.y) } func learnInterfaces() { - // Brace syntax is a "struct literal." It evaluates to an initialized - // struct. The := syntax declares and initializes p to this struct. - p := pair{3, 4} - fmt.Println(p.String()) // call String method of p, of type pair. - var i Stringer // declare i of interface type Stringer. - i = p // valid because pair implements Stringer - // Call String method of i, of type Stringer. Output same as above. - fmt.Println(i.String()) - - // Functions in the fmt package call the String method to ask an object - // for a printable representation of itself. - fmt.Println(p) // output same as above. Println calls String method. - fmt.Println(i) // output same as above - - learnErrorHandling() + // Brace syntax is a "struct literal." It evaluates to an initialized + // struct. The := syntax declares and initializes p to this struct. + p := pair{3, 4} + fmt.Println(p.String()) // call String method of p, of type pair. + var i Stringer // declare i of interface type Stringer. + i = p // valid because pair implements Stringer + // Call String method of i, of type Stringer. Output same as above. + fmt.Println(i.String()) + + // Functions in the fmt package call the String method to ask an object + // for a printable representation of itself. + fmt.Println(p) // output same as above. Println calls String method. + fmt.Println(i) // output same as above + + learnErrorHandling() } func learnErrorHandling() { - // ", ok" idiom used to tell if something worked or not. - m := map[int]string{3: "three", 4: "four"} - if x, ok := m[1]; !ok { // ok will be false because 1 is not in the map. - fmt.Println("no one there") - } else { - fmt.Print(x) // x would be the value, if it were in the map. - } - // An error value communicates not just "ok" but more about the problem. - if _, err := strconv.Atoi("non-int"); err != nil { // _ discards value - // prints "strconv.ParseInt: parsing "non-int": invalid syntax" - fmt.Println(err) - } - // We'll revisit interfaces a little later. Meanwhile, - learnConcurrency() + // ", ok" idiom used to tell if something worked or not. + m := map[int]string{3: "three", 4: "four"} + if x, ok := m[1]; !ok { // ok will be false because 1 is not in the map. + fmt.Println("no one there") + } else { + fmt.Print(x) // x would be the value, if it were in the map. + } + // An error value communicates not just "ok" but more about the problem. + if _, err := strconv.Atoi("non-int"); err != nil { // _ discards value + // prints "strconv.ParseInt: parsing "non-int": invalid syntax" + fmt.Println(err) + } + // We'll revisit interfaces a little later. Meanwhile, + learnConcurrency() } // c is a channel, a concurrency-safe communication object. func inc(i int, c chan int) { - c <- i + 1 // <- is the "send" operator when a channel appears on the left. + c <- i + 1 // <- is the "send" operator when a channel appears on the left. } // We'll use inc to increment some numbers concurrently. func learnConcurrency() { - // Same make function used earlier to make a slice. Make allocates and - // initializes slices, maps, and channels. - c := make(chan int) - // Start three concurrent goroutines. Numbers will be incremented - // concurrently, perhaps in parallel if the machine is capable and - // properly configured. All three send to the same channel. - go inc(0, c) // go is a statement that starts a new goroutine. - go inc(10, c) - go inc(-805, c) - // Read three results from the channel and print them out. - // There is no telling in what order the results will arrive! - fmt.Println(<-c, <-c, <-c) // channel on right, <- is "receive" operator. - - cs := make(chan string) // another channel, this one handles strings. - cc := make(chan chan string) // a channel of channels. - go func() { c <- 84 }() // start a new goroutine just to send a value - go func() { cs <- "wordy" }() // again, for cs this time - // Select has syntax like a switch statement but each case involves - // a channel operation. It selects a case at random out of the cases - // that are ready to communicate. - select { - case i := <-c: // the value received can be assigned to a variable - fmt.Println("it's a", i) - case <-cs: // or the value received can be discarded - fmt.Println("it's a string") - case <-cc: // empty channel, not ready for communication. - fmt.Println("didn't happen.") - } - // At this point a value was taken from either c or cs. One of the two - // goroutines started above has completed, the other will remain blocked. - - learnWebProgramming() // Go does it. You want to do it too. + // Same make function used earlier to make a slice. Make allocates and + // initializes slices, maps, and channels. + c := make(chan int) + // Start three concurrent goroutines. Numbers will be incremented + // concurrently, perhaps in parallel if the machine is capable and + // properly configured. All three send to the same channel. + go inc(0, c) // go is a statement that starts a new goroutine. + go inc(10, c) + go inc(-805, c) + // Read three results from the channel and print them out. + // There is no telling in what order the results will arrive! + fmt.Println(<-c, <-c, <-c) // channel on right, <- is "receive" operator. + + cs := make(chan string) // another channel, this one handles strings. + cc := make(chan chan string) // a channel of channels. + go func() { c <- 84 }() // start a new goroutine just to send a value + go func() { cs <- "wordy" }() // again, for cs this time + // Select has syntax like a switch statement but each case involves + // a channel operation. It selects a case at random out of the cases + // that are ready to communicate. + select { + case i := <-c: // the value received can be assigned to a variable + fmt.Println("it's a", i) + case <-cs: // or the value received can be discarded + fmt.Println("it's a string") + case <-cc: // empty channel, not ready for communication. + fmt.Println("didn't happen.") + } + // At this point a value was taken from either c or cs. One of the two + // goroutines started above has completed, the other will remain blocked. + + learnWebProgramming() // Go does it. You want to do it too. } // A single function from package http starts a web server. func learnWebProgramming() { - // ListenAndServe first parameter is TCP address to listen at. - // Second parameter is an interface, specifically http.Handler. - err := http.ListenAndServe(":8080", pair{}) - fmt.Println(err) // don't ignore errors + // ListenAndServe first parameter is TCP address to listen at. + // Second parameter is an interface, specifically http.Handler. + err := http.ListenAndServe(":8080", pair{}) + fmt.Println(err) // don't ignore errors } // Make pair an http.Handler by implementing its only method, ServeHTTP. func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) { - // Serve data with a method of http.ResponseWriter - w.Write([]byte("You learned Go in Y minutes!")) + // Serve data with a method of http.ResponseWriter + w.Write([]byte("You learned Go in Y minutes!")) } ``` diff --git a/pt-br/elisp-pt.html.markdown b/pt-br/elisp-pt.html.markdown index 9031cad9..fc2d1e40 100644 --- a/pt-br/elisp-pt.html.markdown +++ b/pt-br/elisp-pt.html.markdown @@ -4,7 +4,7 @@ contributors: - ["Bastien Guerry", "http://bzg.fr"] translators: - ["Lucas Tadeu Teixeira", "http://ltt.me"] -lang: pt-br +lang: pt-br filename: learn-emacs-lisp-pt.el --- @@ -30,9 +30,9 @@ filename: learn-emacs-lisp-pt.el ;; Realizar este tutorial não danificará seu computador, a menos ;; que você fique tão irritado a ponto de jogá-lo no chão. Neste caso, ;; me abstenho de qualquer responsabilidade. Divirta-se! - + ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -;; +;; ;; Abra o Emacs. ;; ;; Aperte a tecla `q' para ocultar a mensagem de boas vindas. @@ -45,11 +45,11 @@ filename: learn-emacs-lisp-pt.el ;; O buffer de rascunho (i.e., "scratch") é o buffer padrão quando ;; o Emacs é aberto. Você nunca está editando arquivos: você está ;; editando buffers que você pode salvar em um arquivo. -;; +;; ;; "Lisp interaction" refere-se a um conjunto de comandos disponíveis aqui. -;; -;; O Emacs possui um conjunto de comandos embutidos (disponíveis em -;; qualquer buffer) e vários subconjuntos de comandos disponíveis +;; +;; O Emacs possui um conjunto de comandos embutidos (disponíveis em +;; qualquer buffer) e vários subconjuntos de comandos disponíveis ;; quando você ativa um modo específico. Aqui nós utilizamos ;; `lisp-interaction-mode', que possui comandos para interpretar e navegar ;; em código Elisp. @@ -137,7 +137,7 @@ filename: learn-emacs-lisp-pt.el ;; => [a tela exibirá duas janelas e o cursor estará no buffer *test*] ;; Posicione o mouse sobre a janela superior e clique com o botão -;; esquerdo para voltar. Ou você pode utilizar `C-xo' (i.e. segure +;; esquerdo para voltar. Ou você pode utilizar `C-xo' (i.e. segure ;; ctrl-x e aperte o) para voltar para a outra janela, de forma interativa. ;; Você pode combinar várias "sexps" com `progn': -- cgit v1.2.3