--- language: c filename: learnc.c contributors: - ["Adam Bard", "http://adambard.com/"] - ["Árpád Goretity", "http://twitter.com/H2CO3_iOS"] --- Ah, C. Still **the** language of modern high-performance computing. C is the lowest-level language most programmers will ever use, but it more than makes up for it with raw speed. Just be aware of its manual memory management and C will take you as far as you need to go. ```c // Single-line comments start with // - only available in C99 and later. /* Multi-line comments look like this. They work in C89 as well. */ // Import headers with #include #include #include #include // (File names between are headers from the C standard library.) // For your own headers, use double quotes instead of angle brackets: #include "my_header.h" // Declare function signatures in advance in a .h file, or at the top of // your .c file. void function_1(); void function_2(); // Your program's entry point is a function called // main with an integer return type. int main() { // print output using printf, for "print formatted" // %d is an integer, \n is a newline printf("%d\n", 0); // => Prints 0 // All statements must end with a semicolon /////////////////////////////////////// // Types /////////////////////////////////////// // ints are usually 4 bytes int x_int = 0; // shorts are usually 2 bytes short x_short = 0; // chars are guaranteed to be 1 byte char x_char = 0; char y_char = 'y'; // Char literals are quoted with '' // longs are often 4 to 8 bytes; long longs are guaranteed to be at least // 64 bits long x_long = 0; long long x_long_long = 0; // floats are usually 32-bit floating point numbers float x_float = 0.0; // doubles are usually 64-bit floating-point numbers double x_double = 0.0; // Integral types may be unsigned. unsigned short ux_short; unsigned int ux_int; unsigned long long ux_long_long; // sizeof(T) gives you the size of a variable with type T in bytes // sizeof(obj) yields the size of the expression (variable, literal, etc.). printf("%zu\n", sizeof(int)); // => 4 (on most machines with 4-byte words) // If the argument of the `sizeof` operator an expression, then its argument // is not evaluated (except VLAs (see below)). // The value it yields in this case is a compile-time constant. int a = 1; // size_t is an unsiged integer type of at least 2 bytes used to represent // the size of an object. size_t size = sizeof(a++); // a++ is not evaluated printf("sizeof(a++) = %zu where a = %d\n", size, a); // prints "sizeof(a++) = 4 where a = 1" (on a 32-bit architecture) // Arrays must be initialized with a concrete size. char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes // (assuming 4-byte words) // You can initialize an array to 0 thusly: char my_array[20] = {0}; // Indexing an array is like other languages -- or, // rather, other languages are like C my_array[0]; // => 0 // Arrays are mutable; it's just memory! my_array[1] = 2; printf("%d\n", my_array[1]); // => 2 // In C99 (and as an optional feature in C11), variable-length arrays (VLAs) // can be declared as well. The size of such an array need not be a compile // time constant: printf("Enter the array size: "); // ask the user for an array size char buf[0x100]; fgets(buf, sizeof buf, stdin); // strtoul parses a string to an unsigned integer size_t size = strtoul(buf, NULL, 10); int var_length_array[size]; // declare the VLA printf("sizeof array = %zu\n", sizeof var_length_array); // A possible outcome of this program may be: // > Enter the array size: 10 // > sizeof array = 40 // Strings are just arrays of chars terminated by a NUL (0x00) byte, // represented in strings as the special character '\0'. // (We don't have to include the NUL byte in string literals; the compiler // inserts it at the end of the array for us.) char a_string[20] = "This is a string"; printf("%s\n", a_string); // %s formats a string printf("%d\n", a_string[16]); // => 0 // i.e., byte #17 is 0 (as are 18, 19, and 20) // If we have characters between single quotes, that's a character literal. // It's of type `int`, and *not* `char` (for historical reasons). int cha = 'a'; // fine char chb = 'a'; // fine too (implicit conversion from int to char) /////////////////////////////////////// // Operators /////////////////////////////////////// int i1 = 1, i2 = 2; // Shorthand for multiple declaration float f1 = 1.0, f2 = 2.0; // Arithmetic is straightforward i1 + i2; // => 3 i2 - i1; // => 1 i2 * i1; // => 2 i1 / i2; // => 0 (0.5, but truncated towards 0) f1 / f2; // => 0.5, plus or minus epsilon // Floating-point numbers and calculations are not exact // Modulo is there as well 11 % 3; // => 2 // Comparison operators are probably familiar, but // there is no boolean type in c. We use ints instead. // (Or _Bool or bool in C99.) // 0 is false, anything else is true. (The comparison // operators always yield 0 or 1.) 3 == 2; // => 0 (false) 3 != 2; // => 1 (true) 3 > 2; // => 1 3 < 2; // => 0 2 <= 2; // => 1 2 >= 2; // => 1 // C is not Python - comparisons don't chain. int a = 1; // WRONG: int between_0_and_2 = 0 < a < 2; // Correct: int between_0_and_2 = 0 < a && a < 2; // Logic works on ints !3; // => 0 (Logical not) !0; // => 1 1 && 1; // => 1 (Logical and) 0 && 1; // => 0 0 || 1; // => 1 (Logical or) 0 || 0; // => 0 // Bitwise operators! ~0x0F; // => 0xF0 (bitwise negation, "1's complement") 0x0F & 0xF0; // => 0x00 (bitwise AND) 0x0F | 0xF0; // => 0xFF (bitwise OR) 0x04 ^ 0x0F; // => 0x0B (bitwise XOR) 0x01 << 1; // => 0x02 (bitwise left shift (by 1)) 0x02 >> 1; // => 0x01 (bitwise right shift (by 1)) // Be careful when shifting signed integers - the following are undefined: // - shifting into the sign bit of a signed integer (int a = 1 << 32) // - left-shifting a negative number (int a = -1 << 2) // - shifting by an offset which is >= the width of the type of the LHS: // int a = 1 << 32; // UB if int is 32 bits wide /////////////////////////////////////// // Control Structures /////////////////////////////////////// if (0) { printf("I am never run\n"); } else if (0) { printf("I am also never run\n"); } else { printf("I print\n"); } // While loops exist int ii = 0; while (ii < 10) { printf("%d, ", ii++); // ii++ increments ii in-place // after yielding its value ("postincrement"). } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " printf("\n"); int kk = 0; do { printf("%d, ", kk); } while (++kk < 10); // ++kk increments kk in-place, and yields // the already incremented value ("preincrement") // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " printf("\n"); // For loops too int jj; for (jj=0; jj < 10; jj++) { printf("%d, ", jj); } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " printf("\n"); // branching with multiple choices: switch() switch (some_integral_expression) { case 0: // labels need to be integral *constant* epxressions do_stuff(); break; // if you don't break, control flow falls over labels case 1: do_something_else(); break; default: // if `some_integral_expression` didn't match any of the labels fputs("error!\n", stderr); exit(-1); break; } /////////////////////////////////////// // Typecasting /////////////////////////////////////// // Every value in C has a type, but you can cast one value into another type // if you want (with some constraints). int x_hex = 0x01; // You can assign vars with hex literals // Casting between types will attempt to preserve their numeric values printf("%d\n", x_hex); // => Prints 1 printf("%d\n", (short) x_hex); // => Prints 1 printf("%d\n", (char) x_hex); // => Prints 1 // Types will overflow without warning printf("%d\n", (unsigned char) 257); // => 1 (Max char = 255 if char is 8 bits long) // For determining the max value of a `char`, a `signed char` and an `unisigned char`, // respectively, use the CHAR_MAX, SCHAR_MAX and UCHAR_MAX macros from // Integral types can be cast to floating-point types, and vice-versa. printf("%f\n", (float)100); // %f formats a float printf("%lf\n", (double)100); // %lf formats a double printf("%d\n", (char)100.0); /////////////////////////////////////// // Pointers /////////////////////////////////////// // A pointer is a variable declared to store a memory address. Its declaration will // also tell you the type of data it points to. You can retrieve the memory address // of your variables, then mess with them. int x = 0; printf("%p\n", (void *)&x); // Use & to retrieve the address of a variable // (%p formats an object pointer of type void *) // => Prints some address in memory; // Pointers start with * in their declaration int *px, not_a_pointer; // px is a pointer to an int px = &x; // Stores the address of x in px printf("%p\n", (void *)px); // => Prints some address in memory printf("%zu, %zu\n", sizeof(px), sizeof(not_a_pointer)); // => Prints "8, 4" on a typical 64-bit system // To retrieve the value at the address a pointer is pointing to, // put * in front to de-reference it. // Note: yes, it may be confusing that '*' is used for _both_ declaring a // pointer and dereferencing it. printf("%d\n", *px); // => Prints 0, the value of x // You can also change the value the pointer is pointing to. // We'll have to wrap the de-reference in parenthesis because // ++ has a higher precedence than *. (*px)++; // Increment the value px is pointing to by 1 printf("%d\n", *px); // => Prints 1 printf("%d\n", x); // => Prints 1 // Arrays are a good way to allocate a contiguous block of memory int x_array[20]; int xx; for (xx = 0; xx < 20; xx++) { x_array[xx] = 20 - xx; } // Initialize x_array to 20, 19, 18,... 2, 1 // Declare a pointer of type int and initialize it to point to x_array int* x_ptr = x_array; // x_ptr now points to the first element in the array (the integer 20). // This works because arrays often decay into pointers to their first element. // For example, when an array is passed to a function or is assigned to a pointer, // it decays into (implicitly converted to) a pointer. // Exceptions: when the array is the argument of the `&` (address-od) operator: int arr[10]; int (*ptr_to_arr)[10] = &arr; // &arr is NOT of type `int *`! // It's of type "pointer to array" (of ten `int`s). // or when the array is a string literal used for initializing a char array: char arr[] = "foobarbazquirk"; // or when it's the argument of the `sizeof` or `alignof` operator: int arr[10]; int *ptr = arr; // equivalent with int *ptr = &arr[0]; printf("%zu %zu\n", sizeof arr, sizeof ptr); // probably prints "40, 4" or "40, 8" // Pointers are incremented and decremented based on their type // (this is called pointer arithmetic) printf("%d\n", *(x_ptr + 1)); // => Prints 19 printf("%d\n", x_array[1]); // => Prints 19 // You can also dynamically allocate contiguous blocks of memory with the // standard library function malloc, which takes one argument of type size_t // representing the number of bytes to allocate (usually from the heap, although this // may not be true on e. g. embedded systems - the C standard says nothing about it). int *my_ptr = malloc(sizeof(*my_ptr) * 20); for (xx = 0; xx < 20; xx++) { *(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx } // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints) // Dereferencing memory that you haven't allocated gives // "unpredictable results" - the program is said to invoke "undefined behavior" printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? It may even crash. // When you're done with a malloc'd block of memory, you need to free it, // or else no one else can use it until your program terminates // (this is called a "memory leak"): free(my_ptr); // Strings are arrays of char, but they are usually represented as a // pointer-to-char (which is a pointer to the first element of the array). // It's good practice to use `const char *' when referring to a string literal, // since string literals shall not be modified (i. e. "foo"[0] = 'a' is ILLEGAL.) const char *my_str = "This is my very own string literal"; printf("%c\n", *my_str); // => 'T' // This is not the case if the string is an array // (potentially initialized with a string literal) // that resides in writable memory, as in: char foo[] = "foo"; foo[0] = 'a'; // this is legal, foo now contains "aoo" function_1(); } // end main function /////////////////////////////////////// // Functions /////////////////////////////////////// // Function declaration syntax: // () int add_two_ints(int x1, int x2) { return x1 + x2; // Use return to return a value } /* Functions are pass-by-value, but you can make your own references with pointers so functions can mutate their values. Example: in-place string reversal */ // A void function returns no value void str_reverse(char *str_in) { char tmp; int ii = 0; size_t len = strlen(str_in); // `strlen()` is part of the c standard library for (ii = 0; ii < len / 2; ii++) { tmp = str_in[ii]; str_in[ii] = str_in[len - ii - 1]; // ii-th char from end str_in[len - ii - 1] = tmp; } } /* char c[] = "This is a test."; str_reverse(c); printf("%s\n", c); // => ".tset a si sihT" */ /////////////////////////////////////// // User-defined types and structs /////////////////////////////////////// // Typedefs can be used to create type aliases typedef int my_type; my_type my_type_var = 0; // Structs are just collections of data, the members are allocated sequentially, // in the order they are written: struct rectangle { int width; int height; }; // It's not generally true that // sizeof(struct rectangle) == sizeof(int) + sizeof(int) // due to potential padding between the structure members (this is for alignment // reasons). [1] void function_1() { struct rectangle my_rec; // Access struct members with . my_rec.width = 10; my_rec.height = 20; // You can declare pointers to structs struct rectangle *my_rec_ptr = &my_rec; // Use dereferencing to set struct pointer members... (*my_rec_ptr).width = 30; // ... or even better: prefer the -> shorthand for the sake of readability my_rec_ptr->height = 10; // Same as (*my_rec_ptr).height = 10; } // You can apply a typedef to a struct for convenience typedef struct rectangle rect; int area(rect r) { return r.width * r.height; } // if you have large structs, you can pass them "by pointer" to avoid copying // the whole struct: int area(const rect *r) { return r->width * r->height; } /////////////////////////////////////// // Function pointers /////////////////////////////////////// /* At runtime, functions are located at known memory addresses. Function pointers are much like any other pointer (they just store a memory address), but can be used to invoke functions directly, and to pass handlers (or callback functions) around. However, definition syntax may be initially confusing. Example: use str_reverse from a pointer */ void str_reverse_through_pointer(char *str_in) { // Define a function pointer variable, named f. void (*f)(char *); // Signature should exactly match the target function. f = &str_reverse; // Assign the address for the actual function (determined at runtime) // f = str_reverse; would work as well - functions decay into pointers, similar to arrays (*f)(str_in); // Just calling the function through the pointer // f(str_in); // That's an alternative but equally valid syntax for calling it. } /* As long as function signatures match, you can assign any function to the same pointer. Function pointers are usually typedef'd for simplicity and readability, as follows: */ typedef void (*my_fnp_type)(char *); // Then used when declaring the actual pointer variable: // ... // my_fnp_type f; ``` ## Further Reading Best to find yourself a copy of [K&R, aka "The C Programming Language"](https://en.wikipedia.org/wiki/The_C_Programming_Language) It is *the* book about C, written by the creators of C. Be careful, though - it's ancient and it contains some inaccuracies (well, ideas that are not considered good anymore) or now-changed practices. Another good resource is [Learn C the hard way](http://c.learncodethehardway.org/book/). If you have a question, read the [compl.lang.c Frequently Asked Questions](http://c-faq.com). It's very important to use proper spacing, indentation and to be consistent with your coding style in general. Readable code is better than clever code and fast code. For a good, sane coding style to adopt, see the [Linux kernel coding stlye](https://www.kernel.org/doc/Documentation/CodingStyle). Other than that, Google is your friend. [1] http://stackoverflow.com/questions/119123/why-isnt-sizeof-for-a-struct-equal-to-the-sum-of-sizeof-of-each-member