--- name: c category: language language: c filename: learnc.c contributors: - ["Adam Bard", "http://adambard.com/"] --- Ah, C. Still the language of modern high-performance computing. C is the lowest-level language most programmers will ever use, but it more than makes up for it with raw speed. Just be aware of its manual memory management and C will take you as far as you need to go. ```c // Single-line comments start with // /* Multi-line comments look like this. */ // Import headers with #include #include <stdlib.h> #include <stdio.h> #include <string.h> // Declare function signatures in advance in a .h file, or at the top of // your .c file. void function_1(); void function_2(); // Your program's entry point is a function called // main with an integer return type. int main() { // print output using printf, for "print formatted" // %d is an integer, \n is a newline printf("%d\n", 0); // => Prints 0 // All statements must end with a semicolon /////////////////////////////////////// // Types /////////////////////////////////////// // You have to declare variables before using them. A variable declaration // requires you to specify its type; a variable's type determines its size // in bytes. // ints are usually 4 bytes int x_int = 0; // shorts are usually 2 bytes short x_short = 0; // chars are guaranteed to be 1 byte char x_char = 0; char y_char = 'y'; // Char literals are quoted with '' // longs are often 4 to 8 bytes; long longs are guaranteed to be at least // 64 bits long x_long = 0; long long x_long_long = 0; // floats are usually 32-bit floating point numbers float x_float = 0.0; // doubles are usually 64-bit floating-point numbers double x_double = 0.0; // Integral types may be unsigned. This means they can't be negative, but // the maximum value of an unsigned variable is greater than the maximum // signed value of the same size. unsigned char ux_char; unsigned short ux_short; unsigned int ux_int; unsigned long long ux_long_long; // Other than char, which is always 1 byte, these types vary in size depending // on your machine. sizeof(T) gives you the size of a variable with type T in // bytes so you can express the size of these types in a portable way. // For example, printf("%lu\n", sizeof(int)); // => 4 (on machines with 4-byte words) // Arrays must be initialized with a concrete size. char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes // (assuming 4-byte words) // You can initialize an array to 0 thusly: char my_array[20] = {0}; // Indexing an array is like other languages -- or, // rather, other languages are like C my_array[0]; // => 0 // Arrays are mutable; it's just memory! my_array[1] = 2; printf("%d\n", my_array[1]); // => 2 // Strings are just arrays of chars terminated by a NUL (0x00) byte, // represented in strings as the special character '\0'. // (We don't have to include the NUL byte in string literals; the compiler // inserts it at the end of the array for us.) char a_string[20] = "This is a string"; printf("%s\n", a_string); // %s formats a string /* You may have noticed that a_string is only 16 chars long. Char #17 is the NUL byte. Chars #18, 19 and 20 have undefined values. */ printf("%d\n", a_string[16]); // => 0 /////////////////////////////////////// // Operators /////////////////////////////////////// int i1 = 1, i2 = 2; // Shorthand for multiple declaration float f1 = 1.0, f2 = 2.0; // Arithmetic is straightforward i1 + i2; // => 3 i2 - i1; // => 1 i2 * i1; // => 2 i1 / i2; // => 0 (0.5, but truncated towards 0) f1 / f2; // => 0.5, plus or minus epsilon // Modulo is there as well 11 % 3; // => 2 // Comparison operators are probably familiar, but // there is no boolean type in c. We use ints instead. // 0 is false, anything else is true. (The comparison // operators always return 0 or 1.) 3 == 2; // => 0 (false) 3 != 2; // => 1 (true) 3 > 2; // => 1 3 < 2; // => 0 2 <= 2; // => 1 2 >= 2; // => 1 // Logic works on ints !3; // => 0 (Logical not) !0; // => 1 1 && 1; // => 1 (Logical and) 0 && 1; // => 0 0 || 1; // => 1 (Logical or) 0 || 0; // => 0 // Bitwise operators! ~0x0F; // => 0xF0 (bitwise negation) 0x0F & 0xF0; // => 0x00 (bitwise AND) 0x0F | 0xF0; // => 0xFF (bitwise OR) 0x04 ^ 0x0F; // => 0x0B (bitwise XOR) 0x01 << 1; // => 0x02 (bitwise left shift (by 1)) 0x02 >> 1; // => 0x01 (bitwise right shift (by 1)) /////////////////////////////////////// // Control Structures /////////////////////////////////////// if (0) { printf("I am never run\n"); } else if (0) { printf("I am also never run\n"); } else { printf("I print\n"); } // While loops exist int ii = 0; while (ii < 10) { printf("%d, ", ii++); // ii++ increments ii in-place, after using its value. } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " printf("\n"); int kk = 0; do { printf("%d, ", kk); } while (++kk < 10); // ++kk increments kk in-place, before using its value // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " printf("\n"); // For loops too int jj; for (jj=0; jj < 10; jj++) { printf("%d, ", jj); } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " printf("\n"); /////////////////////////////////////// // Typecasting /////////////////////////////////////// // Every value in C has a type, but you can cast one value into another type // if you want. int x_hex = 0x01; // You can assign vars with hex literals // Casting between types will attempt to preserve their numeric values printf("%d\n", x_hex); // => Prints 1 printf("%d\n", (short) x_hex); // => Prints 1 printf("%d\n", (char) x_hex); // => Prints 1 // Types will overflow without warning printf("%d\n", (char) 257); // => 1 (Max char = 255) // Integral types can be cast to floating-point types, and vice-versa. printf("%f\n", (float)100); // %f formats a float printf("%lf\n", (double)100); // %lf formats a double printf("%d\n", (char)100.0); /////////////////////////////////////// // Pointers /////////////////////////////////////// // A pointer is a variable declared to store a memory address. Its declaration will // also tell you the type of data it points to. You can retrieve the memory address // of your variables, then mess with them. int x = 0; printf("%p\n", &x); // Use & to retrieve the address of a variable // (%p formats a pointer) // => Prints some address in memory; // Pointers start with * in their declaration int *px, not_a_pointer; // px is a pointer to an int px = &x; // Stores the address of x in px printf("%p\n", px); // => Prints some address in memory printf("%d, %d\n", (int)sizeof(px), (int)sizeof(not_a_pointer)); // => Prints "8, 4" on 64-bit system // To retreive the value at the address a pointer is pointing to, // put * in front to de-reference it. printf("%d\n", *px); // => Prints 0, the value of x, which is what px is pointing to the address of // You can also change the value the pointer is pointing to. // We'll have to wrap the de-reference in parenthesis because // ++ has a higher precedence than *. (*px)++; // Increment the value px is pointing to by 1 printf("%d\n", *px); // => Prints 1 printf("%d\n", x); // => Prints 1 int x_array[20]; // Arrays are a good way to allocate a contiguous block of memory int xx; for (xx=0; xx<20; xx++) { x_array[xx] = 20 - xx; } // Initialize x_array to 20, 19, 18,... 2, 1 // Declare a pointer of type int and initialize it to point to x_array int* x_ptr = x_array; // x_ptr now points to the first element in the array (the integer 20). // This works because arrays are actually just pointers to their first element. // Arrays are pointers to their first element printf("%d\n", *(x_ptr)); // => Prints 20 printf("%d\n", x_array[0]); // => Prints 20 // Pointers are incremented and decremented based on their type printf("%d\n", *(x_ptr + 1)); // => Prints 19 printf("%d\n", x_array[1]); // => Prints 19 // You can also dynamically allocate contiguous blocks of memory with the // standard library function malloc, which takes one integer argument // representing the number of bytes to allocate from the heap. int* my_ptr = (int*) malloc(sizeof(int) * 20); for (xx=0; xx<20; xx++) { *(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx would also work here } // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints) // Dereferencing memory that you haven't allocated gives // unpredictable results printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? // When you're done with a malloc'd block of memory, you need to free it, // or else no one else can use it until your program terminates free(my_ptr); // Strings can be char arrays, but are usually represented as char // pointers: char* my_str = "This is my very own string"; printf("%c\n", *my_str); // => 'T' function_1(); } // end main function /////////////////////////////////////// // Functions /////////////////////////////////////// // Function declaration syntax: // <return type> <function name>(<args>) int add_two_ints(int x1, int x2){ return x1 + x2; // Use return to return a value } /* Functions are pass-by-value, but you can make your own references with pointers so functions can mutate their values. Example: in-place string reversal */ // A void function returns no value void str_reverse(char* str_in){ char tmp; int ii=0, len = strlen(str_in); // Strlen is part of the c standard library for(ii=0; ii<len/2; ii++){ tmp = str_in[ii]; str_in[ii] = str_in[len - ii - 1]; // ii-th char from end str_in[len - ii - 1] = tmp; } } /* char c[] = "This is a test."; str_reverse(c); printf("%s\n", c); // => ".tset a si sihT" */ /////////////////////////////////////// // User-defined types and structs /////////////////////////////////////// // Typedefs can be used to create type aliases typedef int my_type; my_type my_type_var = 0; // Structs are just collections of data struct rectangle { int width; int height; }; void function_1(){ struct rectangle my_rec; // Access struct members with . my_rec.width = 10; my_rec.height = 20; // You can declare pointers to structs struct rectangle* my_rec_ptr = &my_rec; // Use dereferencing to set struct pointer members... (*my_rec_ptr).width = 30; // ... or use the -> shorthand my_rec_ptr->height = 10; // Same as (*my_rec_ptr).height = 10; } // You can apply a typedef to a struct for convenience typedef struct rectangle rect; int area(rect r){ return r.width * r.height; } /////////////////////////////////////// // Function pointers /////////////////////////////////////// /* At runtime, functions are located at known memory addresses. Function pointers are much likely any other pointer (they just store a memory address), but can be used to invoke functions directly, and to pass handlers (or callback functions) around. However, definition syntax may be initially confusing. Example: use str_reverse from a pointer */ void str_reverse_through_pointer(char * str_in) { // Define a function pointer variable, named f. void (*f)(char *); // Signature should exactly match the target function. f = &str_reverse; // Assign the address for the actual function (determined at runtime) (*f)(str_in); // Just calling the function through the pointer // f(str_in); // That's an alternative but equally valid syntax for calling it. } /* As long as function signatures match, you can assign any function to the same pointer. Function pointers are usually typedef'd for simplicity and readability, as follows: */ typedef void (*my_fnp_type)(char *); // The used when declaring the actual pointer variable: // ... // my_fnp_type f; ``` ## Further Reading Best to find yourself a copy of [K&R, aka "The C Programming Language"](https://en.wikipedia.org/wiki/The_C_Programming_Language) Another good resource is [Learn C the hard way](http://c.learncodethehardway.org/book/) Other than that, Google is your friend.