--- language: Go filename: learngo-de.go contributors: - ["Joseph Adams", "https://github.com/jcla1"] lang: de-de --- Go wurde entwickelt um probleme zu lösen. Sie ist zwar nicht der neuste Trend in der Informatik, aber sie ist eine der neusten und schnellsten Wege um Aufgabe in der realen Welt zu lösen. Sie hat vertraute Elemente von imperativen Sprachen mit statisher Typisierung und kann schnell kompiliert und ausgeführt werden. Verbunden mit leicht zu verstehenden Parallelitäts-Konstrukten, um die heute üblichen mehrkern Prozessoren optimal nutzen zu können, eignet sich Go äußerst gut für große Programmierprojekte. Außerdem beinhaltet Go eine gut ausgestattete standard bibliothek und hat eine aktive community. ```go // Einzeiliger Kommentar /* Mehr- zeiliger Kommentar */ // Eine jede Quelldatei beginnt mit einer Packet-Klausel. // "main" ist ein besonderer Packetname, da er ein ausführbares Programm // einleitet, im Gegensatz zu jedem anderen Namen, der eine Bibliothek // deklariert. package main // Ein "import" wird verwendet um Packte zu deklarieren, die in dieser // Quelldatei Anwendung finden. import ( "fmt" // Ein Packet in der Go standard Bibliothek "net/http" // Ja, ein Webserver. "strconv" // Zeichenkettenmanipulation ) // Es folgt die Definition einer Funktions, in diesem Fall von "main". Auch hier // ist der Name wieder besonders. "main" markiert den Eintrittspunkt des // Programms. Vergessen Sie nicht die geschweiften Klammern! func main() { // Println gibt eine Zeile zu stdout aus. // Der Prefix "fmt" bestimmt das Packet aus welchem die Funktion stammt. fmt.Println("Hello world!") // Aufruf einer weiteren Funktion definiert innerhalb dieses Packets. beyondHello() } // Funktionen können Parameter akzeptieren, diese werden in Klammern deklariert, // die aber auch bei keinen Parametern erforderlich sind. func beyondHello() { var x int // Deklaration einer Variable, muss vor Gebrauch geschehen. x = 3 // Zuweisung eines Werts. // Kurze Deklaration: Benutzen Sie ":=" um die Typisierung automatisch zu // folgern, die Variable zu deklarieren und ihr einen Wert zu zuweisen. y := 4 // Eine Funktion mit mehreren Rückgabewerten. sum, prod := learnMultiple(x, y) fmt.Println("sum:", sum, "prod:", prod) // Simple Ausgabe learnTypes() // In < y Minuten lernen Sie mehr! } // Funktionen können mehrere Parameter und (mehrere!) Rückgabewerte haben. func learnMultiple(x, y int) (sum, prod int) { return x + y, x * y // Wiedergabe zweier Werte } // Überblick ueber einige eingebaute Typen und Literale. func learnTypes() { // Kurze Deklarationen sind die Norm. s := "Lernen Sie Go!" // Zeichenketten-Typ s2 := `Eine "raw" Zeichenkette kann Zeilenumbrüche beinhalten.` // Selber Zeichenketten-Typ // nicht-ASCII Literal. Go Quelltext ist UTF-8 kompatibel. g := 'Σ' // Ein Runen-Typ, alias uint32, gebraucht für unicode code points. f := 3.14195 // float64, eine IEEE-754 64-bit Dezimalzahl c := 3 + 4i // complex128, besteht intern aus zwei float64-er // "var"-Syntax mit Initalwert var u uint = 7 // Vorzeichenlos, aber die Größe ist implementationsabhängig var pi float32 = 22. / 7 // Umwandlungs-Syntax mit kurzer Deklaration n := byte('\n') // byte ist ein Alias für uint8 // Arrays haben bei Kompile-Zeit festgelegte Größen var a4 [4]int // Ein Array mit 4 ints, alle mit Initialwert 0 a3 := [...]int{3, 1, 5} // Ein Array mit 4 ints, Initialwerte wie angezeigt // "slices" haben eine dynamische Größe. Arrays und Slices haben beide ihre // Vorzüge, aber slices werden viel häufiger verwendet s3 := []int{4, 5, 9} // Vergleichen Sie mit a3, hier: keine Ellipse s4 := make([]int, 4) // Weist Speicher für 4 ints zu, alle mit Initialwert 0 var d2 [][]float64 // Nur eine Deklaration, keine Speicherzuweisung bs := []byte("eine slice") // Umwandlungs-Syntax p, q := learnMemory() // Deklariert p & q als Zeiger zu einer int. fmt.Println(*p, *q) // Die gibt die zwei Werte aus. "*" für den Zugriff // "Maps" sind dynamische Datenstrukturen mit variabler Größe. Sie sind wie // "hashs" oder "dictionaries" aus anderen Sprachen. m := map[string]int{"drei": 3, "vier": 4} m["eins"] = 1 // Ungebrauchte Variablen sind Fehler in Go // Der Unterstrich wird verwendet um einen Wert zu verwerfen. _, _, _, _, _, _, _, _, _ = s2, g, f, u, pi, n, a3, s4, bs // Die Ausgabe zählt natürlich auch als Gebrauch fmt.Println(s, c, a4, s3, d2, m) learnFlowControl() // Auf zum Kontrollfluss! } // Go ist komplett "garbage collected". Sie unterstützt Zeiger (pointers) aber // keine Zeiger-Rechnungen. Fehler können sich durch "nil" einschleichen, jedoch // nicht durch erhöhen eines Zeigers. func learnMemory() (p, q *int) { // Die bennanten Rückgabewerte p & q sind vom Typ *int p = new(int) // Eingebaute Funktion "new" weist neuen Speicherplatz zu // Der zugewiesene Speicher ist mit 0 initialisiert, p ist nicht länger nil s := make([]int, 20) // So weist man 20 ints nebeneinander (im Speicher) zu s[3] = 7 // Einer von ihnen wird ein Wert zugewiesen r := -2 // Deklaration einer weiteren lokalen Variable return &s[3], &r // & gibt die Addresse einer Variable } func expensiveComputation() int { return 1e6 } func learnFlowControl() { // Bedingte Anweisungen verlangen nach geschweiften Klammern, normale // Klammern um die Bedingung werden aber nicht gebraucht. if true { fmt.Println("hab's dir ja gesagt!") } // Die Formattierung ist durch den Befehl "go fmt" standardisiert if false { // nicht hier } else { // sonder hier! spielt die Musik } // Benutzen Sie ein "switch" Statement anstatt eine Anreihung von if-s x := 1 switch x { case 0: case 1: // Einzelne Fälle fallen nicht zum nächsten durch! case 2: // wird nicht ausgeführt } // Wie bei "if", braucht "for" auch keine Klammern um die Bedingung for x := 0; x < 3; x++ { // ++ ist ein Statement fmt.Println(x, "-te Iteration") } // Ab hier gilt wieder: x == 1 // For ist die einzige Schleifenform in Go, sie hat aber mehrere Formen: for { // Endloschleife break // nur ein Spaß continue // wird nie ausgeführt } // Wie bei for, bedeutet := in einer Bedingten Anweisung zunächst die // Zuweisung und erst dann die Überprüfung der Bedingung. if y := expensiveComputation(); y > x { x = y } // Funktionsliterale sind "closures" xBig := func() bool { return x > 100 // Verweist auf x, deklariert vor dem switch } fmt.Println("xBig:", xBig()) // true (im moment gilt: x == 1e6) x /= 1e5 // dies macht x == 10 fmt.Println("xBig:", xBig()) // jetzt: false // Wenn Sie's brauchen, werden Sie's lieben! goto love love: learnInterfaces() // Jetzt zum interessanten Teil! } // Definiere "Stringer" als ein Interface mit einer Methode: String type Stringer interface { String() string } // Definiere ein Paar als struct mit zwei Feldern, Integers mit Namen x & y. type pair struct { x, y int } // Definiere eine Methode von "pair". Dieser Typ erfüllt jetzt das Stringer interface. func (p pair) String() string { // p ist der Empfänger // Sprintf ist eine weitere öffentliche Funktion von fmt. // Der Syntax mit Punkt greift auf die Felder zu. return fmt.Sprintf("(%d, %d)", p.x, p.y) } func learnInterfaces() { // Der Klammer-Syntax ist ein "struct literal". Es ist ein vollkommen // initialisiertes struct. Der := Syntax deklariert und initialisiert p. p := pair{3, 4} fmt.Println(p.String()) // Aufruf der String() Methode von p. var i Stringer // Deklariere i vom Typ: Stringer i = p // Ok, weil p auch vom Typ Stringer ist. // Aufruf der String Methode von i, gleiche Ausgabe wie zuvor. fmt.Println(i.String()) // Funktionen des fmt-Packets rufen die String() Methode auf um eine // druckbare variante des Empfängers zu erhalten. fmt.Println(p) // gleiche Ausgabe wie zuvor fmt.Println(i) // und wieder die gleiche Ausgabe wie zuvor learnErrorHandling() } func learnErrorHandling() { // Das ", ok" Idiom wird häufig verwendet um zu überprüfen ob etwas schief // gegangen ist. m := map[int]string{3: "drei", 4: "vier"} if x, ok := m[1]; !ok { // ok wird false sein, da 1 nicht in der map ist. fmt.Println("keine eins gefunden") } else { fmt.Print(x) // x wäre der Wert, wenn er in der map wäre. } // Ein Fehler-Wert (error value) gibt mehr Informationen über den Grund für // das Problem an. if _, err := strconv.Atoi("nicht-int"); err != nil { // _ verwirft den Wert // Gibt: "strconv.ParseInt: parsing "nicht-int": invalid syntax" aus fmt.Println(err) } // Wir kommen bald nochmal auf Interfaces zurück. Aber inzwischen: learnConcurrency() } // c is a channel, a concurrency-safe communication object. func inc(i int, c chan int) { c <- i + 1 // <- is the "send" operator when a channel appears on the left. } // We'll use inc to increment some numbers concurrently. func learnConcurrency() { // Same make function used earlier to make a slice. Make allocates and // initializes slices, maps, and channels. c := make(chan int) // Start three concurrent goroutines. Numbers will be incremented // concurrently, perhaps in parallel if the machine is capable and // properly configured. All three send to the same channel. go inc(0, c) // go is a statement that starts a new goroutine. go inc(10, c) go inc(-805, c) // Read three results from the channel and print them out. // There is no telling in what order the results will arrive! fmt.Println(<-c, <-c, <-c) // channel on right, <- is "receive" operator. cs := make(chan string) // another channel, this one handles strings. cc := make(chan chan string) // a channel of string channels. go func() { c <- 84 }() // start a new goroutine just to send a value go func() { cs <- "wordy" }() // again, for cs this time // Select has syntax like a switch statement but each case involves // a channel operation. It selects a case at random out of the cases // that are ready to communicate. select { case i := <-c: // the value received can be assigned to a variable fmt.Printf("it's a %T", i) case <-cs: // or the value received can be discarded fmt.Println("it's a string") case <-cc: // empty channel, not ready for communication. fmt.Println("didn't happen.") } // At this point a value was taken from either c or cs. One of the two // goroutines started above has completed, the other will remain blocked. learnWebProgramming() // Go does it. You want to do it too. } // A single function from package http starts a web server. func learnWebProgramming() { // ListenAndServe first parameter is TCP address to listen at. // Second parameter is an interface, specifically http.Handler. err := http.ListenAndServe(":8080", pair{}) fmt.Println(err) // don't ignore errors } // Make pair an http.Handler by implementing its only method, ServeHTTP. func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) { // Serve data with a method of http.ResponseWriter w.Write([]byte("You learned Go in Y minutes!")) } ``` ## Further Reading The root of all things Go is the [official Go web site](http://golang.org/). There you can follow the tutorial, play interactively, and read lots. The language definition itself is highly recommended. It's easy to read and amazingly short (as language definitions go these days.) On the reading list for students of Go is the [source code to the standard library](http://golang.org/src/pkg/). Comprehensively documented, it demonstrates the best of readable and understandable Go, Go style, and Go idioms. Or you can click on a function name in [the documentation](http://golang.org/pkg/) and the source code comes up!