--- language: java author: Jake Prather author_url: http://github.com/JakeHP --- Java is a general-purpose, concurrent, class-based, object-oriented computer programming language. Read more here: https://en.wikipedia.org/wiki/Java_(programming_language) ```java // Single-line comments start with // /* Multi-line comments look like this. */ // Import Packages import java.util.ArrayList; import package.path.here; // Import "sub-packages" import java.lang.Math.*; // Your program's entry point is a function called main public class Main { public static void main (String[] args) throws java.lang.Exception { //stuff here } } // Printing System.out.println("Hello World"); System.out.println("Integer: "+10+"Double: "+3.14+ "Boolean: "+true); /////////////////////////////////////// // Types /////////////////////////////////////// // Byte - 8-bit signed two's complement integer (-128 <= byte <= 127) // Short - 16-bit signed two's complement integer (-32,768 <= short <= 32,767) //Integer - 32-bit signed two's complement integer (-2,147,483,648 <= int <= 2,147,483,647) int x = 1; //Long - 64-bit signed two's complement integer (-9,223,372,036,854,775,808 <= long <= 9,223,372,036,854,775,807) //Float - Single-precision 32-bit IEEE 754 Floating Point //Double - Double-precision 64-bit IEEE 754 Floating Point //Boolean - True & False //Char - A single 16-bit Unicode character // Other than char, which is always 1 byte, these types vary in size depending // on your machine. sizeof(T) gives you the size of a variable with type T in // bytes so you can express the size of these types in a portable way. // For example, printf("%d\n", sizeof(int)); // => 4 (on machines with 4-byte words) // Arrays must be initialized with a concrete size. char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes // (assuming 4-byte words) // You can initialize an array to 0 thusly: char my_array[20] = {0}; // Indexing an array is like other languages -- or, // rather, other languages are like C my_array[0]; // => 0 // Arrays are mutable; it's just memory! my_array[1] = 2; printf("%d\n", my_array[1]); // => 2 // Strings are just arrays of chars terminated by a NUL (0x00) byte, // represented in strings as the special character '\0'. // (We don't have to include the NUL byte in string literals; the compiler // inserts it at the end of the array for us.) char a_string[20] = "This is a string"; printf("%s\n", a_string); // %s formats a string /* You may have noticed that a_string is only 16 chars long. Char #17 is the NUL byte. Chars #18, 19 and 20 have undefined values. */ printf("%d\n", a_string[16]); => 0 /////////////////////////////////////// // Operators /////////////////////////////////////// int i1 = 1, i2 = 2; // Shorthand for multiple declaration float f1 = 1.0, f2 = 2.0; // Arithmetic is straightforward i1 + i2; // => 3 i2 - i1; // => 1 i2 * i1; // => 2 i1 / i2; // => 0 (0.5, but truncated towards 0) f1 / f2; // => 0.5, plus or minus epsilon // Modulo is there as well 11 % 3; // => 2 // Comparison operators are probably familiar, but // there is no boolean type in c. We use ints instead. // 0 is false, anything else is true. (The comparison // operators always return 0 or 1.) 3 == 2; // => 0 (false) 3 != 2; // => 1 (true) 3 > 2; // => 1 3 < 2; // => 0 2 <= 2; // => 1 2 >= 2; // => 1 // Logic works on ints !3; // => 0 (Logical not) !0; // => 1 1 && 1; // => 1 (Logical and) 0 && 1; // => 0 0 || 1; // => 1 (Logical or) 0 || 0; // => 0 // Bitwise operators! ~0x0F; // => 0xF0 (bitwise negation) 0x0F & 0xF0; // => 0x00 (bitwise AND) 0x0F | 0xF0; // => 0xFF (bitwise OR) 0x04 ^ 0x0F; // => 0x0B (bitwise XOR) 0x01 << 1; // => 0x02 (bitwise left shift (by 1)) 0x02 >> 1; // => 0x01 (bitwise right shift (by 1)) /////////////////////////////////////// // Control Structures /////////////////////////////////////// if (0) { printf("I am never run\n"); } else if (0) { printf("I am also never run\n"); } else { printf("I print\n"); } // While loops exist int ii = 0; while (ii < 10) { printf("%d, ", ii++); // ii++ increments ii in-place, after using its value. } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " printf("\n"); int kk = 0; do { printf("%d, ", kk); } while (++kk < 10); // ++kk increments kk in-place, before using its value // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " printf("\n"); // For loops too int jj; for (jj=0; jj < 10; jj++) { printf("%d, ", jj); } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, " printf("\n"); /////////////////////////////////////// // Typecasting /////////////////////////////////////// // Every value in C has a type, but you can cast one value into another type // if you want. int x_hex = 0x01; // You can assign vars with hex literals // Casting between types will attempt to preserve their numeric values printf("%d\n", x_hex); // => Prints 1 printf("%d\n", (short) x_hex); // => Prints 1 printf("%d\n", (char) x_hex); // => Prints 1 // Types will overflow without warning printf("%d\n", (char) 257); // => 1 (Max char = 255) // Integral types can be cast to floating-point types, and vice-versa. printf("%f\n", (float)100); // %f formats a float printf("%lf\n", (double)100); // %lf formats a double printf("%d\n", (char)100.0); /////////////////////////////////////// // Pointers /////////////////////////////////////// // A pointer is a variable declared to store a memory address. Its declaration will // also tell you the type of data it points to. You can retrieve the memory address // of your variables, then mess with them. int x = 0; printf("%p\n", &x); // Use & to retrieve the address of a variable // (%p formats a pointer) // => Prints some address in memory; // Pointer types end with * in their declaration int* px; // px is a pointer to an int px = &x; // Stores the address of x in px printf("%p\n", px); // => Prints some address in memory // To retreive the value at the address a pointer is pointing to, // put * in front to de-reference it. printf("%d\n", *px); // => Prints 0, the value of x, which is what px is pointing to the address of // You can also change the value the pointer is pointing to. // We'll have to wrap the de-reference in parenthesis because // ++ has a higher precedence than *. (*px)++; // Increment the value px is pointing to by 1 printf("%d\n", *px); // => Prints 1 printf("%d\n", x); // => Prints 1 int x_array[20]; // Arrays are a good way to allocate a contiguous block of memory int xx; for (xx=0; xx<20; xx++) { x_array[xx] = 20 - xx; } // Initialize x_array to 20, 19, 18,... 2, 1 // Declare a pointer of type int and initialize it to point to x_array int* x_ptr = x_array; // x_ptr now points to the first element in the array (the integer 20). // This works because arrays are actually just pointers to their first element. // Arrays are pointers to their first element printf("%d\n", *(x_ptr)); // => Prints 20 printf("%d\n", x_array[0]); // => Prints 20 // Pointers are incremented and decremented based on their type printf("%d\n", *(x_ptr + 1)); // => Prints 19 printf("%d\n", x_array[1]); // => Prints 19 // You can also dynamically allocate contiguous blocks of memory with the // standard library function malloc, which takes one integer argument // representing the number of bytes to allocate from the heap. int* my_ptr = (int*) malloc(sizeof(int) * 20); for (xx=0; xx<20; xx++) { *(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx would also work here } // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints) // Dereferencing memory that you haven't allocated gives // unpredictable results printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? // When you're done with a malloc'd block of memory, you need to free it, // or else no one else can use it until your program terminates free(my_ptr); // Strings can be char arrays, but are usually represented as char // pointers: char* my_str = "This is my very own string"; printf("%c\n", *my_str); // => 'T' function_1(); } // end main function /////////////////////////////////////// // Functions /////////////////////////////////////// // Function declaration syntax: // () int add_two_ints(int x1, int x2){ return x1 + x2; // Use return to return a value } /* Functions are pass-by-value, but you can make your own references with pointers so functions can mutate their values. Example: in-place string reversal */ // A void function returns no value void str_reverse(char* str_in){ char tmp; int ii=0, len = strlen(str_in); // Strlen is part of the c standard library for(ii=0; ii ".tset a si sihT" */ /////////////////////////////////////// // User-defined types and structs /////////////////////////////////////// // Typedefs can be used to create type aliases typedef int my_type; my_type my_type_var = 0; // Structs are just collections of data struct rectangle { int width; int height; }; void function_1(){ struct rectangle my_rec; // Access struct members with . my_rec.width = 10; my_rec.height = 20; // You can declare pointers to structs struct rectangle* my_rec_ptr = &my_rec; // Use dereferencing to set struct pointer members... (*my_rec_ptr).width = 30; // ... or use the -> shorthand my_rec_ptr->height = 10; // Same as (*my_rec_ptr).height = 10; } // You can apply a typedef to a struct for convenience typedef struct rectangle rect; int area(rect r){ return r.width * r.height; } ``` ## Further Reading Best to find yourself a copy of [K&R, aka "The C Programming Language"](https://en.wikipedia.org/wiki/The_C_Programming_Language) Another good resource is [Learn C the hard way](http://c.learncodethehardway.org/book/) Other than that, Google is your friend.