--- language: javascript author: Adam Brenecki author_url: http://adam.brenecki.id.au --- Javascript was created by Netscape's Brendan Eich in 1995. It was originally intended as a simpler scripting language for websites, complimenting the use of Java for more complex web applications, but its tight integration with Web pages and built-in support in browsers has caused it to become far more common than Java in web frontends. Feedback would be highly appreciated! You can reach me at [@adambrenecki](https://twitter.com/adambrenecki), or [adam@brenecki.id.au](mailto:adam@brenecki.id.au). ```javascript // Comments are like C. Single-line comments start with two slashes, /* and multiline comments start with slash-star and end with star-slash */ // Statements can be terminated by ; doStuff(); // ... but they don't have to be, as semicolons are automatically inserted // wherever there's a newline, except in certain cases. doStuff() // We'll leave semicolons off here; whether you do or not will depend on your // personal preference or your project's style guide. /*********** * 1. Numbers, Strings and Operators ***********/ // Javascript has one number type that covers ints and floats. 3 // = 3 1.5 // = 1.5 // All the basic arithmetic works as you'd expect. 1 + 1 // = 2 8 - 1 // = 7 10 * 2 // = 20 35 / 5 // = 7 // Including uneven division. 5 / 2 // = 2.5 // Enforce precedence with parentheses (1 + 3) * 2 // = 8 // There are three special not-a-real-number values: Infinity // result of e.g. 1/0 -Infinity // result of e.g. -1/0 NaN // result of e.g. 0/0 // There's also a boolean type. true false // Strings are created with ' or ". 'abc' "Hello, world" // Negation uses the ! symbol !true // = false !false // = true // Equality is == 1 == 1 // = true 2 == 1 // = false // Inequality is != 1 != 1 // = false 2 != 1 // = true // More comparisons 1 < 10 // = true 1 > 10 // = false 2 <= 2 // = true 2 >= 2 // = true // Strings are concatenated with + "Hello " + "world!" // = "Hello world!" // and are compared with < and > "a" < "b" // = true // Type coercion is performed for comparisons... "5" == 5 // = true // ...unless you use === "5" === 5 // = false // You can access characters in a string with charAt "This is a string".charAt(0) // There's also null and undefined null // used to indicate a deliberate non-value undefined // used to indicate a value that hasn't been set yet // null, undefined, NaN, 0 and "" are falsy, and everything else is truthy. // Note that 0 is falsy and "0" is truthy, even though 0 == "0". /*********** * 2. Variables, Arrays and Objects ***********/ // Variables are declared with the var keyword. Javascript is dynamically typed, // so you don't need to specify type. Assignment uses a single = character. var someVar = 5 // if you leave the var keyword off, you won't get an error... someOtherVar = 10 // ...but your variable will be created in the global scope, not in the scope // you defined it in. // Variables declared without being assigned to are set to undefined. var someThirdVar // = undefined // There's shorthand for performing math operations on variables: someVar += 5 // equivalent to someVar = someVar + 5; someVar is 10 now someVar *= 10 // now someVar is 100 // and an even-shorter-hand for adding or subtracting 1 someVar++ // now someVar is 101 someVar-- // back to 100 // Arrays are ordered lists of values, of any type. var myArray = ["Hello", 45, true] // Their members can be accessed using the square-brackets subscript syntax. // Array indices start at zero. myArray[1] // = 45 // JavaScript's objects are equivalent to 'dictionaries' or 'maps' in other // languages: an unordered collection of key-value pairs. {key1: "Hello", key2: "World"} // Keys are strings, but quotes aren't required if they're a valid // JavaScript identifier. Values can be any type. var myObj = {myKey: "myValue", "my other key": 4} // Object attributes can also be accessed using the subscript syntax, myObj["my other key"] // = 4 // ... or using the dot syntax, provided the key is a valid identifier. myObj.myKey // = "myValue" // Objects are mutable; values can be changed and new keys added. myObj.myThirdKey = true // If you try to access a value that's not yet set, you'll get undefined. myObj.myFourthKey // = undefined /*********** * 3. Logic and Control Structures ***********/ // The if structure works as you'd expect. var count = 1 if (count == 3){ // evaluated if count is 3 } else if (count == 4) { // evaluated if count is 4 } else { // evaluated if it's not either } // As does while. while (true) { // An infinite loop! } // Do-while loops are like while loops, except they always run at least once. var input do { input = getInput() } while (!isValid(input)) // the for loop is the same as C and Java: initialisation; test; iteration. for (var i = 0; i < 5; i++){ // will run 5 times } // && is logical and, || is logical or if (house.size == "big" && house.colour == "blue"){ house.contains = "bear" } if (colour == "red" || colour == "blue"){ // colour is either red or blue } // && and || "short circuit", which is useful for setting default values... var name = otherName || "default"; /*********** * 5. Functions, Scope and Closures ***********/ /*********** * 6. More about Objects; Constructors and Prototypes ***********/ // Objects can contain functions. var myObj = { myFunc: function(){ return "Hello world!" } } myObj.myFunc() // = "Hello world!" // When functions attached to an object are called, they can access the object // they're attached to using the this keyword. myObj = { myString: "Hello world!", myFunc: function(){ return this.myString } } myObj.myFunc() // = "Hello world!" // What this is set to has to do with how the function is called, not where // it's defined. So, our function doesn't work if it isn't called in the // context of the object. var myFunc = myObj.myFunc myFunc() // = undefined // Inversely, a function can be assigned to the object and gain access to it // through this, even if it wasn't attached when it was defined. var myOtherFunc = function(){ return this.myString.toUpperCase() } myObj.myOtherFunc = myOtherFunc myObj.myOtherFunc() // = "HELLO WORLD!" // When you call a function with the new keyword, a new object is created, and // made available to the function via this. Functions designed to be called // like this are called constructors. var MyConstructor = function(){ this.myNumber = 5 } myNewObj = new MyConstructor() // = {myNumber: 5} myNewObj.myNumber // = 5 // Every JavaScript object has a 'prototype'. When you go to access a property // on an object that doesn't exist on the actual object, the interpreter will // look at its prototype. // Some JS implementations let you access an object's prototype on the magic // property __proto__. While this is useful for explaining prototypes it's not // part of the standard; we'll get to standard ways of using prototypes later. var myObj = { myString: "Hello world!", } var myPrototype = { meaningOfLife: 42, myFunc: function(){ return this.myString.toLowerCase() } } myObj.__proto__ = myPrototype myObj.meaningOfLife // = 42 // This works for functions, too. myObj.myFunc() // = "hello world!" // Of course, if your property isn't on your prototype, the prototype's // prototype is searched, and so on. myPrototype.__proto__ = { myBoolean: true } myObj.myBoolean // = true // There's no copying involved here; each object stores a reference to its // prototype. This means we can alter the prototype and our changes will be // reflected everywhere. myPrototype.meaningOfLife = 43 myObj.meaningOfLife // = 43 // While the __proto__ magic property we've seen so far is useful for // explaining prototypes, it's non-standard. There's no standard way to change // an existing object's prototype, but there's two ways to set the prototype of // a new object when you first create it. // The first is Object.create, which is a recent addition to JS, and therefore // not available in all implementations yet. var myObj = Object.create(myPrototype) myObj.meaningOfLife // = 43 // Unfortunately, Object.create is quite recent and isn't available in many // browsers, so you often can't use that, either. The most reliable way to set // prototypes involves constructors. // TODO: write about the .prototype property on constructors // Built-in types' prototypes work like this too, so you can actually change // the prototype of a string, for instance. String.prototype.firstCharacter = function(){ return this.charAt(0) } "abc".firstCharacter() // = "a" // There are several implementations of JavaScript, which all gain new features // at different times. Sometimes, however, it's possible to replicate new // features by altering built in types or prototypes, which is called // "polyfilling". // For instance, we mentioned that Object.create isn't yet available in all // implementations, but we can still use it if we do this: if (Object.create === undefined){ Object.create = function(proto){ // make a temporary constructor with the right prototype var Constructor = function(){} Constructor.prototype = proto return new Constructor() } } ``` ## Further Reading The [Mozilla Developer Network](https://developer.mozilla.org/en-US/docs/Web/JavaScript) provides excellent documentation for JavaScript as it's used in browsers. Plus, it's a wiki, so as you learn more you can help others out by sharing your own knowledge. In addition to direct contributors to this article, some content is adapted from Louie Dinh's Python tutorial on this site, and the [JS Tutorial](https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript) on the Mozilla Developer Network.