--- language: Haskell lang: pl-pl contributors: - ["Remigiusz Suwalski", "https://github.com/remigiusz-suwalski"] --- Haskell został zaprojektowany jako praktyczy, czysto funkcyjny język programowania. Jest znany przede wszystkim ze względu na jego monady oraz system typów, ale ja lubię do niego wracać przez jego elegancję. Sprawił on, że programowanie jest prawdziwą przyjemnością. ```haskell -- Komentarze jednolinijkowe zaczynają się od dwóch myślników {- Komentarze wielolinijkowe należy zamykać w bloki klamrami. -} ---------------------------------------------------- -- 1. Podstawowe typy danych oraz operatory ---------------------------------------------------- -- Mamy liczby 3 -- 3 -- Podstawowe działania działają tak, jak powinny 1 + 1 -- 2 8 - 1 -- 7 10 * 2 -- 20 35 / 5 -- 7.0 -- dzielenie domyślnie zwraca ,,dokładny'' wynik 35 / 4 -- 8.75 -- dzielenie całkowitoliczbowe 35 `div` 4 -- 8 -- wartości logiczne także są podstawowym typem danych: True False -- operacje logiczne: negacja oraz porównania not True -- False not False -- True 1 == 1 -- True 1 /= 1 -- False 1 < 10 -- True -- W powyższych przykładach, `not` jest funkcją przyjmującą jeden argument. -- Haskell nie potrzebuje nawiasów, by wywołać funkcję: argumenty są po prostu -- wypisywane jeden za drugim. Ogólnie wygląda to tak: -- funkcja arg1 arg2 arg3... -- Sekcja poświęcona funkcjom zawiera informacje, jak stworzyć własne. -- Łańcuchy znaków (stringi) i pojedyncze znaki: "To jest lancuch." 'a' -- znak 'Nie mozna laczyc apostrofow z lancuchami.' -- błąd! -- Łańcuchy można sklejać "Hello " ++ "world!" -- "Hello world!" -- Łańcuch jest listą własnych znaków ['H', 'e', 'l', 'l', 'o'] -- "Hello" "To jest lancuch" !! 0 -- 'T' ---------------------------------------------------- -- Listy oraz krotki ---------------------------------------------------- -- Wszystkie elementy listy muszą być tego samego typu. -- Poniższe dwie listy są identyczne: [1, 2, 3, 4, 5] [1..5] -- Zakresy są uniwersalne. ['A'..'F'] -- "ABCDEF" -- Przy tworzeniu zakresów można określić krok. [0,2..10] -- [0, 2, 4, 6, 8, 10] [5..1] -- To nie zadziała, gdyż w Haskellu zakresy tworzone są domyślnie rosnąco [5,4..1] -- [5, 4, 3, 2, 1] -- indeksowanie listy od zera [1..10] !! 3 -- 4 -- Można nawet tworzyć listy nieskończone! [1..] -- lista wszystkich liczb naturalnych -- Nieskończone listy mają prawo działać, ponieważ Haskell cechuje się leniwym -- wartościowaniem. To oznacza, że obliczane są jedynie te elementy listy, -- których istotnie potrzebujemy. Możemy poprosić o tysiączny element i -- dostaniemy go: [1..] !! 999 -- 1000 -- Haskell wyznaczył pierwsze tysiąc elementów listy, ale cała jej reszta -- jeszcze nie istnieje! Nie zostanie obliczona ich wartość, póki nie zajdzie -- taka potrzeba. -- łączenie dwóch list [1..5] ++ [6..10] -- dodawanie pojedynczego elementu na początek listy 0:[1..5] -- [0, 1, 2, 3, 4, 5] -- więcej operacji na listach head [1..5] -- 1 tail [1..5] -- [2, 3, 4, 5] init [1..5] -- [1, 2, 3, 4] last [1..5] -- 5 -- list comprehensions [x*2 | x <- [1..5]] -- [2, 4, 6, 8, 10] -- z dodatkowym warunkiem [x*2 | x <- [1..5], x*2 > 4] -- [6, 8, 10] -- każdy element krotki może być innego typu, jednak sama krotka musi być stałej -- długości. Przykładowo: ("haskell", 1) -- dostęp do elementów pary (krotki długości 2): fst ("haskell", 1) -- "haskell" snd ("haskell", 1) -- 1 ---------------------------------------------------- -- 3. Functions ---------------------------------------------------- -- A simple function that takes two variables add a b = a + b -- Note that if you are using ghci (the Haskell interpreter) -- You'll need to use `let`, i.e. -- let add a b = a + b -- Using the function add 1 2 -- 3 -- You can also put the function name between the two arguments -- with backticks: 1 `add` 2 -- 3 -- You can also define functions that have no letters! This lets -- you define your own operators! Here's an operator that does -- integer division (//) a b = a `div` b 35 // 4 -- 8 -- Guards: an easy way to do branching in functions fib x | x < 2 = 1 | otherwise = fib (x - 1) + fib (x - 2) -- Pattern matching is similar. Here we have given three different -- definitions for fib. Haskell will automatically call the first -- function that matches the pattern of the value. fib 1 = 1 fib 2 = 2 fib x = fib (x - 1) + fib (x - 2) -- Pattern matching on tuples: foo (x, y) = (x + 1, y + 2) -- Pattern matching on lists. Here `x` is the first element -- in the list, and `xs` is the rest of the list. We can write -- our own map function: myMap func [] = [] myMap func (x:xs) = func x:(myMap func xs) -- Anonymous functions are created with a backslash followed by -- all the arguments. myMap (\x -> x + 2) [1..5] -- [3, 4, 5, 6, 7] -- using fold (called `inject` in some languages) with an anonymous -- function. foldl1 means fold left, and use the first value in the -- list as the initial value for the accumulator. foldl1 (\acc x -> acc + x) [1..5] -- 15 ---------------------------------------------------- -- 4. More functions ---------------------------------------------------- -- partial application: if you don't pass in all the arguments to a function, -- it gets "partially applied". That means it returns a function that takes the -- rest of the arguments. add a b = a + b foo = add 10 -- foo is now a function that takes a number and adds 10 to it foo 5 -- 15 -- Another way to write the same thing foo = (10+) foo 5 -- 15 -- function composition -- the operator `.` chains functions together. -- For example, here foo is a function that takes a value. It adds 10 to it, -- multiplies the result of that by 4, and then returns the final value. foo = (4*) . (10+) -- 4*(10 + 5) = 60 foo 5 -- 60 -- fixing precedence -- Haskell has another operator called `$`. This operator applies a function -- to a given parameter. In contrast to standard function application, which -- has highest possible priority of 10 and is left-associative, the `$` operator -- has priority of 0 and is right-associative. Such a low priority means that -- the expression on its right is applied as the parameter to the function on its left. -- before even (fib 7) -- false -- equivalently even $ fib 7 -- false -- composing functions even . fib $ 7 -- false ---------------------------------------------------- -- 5. Type signatures ---------------------------------------------------- -- Haskell has a very strong type system, and every valid expression has a type. -- Some basic types: 5 :: Integer "hello" :: String True :: Bool -- Functions have types too. -- `not` takes a boolean and returns a boolean: -- not :: Bool -> Bool -- Here's a function that takes two arguments: -- add :: Integer -> Integer -> Integer -- When you define a value, it's good practice to write its type above it: double :: Integer -> Integer double x = x * 2 ---------------------------------------------------- -- 6. Control Flow and If Expressions ---------------------------------------------------- -- if expressions haskell = if 1 == 1 then "awesome" else "awful" -- haskell = "awesome" -- if expressions can be on multiple lines too, indentation is important haskell = if 1 == 1 then "awesome" else "awful" -- case expressions: Here's how you could parse command line arguments case args of "help" -> printHelp "start" -> startProgram _ -> putStrLn "bad args" -- Haskell doesn't have loops; it uses recursion instead. -- map applies a function over every element in a list map (*2) [1..5] -- [2, 4, 6, 8, 10] -- you can make a for function using map for array func = map func array -- and then use it for [0..5] $ \i -> show i -- we could've written that like this too: for [0..5] show -- You can use foldl or foldr to reduce a list -- foldl foldl (\x y -> 2*x + y) 4 [1,2,3] -- 43 -- This is the same as (2 * (2 * (2 * 4 + 1) + 2) + 3) -- foldl is left-handed, foldr is right-handed foldr (\x y -> 2*x + y) 4 [1,2,3] -- 16 -- This is now the same as (2 * 1 + (2 * 2 + (2 * 3 + 4))) ---------------------------------------------------- -- 7. Typy danych ---------------------------------------------------- -- Oto jak tworzy się nowe typy danych w Haskellu: data Color = Red | Blue | Green -- Teraz można używać ich we własnych funkcjach: say :: Color -> String say Red = "You are Red!" say Blue = "You are Blue!" say Green = "You are Green!" -- Twoje typy danych mogą posiadać nawet parametry: data Maybe a = Nothing | Just a -- Wszystkie poniższe są typu Maybe Just "hello" -- typu `Maybe String` Just 1 -- typu `Maybe Int` Nothing -- typu `Maybe a` for any `a` ---------------------------------------------------- -- 8. Haskell IO ---------------------------------------------------- -- While IO can't be explained fully without explaining monads, -- it is not hard to explain enough to get going. -- When a Haskell program is executed, `main` is -- called. It must return a value of type `IO a` for some type `a`. For example: main :: IO () main = putStrLn $ "Hello, sky! " ++ (say Blue) -- putStrLn has type String -> IO () -- It is easiest to do IO if you can implement your program as -- a function from String to String. The function -- interact :: (String -> String) -> IO () -- inputs some text, runs a function on it, and prints out the -- output. countLines :: String -> String countLines = show . length . lines main' = interact countLines -- You can think of a value of type `IO ()` as representing a -- sequence of actions for the computer to do, much like a -- computer program written in an imperative language. We can use -- the `do` notation to chain actions together. For example: sayHello :: IO () sayHello = do putStrLn "What is your name?" name <- getLine -- this gets a line and gives it the name "name" putStrLn $ "Hello, " ++ name -- Exercise: write your own version of `interact` that only reads -- one line of input. -- The code in `sayHello` will never be executed, however. The only -- action that ever gets executed is the value of `main`. -- To run `sayHello` comment out the above definition of `main` -- and replace it with: -- main = sayHello -- Let's understand better how the function `getLine` we just -- used works. Its type is: -- getLine :: IO String -- You can think of a value of type `IO a` as representing a -- computer program that will generate a value of type `a` -- when executed (in addition to anything else it does). We can -- name and reuse this value using `<-`. We can also -- make our own action of type `IO String`: action :: IO String action = do putStrLn "This is a line. Duh" input1 <- getLine input2 <- getLine -- The type of the `do` statement is that of its last line. -- `return` is not a keyword, but merely a function return (input1 ++ "\n" ++ input2) -- return :: String -> IO String -- We can use this just like we used `getLine`: main'' = do putStrLn "I will echo two lines!" result <- action putStrLn result putStrLn "This was all, folks!" -- The type `IO` is an example of a "monad". The way Haskell uses a monad to -- do IO allows it to be a purely functional language. Any function that -- interacts with the outside world (i.e. does IO) gets marked as `IO` in its -- type signature. This lets us reason about what functions are "pure" (don't -- interact with the outside world or modify state) and what functions aren't. -- This is a powerful feature, because it's easy to run pure functions -- concurrently; so, concurrency in Haskell is very easy. ---------------------------------------------------- -- 9. The Haskell REPL ---------------------------------------------------- -- Start the repl by typing `ghci`. -- Now you can type in Haskell code. Any new values -- need to be created with `let`: let foo = 5 -- You can see the type of any value or expression with `:t`: > :t foo foo :: Integer -- Operators, such as `+`, `:` and `$`, are functions. -- Their type can be inspected by putting the operator in parentheses: > :t (:) (:) :: a -> [a] -> [a] -- You can get additional information on any `name` using `:i`: > :i (+) class Num a where (+) :: a -> a -> a ... -- Defined in ‘GHC.Num’ infixl 6 + -- You can also run any action of type `IO ()` > sayHello What is your name? Friend! Hello, Friend! ``` There's a lot more to Haskell, including typeclasses and monads. These are the big ideas that make Haskell such fun to code in. I'll leave you with one final Haskell example: an implementation of a quicksort variant in Haskell: ```haskell qsort [] = [] qsort (p:xs) = qsort lesser ++ [p] ++ qsort greater where lesser = filter (< p) xs greater = filter (>= p) xs ``` There are two popular ways to install Haskell: The traditional [Cabal-based installation](http://www.haskell.org/platform/), and the newer [Stack-based process](https://www.stackage.org/install). You can find a much gentler introduction from the excellent [Learn you a Haskell](http://learnyouahaskell.com/) or [Real World Haskell](http://book.realworldhaskell.org/).