--- language: rust contributors: - ["P1start", "http://p1start.github.io/"] filename: learnrust.rs --- Rust is an in-development programming language developed by Mozilla Research. It is relatively unique among systems languages in that it can assert memory safety *at compile time* without resorting to garbage collection. Rust’s first release, 0.1, occurred in January 2012, and development moves so quickly that at the moment the use of stable releases is discouraged, and instead one should use nightly builds. On January 9 2015, Rust 1.0 Alpha was released, and the rate of changes to the Rust compiler that break existing code has dropped significantly since. However, a complete guarantee of backward compatibility will not exist until the final 1.0 release. Although Rust is a relatively low-level language, Rust has some functional concepts that are generally found in higher-level languages. This makes Rust not only fast, but also easy and efficient to code in. ```rust // This is a comment. Single-line look like this... /* ...and multi-line comment look like this */ /////////////// // 1. Basics // /////////////// // Functions // `i32` is the type for 32-bit signed integers fn add2(x: i32, y: i32) -> i32 { // Implicit return (no semicolon) x + y } // Main function fn main() { // Numbers // // Immutable bindings let x: i32 = 1; // Integer/float suffixes let y: i32 = 13i32; let f: f64 = 1.3f64; // Type inference // Most of the time, the Rust compiler can infer what type a variable is, so // you don’t have to write an explicit type annotation. // Throughout this tutorial, types are explicitly annotated in many places, // but only for demonstrative purposes. Type inference can handle this for // you most of the time. let implicit_x = 1; let implicit_f = 1.3; // Arithmetic let sum = x + y + 13; // Mutable variable let mut mutable = 1; mutable = 4; mutable += 2; // Strings // // String literals let x: &str = "hello world!"; // Printing println!("{} {}", f, x); // 1.3 hello world // A `String` – a heap-allocated string let s: String = "hello world".to_string(); // A string slice – an immutable view into another string // This is basically an immutable pointer to a string – it doesn’t // actually contain the contents of a string, just a pointer to // something that does (in this case, `s`) let s_slice: &str = &*s; println!("{} {}", s, s_slice); // hello world hello world // Vectors/arrays // // A fixed-size array let four_ints: [i32; 4] = [1, 2, 3, 4]; // A dynamic array (vector) let mut vector: Vec = vec![1, 2, 3, 4]; vector.push(5); // A slice – an immutable view into a vector or array // This is much like a string slice, but for vectors let slice: &[i32] = &*vector; // Use `{:?}` to print something debug-style println!("{:?} {:?}", vector, slice); // [1, 2, 3, 4, 5] [1, 2, 3, 4, 5] // Tuples // // A tuple is a fixed-size set of values of possibly different types let x: (i32, &str, f64) = (1, "hello", 3.4); // Destructuring `let` let (a, b, c) = x; println!("{} {} {}", a, b, c); // 1 hello 3.4 // Indexing println!("{}", x.1); // hello ////////////// // 2. Types // ////////////// // Struct struct Point { x: i32, y: i32, } let origin: Point = Point { x: 0, y: 0 }; // A struct with unnamed fields, called a ‘tuple struct’ struct Point2(i32, i32); let origin2 = Point2(0, 0); // Basic C-like enum enum Direction { Left, Right, Up, Down, } let up = Direction::Up; // Enum with fields enum OptionalI32 { AnI32(i32), Nothing, } let two: OptionalI32 = OptionalI32::AnI32(2); let nothing = OptionalI32::Nothing; // Generics // struct Foo { bar: T } // This is defined in the standard library as `Option` enum Optional { SomeVal(T), NoVal, } // Methods // impl Foo { // Methods take an explicit `self` parameter fn get_bar(self) -> T { self.bar } } let a_foo = Foo { bar: 1 }; println!("{}", a_foo.get_bar()); // 1 // Traits (known as interfaces or typeclasses in other languages) // trait Frobnicate { fn frobnicate(self) -> Option; } impl Frobnicate for Foo { fn frobnicate(self) -> Option { Some(self.bar) } } let another_foo = Foo { bar: 1 }; println!("{:?}", another_foo.frobnicate()); // Some(1) ///////////////////////// // 3. Pattern matching // ///////////////////////// let foo = OptionalI32::AnI32(1); match foo { OptionalI32::AnI32(n) => println!("it’s an i32: {}", n), OptionalI32::Nothing => println!("it’s nothing!"), } // Advanced pattern matching struct FooBar { x: i32, y: OptionalI32 } let bar = FooBar { x: 15, y: OptionalI32::AnI32(32) }; match bar { FooBar { x: 0, y: OptionalI32::AnI32(0) } => println!("The numbers are zero!"), FooBar { x: n, y: OptionalI32::AnI32(m) } if n == m => println!("The numbers are the same"), FooBar { x: n, y: OptionalI32::AnI32(m) } => println!("Different numbers: {} {}", n, m), FooBar { x: _, y: OptionalI32::Nothing } => println!("The second number is Nothing!"), } ///////////////////// // 4. Control flow // ///////////////////// // `for` loops/iteration let array = [1, 2, 3]; for i in array.iter() { println!("{}", i); } // Ranges for i in 0u32..10 { print!("{} ", i); } println!(""); // prints `0 1 2 3 4 5 6 7 8 9 ` // `if` if 1 == 1 { println!("Maths is working!"); } else { println!("Oh no..."); } // `if` as expression let value = if true { "good" } else { "bad" }; // `while` loop while 1 == 1 { println!("The universe is operating normally."); } // Infinite loop loop { println!("Hello!"); } ///////////////////////////////// // 5. Memory safety & pointers // ///////////////////////////////// // Owned pointer – only one thing can ‘own’ this pointer at a time // This means that when the `Box` leaves its scope, it can be automatically deallocated safely. let mut mine: Box = Box::new(3); *mine = 5; // dereference // Here, `now_its_mine` takes ownership of `mine`. In other words, `mine` is moved. let mut now_its_mine = mine; *now_its_mine += 2; println!("{}", now_its_mine); // 7 // println!("{}", mine); // this would not compile because `now_its_mine` now owns the pointer // Reference – an immutable pointer that refers to other data // When a reference is taken to a value, we say that the value has been ‘borrowed’. // While a value is borrowed immutably, it cannot be mutated or moved. // A borrow lasts until the end of the scope it was created in. let mut var = 4; var = 3; let ref_var: &i32 = &var; println!("{}", var); // Unlike `box`, `var` can still be used println!("{}", *ref_var); // var = 5; // this would not compile because `var` is borrowed // *ref_var = 6; // this would too, because `ref_var` is an immutable reference // Mutable reference // While a value is mutably borrowed, it cannot be accessed at all. let mut var2 = 4; let ref_var2: &mut i32 = &mut var2; *ref_var2 += 2; println!("{}", *ref_var2); // 6 // var2 = 2; // this would not compile because `var2` is borrowed } ``` ## Further reading There’s a lot more to Rust—this is just the basics of Rust so you can understand the most important things. To learn more about Rust, read [The Rust Programming Language](http://doc.rust-lang.org/book/index.html) and check out the [/r/rust](http://reddit.com/r/rust) subreddit. The folks on the #rust channel on irc.mozilla.org are also always keen to help newcomers. You can also try out features of Rust with an online compiler at the official [Rust playpen](http://play.rust-lang.org) or on the main [Rust website](http://rust-lang.org).