summaryrefslogtreecommitdiffhomepage
path: root/es-es/r-es.html.markdown
blob: 2b710b2791bce64a2cf4a9b71eff6a15d9d0d2ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
---
language: R
contributors:
    - ["e99n09", "http://github.com/e99n09"]
    - ["isomorphismes", "http://twitter.com/isomorphisms"]
translators:
    - ["David Hsieh", "http://github.com/deivuh"]
lang: es-es    
filename: learnr-es.r
---

R es un lenguaje de computación estadística. Tiene muchas librerías para cargar
y limpiar sets de datos, ejecutar procedimientos estadísticos y generar
gráficas. También puedes ejecutar comandos `R` dentro de un documento de
LaTeX.

```r

# Los comentariso inician con símbolos numéricos.

# No puedes hacer comentarios de múltiples líneas
# pero puedes agrupar múltiples comentarios de esta manera. 

# En Windows puedes utilizar CTRL-ENTER para ejecutar una línea.
# En Mac utilizas COMMAND-ENTER


#############################################################################
# Cosas que puedes hacer sin entender nada acerca de programación
#############################################################################

# En esta sección, mostramos algunas cosas chileras / cool que puedes hacer en
# R sin entender nada de programación. No te preocupes en entender nada 
# de lo que hace este código. Solo disfruta!

data()	        # Examinar sets de datos pre-cargados
data(rivers)	# Obtiene este: Lengths of Major North American Rivers"
ls()	        # Fijarse que "rivers" ahora aparece en el workspace
head(rivers)	# Echarle un ojo al set de datos
# 735 320 325 392 524 450

length(rivers)	# ¿Cuántos ríos fueron medidos?
# 141
summary(rivers) # ¿Cuáles son algunas estadísticas generales?
#   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
#  135.0   310.0   425.0   591.2   680.0  3710.0

# Generar una gráfica tallo-y-hoja (Visualización de datos tipo histograma)
stem(rivers)

# El punto decimal son 2 dígitos a la derecha de | 
#
#   0 | 4
#   2 | 011223334555566667778888899900001111223333344455555666688888999
#   4 | 111222333445566779001233344567
#   6 | 000112233578012234468
#   8 | 045790018
#  10 | 04507
#  12 | 1471
#  14 | 56
#  16 | 7
#  18 | 9
#  20 |
#  22 | 25
#  24 | 3
#  26 |
#  28 |
#  30 |
#  32 |
#  34 |
#  36 | 1

stem(log(rivers)) # Fijarse que la data no es normal ni log-normal!
# Toma eso, fundamentalistas de la curva de campana!

# El punto decimal está a 1 dígito a la izquierda del |
#
#  48 | 1
#  50 |
#  52 | 15578
#  54 | 44571222466689
#  56 | 023334677000124455789
#  58 | 00122366666999933445777
#  60 | 122445567800133459
#  62 | 112666799035
#  64 | 00011334581257889
#  66 | 003683579
#  68 | 0019156
#  70 | 079357
#  72 | 89
#  74 | 84
#  76 | 56
#  78 | 4
#  80 |
#  82 | 2

# Generar un histograma:
hist(rivers, col="#333333", border="white", breaks=25) # Juega con los estos parámetros
hist(log(rivers), col="#333333", border="white", breaks=25) # Generarás más gráficas después

# Aquí hay otro set de datos pre-cargado. R tiene bastantes de éstos.
data(discoveries)
plot(discoveries, col="#333333", lwd=3, xlab="Year",
     main="Number of important discoveries per year")
plot(discoveries, col="#333333", lwd=3, type = "h", xlab="Year",
     main="Number of important discoveries per year")

# En lugar de dejar el orden por defecto (por año),
# podemos ordenar de tal manera que muestre qué es típico:
sort(discoveries)
#  [1]  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  2  2  2  2
# [26]  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  3  3  3
# [51]  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  4  4  4  4  4  4  4  4
# [76]  4  4  4  4  5  5  5  5  5  5  5  6  6  6  6  6  6  7  7  7  7  8  9 10 12

stem(discoveries, scale=2)
#
#  El punto decimal se encuentra en |
#
#   0 | 000000000
#   1 | 000000000000
#   2 | 00000000000000000000000000
#   3 | 00000000000000000000
#   4 | 000000000000
#   5 | 0000000
#   6 | 000000
#   7 | 0000
#   8 | 0
#   9 | 0
#  10 | 0
#  11 |
#  12 | 0

max(discoveries)
# 12
summary(discoveries)
#   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
#    0.0     2.0     3.0     3.1     4.0    12.0

# Tirar los dados varias veces
round(runif(7, min=.5, max=6.5))
# 1 4 6 1 4 6 4
# Tus números será diferente de los míos, a menos que tengamos el mismo valor 
# de random.seed(31337)

# Dibuja de un Gaussian 9 veces
rnorm(9)
# [1]  0.07528471  1.03499859  1.34809556 -0.82356087  0.61638975 -1.88757271
# [7] -0.59975593  0.57629164  1.08455362



##################################################
# Tipos de datos y aritmética básica
##################################################

# Ahora para la parte de programación orientada a objetos del tutorial.
# En esta sección conocerás los tipos de datos importantes de R:
# Enteros, numéricos, caracteres, lógicos, y factores.
# Hay otros, pero esos son los que menos necesitas para empezar.

# ENTEROS
# Enteros de almacenamiento largo son escritos con L
5L # 5
class(5L) # "integer"
# (Try ?class para más información en la función class().)
# En R, cada valor único, como 5L, es considerado un vector de logitud 1
length(5L) # 1
# También puedes tener un vector de enteros con longitud > 1:
c(4L, 5L, 8L, 3L) # 4 5 8 3
length(c(4L, 5L, 8L, 3L)) # 4
class(c(4L, 5L, 8L, 3L)) # "integer"

# NUMÉRICOS
# Un "numérico" es un número de punto flotante de doble precisión.
5 # 5
class(5) # "numeric"
# Nuevamente, todo en R es un vector;
# puedes hacer un vector numérico con más de un elemento
c(3,3,3,2,2,1) # 3 3 3 2 2 1
# También puedes utilizar el notación científica
5e4 # 50000
6.02e23 # Número de Avogadro
1.6e-35 # Logintud Planck 
# También puedes tener números infinitamente grandes o pequeños
class(Inf)	# "numeric"
class(-Inf)	# "numeric"
# Puede que uses "Inf", por ejemplo, en integrate(dnorm, 3, Inf);
# esto obvia las tablas de puntos Z.

# ARITMÉTICA BÁSICA
# Puedes hacer aritmética con números
# Haciendo aritmética en un mix de enteros y numéricos, te da otro numérico
10L + 66L # 76      # entero mas entero da entero
53.2 - 4  # 49.2    # entero menos entero da numérico
2.0 * 2L  # 4       # numérico veces entero da numérico
3L / 4    # 0.75    # entero sobre numérico da numérico
3 %% 2	  # 1       # el residuo de dos numéricos es otro numérico
# La aritmética ilegal rinde un "not-a-number"
0 / 0 # NaN
class(NaN) # "numeric"
# Puedes hacer aritmética con dos vectores con longitud mayor a 1,
# siempre que la longitud del vector mayor es un entero múltiplo del menor.
c(1,2,3) + c(1,2,3) # 2 4 6

# CARACTERES
# No hay diferencia entre strings y caracteres en R
"Horatio" # "Horatio"
class("Horatio") # "character"
class('H') # "character"
# Ambos eran vectores de caracteres de longitud 1
# Aquí hay uno más largo:
c('alef', 'bet', 'gimmel', 'dalet', 'he')
# =>
# "alef"   "bet"    "gimmel" "dalet"  "he"
length(c("Call","me","Ishmael")) # 3
# Puedes hacer operaciones regex en vectores de caracteres:
substr("Fortuna multis dat nimis, nulli satis.", 9, 15) # "multis "
gsub('u', 'ø', "Fortuna multis dat nimis, nulli satis.") # "Fortøna møltis dat nimis, nølli satis."
# R tiene varios vectores predefinidos de caracteres 
letters
# =>
#  [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
# [20] "t" "u" "v" "w" "x" "y" "z"
month.abb # "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

# LÓGICOS
# En R, un "logical" es un boolean
class(TRUE)	# "logical"
class(FALSE)	# "logical"
# Ese comportamiento es normal
TRUE == TRUE	# TRUE
TRUE == FALSE	# FALSE
FALSE != FALSE	# FALSE
FALSE != TRUE	# TRUE
# El dato faltante (NA) es lógico también
class(NA)	# "logical"
# Utiliza | y & para operaciones lógicas
# OR
TRUE | FALSE	# TRUE
# AND
TRUE & FALSE	# FALSE
# Puedes probar si x es TRUE (verdadero)
isTRUE(TRUE)	# TRUE
# Aquí tenemos un vector lógico con varios elementos:
c('Z', 'o', 'r', 'r', 'o') == "Zorro" # FALSE FALSE FALSE FALSE FALSE
c('Z', 'o', 'r', 'r', 'o') == "Z" # TRUE FALSE FALSE FALSE FALSE

# FACTORES
# La clase factor es para datos de categoría
# Los factores pueden ser ordenados (como las calificaciones de los niños) 
# o sin orden (como el género)
factor(c("female", "female", "male", NA, "female"))
#  female female male   <NA>   female
# Levels: female male
# Los "levels" son los valores que los datos categóricos pueden tener
# Tomar nota que los datos faltantes no entran a los niveles
levels(factor(c("male", "male", "female", NA, "female"))) # "female" "male"
# Si un vector de factores tiene longitud 1, sus niveles también tendrán
# una longitud de 1 también

length(factor("male")) # 1
length(levels(factor("male"))) # 1
# Los factores son comúnmente vistos en marcos de dato, y una estructura de 
# datos que cubriremos después
data(infert) # "Infertility after Spontaneous and Induced Abortion"
levels(infert$education) # "0-5yrs"  "6-11yrs" "12+ yrs"

# NULL
# "NULL" es uno raro; utilízalo para "limpiar" un vector
class(NULL)	# NULL
parakeet = c("beak", "feathers", "wings", "eyes")
parakeet
# =>
# [1] "beak"     "feathers" "wings"    "eyes"
parakeet <- NULL
parakeet
# =>
# NULL

# COERCIÓN DE TIPO
# La coerción de tipos es cuando forzas un valor diferente tipo al que puede tomar.
as.character(c(6, 8)) # "6" "8"
as.logical(c(1,0,1,1)) # TRUE FALSE  TRUE  TRUE
# Si pones elementos de diferentes tipos en un vector, coerciones raras pasan:
c(TRUE, 4) # 1 4
c("dog", TRUE, 4) # "dog"  "TRUE" "4"
as.numeric("Bilbo")
# =>
# [1] NA
# Warning message:
# NAs introduced by coercion

# También tomar nota: Esos solo eran datos de tipos básicos
# Hay mucho más tipos de datos, como las fechas, series de tiempo, etc.


##################################################
# Variables, ciclos, condiciones (if/else)
##################################################

# A variable is like a box you store a value in for later use.
# We call this "assigning" the value to the variable.
# Having variables lets us write loops, functions, and if/else statements

# VARIABLES
# Muchas maneras de asignar valores:
x = 5 # esto es posible
y <- "1" # esto es preferido
TRUE -> z # estos funciona pero es raro

# CICLOS
# Tenemos ciclos 'for'
for (i in 1:4) {
  print(i)
}
# Tenemos ciclos 'while'
a <- 10
while (a > 4) {
	cat(a, "...", sep = "")
	a <- a - 1
}
# Ten en mente que los ciclos 'for' y 'while' son lentos en R
# Operaciones con vectores enteros (i.e. una fila o columna completa)
# o tipos de función apply() (que discutiremos después) son preferidos

# CONDICIONES (IF/ELSE)
# De nuevo, bastante normal
if (4 > 3) {
	print("4 is greater than 3")
} else {
	print("4 is not greater than 3")
}
# =>
# [1] "4 is greater than 3"

# FUNCIONES
# Definidos de la siguiente manera:
jiggle <- function(x) {
	x = x + rnorm(1, sd=.1)	#agregar un poco de ruido (controlado)
	return(x)
}
# Llamados como cualquier otra función de R
jiggle(5)	# 5±ε. luego de set.seed(2716057), jiggle(5)==5.005043



###########################################################################
# Estructura de datos: Vectores, matrices, marcos da datos y arreglos
###########################################################################

# UNIDIMENSIONAL

# Empecemos desde el principio, y con algo que ya conoces: vectores.
vec <- c(8, 9, 10, 11)
vec	#  8  9 10 11
# Preguntamos por elementos específicos poniendo un subconjunto en corchetes
# (Toma nota de que R empieza los conteos desde 1)
vec[1]		# 8
letters[18]	# "r"
LETTERS[13]	# "M"
month.name[9]	# "September"
c(6, 8, 7, 5, 3, 0, 9)[3]	# 7
# También podes buscar por los índices de componentes específicos,
which(vec %% 2 == 0)	# 1 3
# obtener la primera o las últimas entradas de un vector,
head(vec, 1)	# 8
tail(vec, 2)	# 10 11
# o averiguar si cierto valor se encuentra dentro de un vector
any(vec == 10) # TRUE
# Si un índice "se pasa", obtendrás un NA:
vec[6]	# NA
# Puedes encontrar la longitud de un vector con length()
length(vec)	# 4
# Puedes realizar operaciones con vectores enteros o con subconjuntos de vectores
vec * 4	# 16 20 24 28
vec[2:3] * 5	# 25 30
any(vec[2:3] == 8) # FALSE
# y R tiene muchas funciones pre-definidas para resumir vectores
mean(vec)	# 9.5
var(vec)	# 1.666667
sd(vec)		# 1.290994
max(vec)	# 11
min(vec)	# 8
sum(vec)	# 38
# Otras funciones pre-definidas:
5:15	# 5  6  7  8  9 10 11 12 13 14 15
seq(from=0, to=31337, by=1337)
# =>
#  [1]     0  1337  2674  4011  5348  6685  8022  9359 10696 12033 13370 14707
# [13] 16044 17381 18718 20055 21392 22729 24066 25403 26740 28077 29414 30751

# BIDIMENCIONAL (TODO EN UNA CLASE)

# Puedes hacer una matriz de las entradas todos de un mismo tipo como:
mat <- matrix(nrow = 3, ncol = 2, c(1,2,3,4,5,6))
mat
# =>
#      [,1] [,2]
# [1,]    1    4
# [2,]    2    5
# [3,]    3    6
# A diferencia de un vector, una clase matriz es una 'matriz', 
# sin importar qué contiene
class(mat) # => "matrix"
# Consulta la primera fila
mat[1,]	# 1 4
# Realiza una operación en la primera columna
3 * mat[,1]	# 3 6 9
# Consulta por una celda específica
mat[3,2]	# 6

# Transpone una matriz entera
t(mat)
# =>
#      [,1] [,2] [,3]
# [1,]    1    2    3
# [2,]    4    5    6

# Multiplicación de matrices
mat %*% t(mat)
# =>
#      [,1] [,2] [,3]
# [1,]   17   22   27
# [2,]   22   29   36
# [3,]   27   36   45

# cbind() une vectores como columnas para hacer una matriz
mat2 <- cbind(1:4, c("dog", "cat", "bird", "dog"))
mat2
# =>
#      [,1] [,2]
# [1,] "1"  "dog"
# [2,] "2"  "cat"
# [3,] "3"  "bird"
# [4,] "4"  "dog"
class(mat2)	# matrix
# De nuevo, ten en cuenta lo que sucedió
# Debido a que las matrices deben de contener todas las entradas del mismo tipo,
# todo fue convertido a la clase caracter
c(class(mat2[,1]), class(mat2[,2]))

# rbind() une vectores como filas para hacer una matriz
mat3 <- rbind(c(1,2,4,5), c(6,7,0,4))
mat3
# =>
#      [,1] [,2] [,3] [,4]
# [1,]    1    2    4    5
# [2,]    6    7    0    4
# Ah, todo es de la misma clase. No hay coerciones. Mucho mejor.

# BIDIMENSIONAL (DIFERENTES CLASES)

# Para columnas de tipos diferentes, utiliza un data frame
# Esta estructura de datos es muy útil para programación estadística,
# una versión de ésta fue agregada a Python en el paquete "pandas".

students <- data.frame(c("Cedric","Fred","George","Cho","Draco","Ginny"),
                       c(3,2,2,1,0,-1),
                       c("H", "G", "G", "R", "S", "G"))
names(students) <- c("name", "year", "house") # name the columns
class(students)	# "data.frame"
students
# =>
#     name year house
# 1 Cedric    3     H
# 2   Fred    2     G
# 3 George    2     G
# 4    Cho    1     R
# 5  Draco    0     S
# 6  Ginny   -1     G
class(students$year)	# "numeric"
class(students[,3])	# "factor"
# encontrar las dimensiones
nrow(students)	# 6
ncol(students)	# 3
dim(students)	# 6 3
# La función data.frame() convierte vectores de caracteres en vectores 
# de factores por defecto; deshabilita este atributo
# stringsAsFactors = FALSE cuando vayas a crear el data.frame
?data.frame

# Hay otras formas de hacer subconjuntos de data frames
students$year	# 3  2  2  1  0 -1
students[,2]	# 3  2  2  1  0 -1
students[,"year"]	# 3  2  2  1  0 -1

# Una versión aumentada de la estructura data.frame es el data.table
# Si estás trabajando huge o panel data, o necesitas unificar algunos 
# subconjuntos de datos, data.table puede ser una buena elección.
# Aquí un tour:
install.packages("data.table") # Descarga el paquete de CRAN
require(data.table) # Cárgalo
students <- as.data.table(students)
students # Tomar en cuenta la diferencia de la impresión
# =>
#      name year house
# 1: Cedric    3     H
# 2:   Fred    2     G
# 3: George    2     G
# 4:    Cho    1     R
# 5:  Draco    0     S
# 6:  Ginny   -1     G
students[name=="Ginny"] # obtener filas con name == "Ginny"
# =>
#     name year house
# 1: Ginny   -1     G
students[year==2] # obtener filas con year == 2
# =>
#      name year house
# 1:   Fred    2     G
# 2: George    2     G
# data.table hace que la unificación de dos sets de datos sea fácil
# Hagamos otro data.table para unifiar a los estudiantes
founders <- data.table(house=c("G","H","R","S"),
                       founder=c("Godric","Helga","Rowena","Salazar"))
founders
# =>
#    house founder
# 1:     G  Godric
# 2:     H   Helga
# 3:     R  Rowena
# 4:     S Salazar
setkey(students, house)
setkey(founders, house)
students <- founders[students] # Unifica los dos sets de datos comparando "house"
setnames(students, c("house","houseFounderName","studentName","year"))
students[,order(c("name","year","house","houseFounderName")), with=F]
# =>
#    studentName year house houseFounderName
# 1:        Fred    2     G           Godric
# 2:      George    2     G           Godric
# 3:       Ginny   -1     G           Godric
# 4:      Cedric    3     H            Helga
# 5:         Cho    1     R           Rowena
# 6:       Draco    0     S          Salazar

# data.table hace que sea fácil obtener resúmenes de las tablas
students[,sum(year),by=house]
# =>
#    house V1
# 1:     G  3
# 2:     H  3
# 3:     R  1
# 4:     S  0

# Para eliminar una columna de un data.frame o data.table, 
# asignarle el valor NULL.
students$houseFounderName <- NULL
students
# =>
#    studentName year house
# 1:        Fred    2     G
# 2:      George    2     G
# 3:       Ginny   -1     G
# 4:      Cedric    3     H
# 5:         Cho    1     R
# 6:       Draco    0     S

# Elimina una fila poniendo un subconjunto
# Usando data.table:
students[studentName != "Draco"]
# =>
#    house studentName year
# 1:     G        Fred    2
# 2:     G      George    2
# 3:     G       Ginny   -1
# 4:     H      Cedric    3
# 5:     R         Cho    1
# Usando data.frame:
students <- as.data.frame(students)
students[students$house != "G",]
# =>
#   house houseFounderName studentName year
# 4     H            Helga      Cedric    3
# 5     R           Rowena         Cho    1
# 6     S          Salazar       Draco    0

# MULTI-DIMENSIONAL (TODOS LOS ELEMENTOS DE UN TIPO)

# Arreglos crean una tabla de dimensión n
# Todos los elementos deben de ser del mismo tipo
# Puedes hacer una tabla bi-dimensional (como una matriz)
array(c(c(1,2,4,5),c(8,9,3,6)), dim=c(2,4))
# =>
#      [,1] [,2] [,3] [,4]
# [1,]    1    4    8    3
# [2,]    2    5    9    6
# Puedes utilizar un arreglo para hacer una matriz tri-dimensional también
array(c(c(c(2,300,4),c(8,9,0)),c(c(5,60,0),c(66,7,847))), dim=c(3,2,2))
# =>
# , , 1
#
#      [,1] [,2]
# [1,]    2    8
# [2,]  300    9
# [3,]    4    0
#
# , , 2
#
#      [,1] [,2]
# [1,]    5   66
# [2,]   60    7
# [3,]    0  847

# LISTAS (MULTI-DIMENSIONAL, POSIBLEMENTE DESIGUALES, DE DIFERENTES TIPOS)

# Finalmente, R tiene listas (de vectores)
list1 <- list(time = 1:40)
list1$price = c(rnorm(40,.5*list1$time,4)) # aleatorio
list1
# Puedes obtener elementos de una lista de la siguiente manera
list1$time # Una manera
list1[["time"]] # Otra manera
list1[[1]] # Y otra manera
# =>
#  [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
# [34] 34 35 36 37 38 39 40
# Puedes crear una lista de subconjuntos como cualquier otro vector
list1$price[4]

# Las listas no son la estructura de datos más eficiente para trabajar en R;
# a menos de que tengas una buena razón, deberías de quedarte con data.frames
# Las listas son usualmente devueltas por funciones que realizan regresiones 
# lineales

##################################################
# La familia de funciones apply()
##################################################

# Te recuerdas de mat?
mat
# =>
#      [,1] [,2]
# [1,]    1    4
# [2,]    2    5
# [3,]    3    6
# Utiliza apply(X, MARGIN, FUN) paraaplicar una función FUN a la matriz X
# sobre las filas (MAR = 1) o las columnas (MAR = 2)
# Eso es, R aplica FUN sobre cada fila (o columna) de X, mucho más rápido que
# lo que haría un ciclo 'for' o 'loop'
apply(mat, MAR = 2, jiggle)
# =>
#      [,1] [,2]
# [1,]    3   15
# [2,]    7   19
# [3,]   11   23
# Otras funciones: ?lapply, ?sapply

# No te sientas muy intimidado; todos están de acuerdo que son confusas

# El paquete plyr busca reemplazar (y mejorar) la familiar *apply()
install.packages("plyr")
require(plyr)
?plyr



#########################
# Carga de datos
#########################

# "pets.csv" es un archivo en internet
# (pero puede ser tan fácil como tener el archivo en tu computadora)
pets <- read.csv("http://learnxinyminutes.com/docs/pets.csv")
pets
head(pets, 2) # primeras dos filas
tail(pets, 1) # última fila

# Para guardar un data frame o una matriz como un archivo .csv
write.csv(pets, "pets2.csv") # para hacer un nuevo archivo .csv
# definir el directorio de trabajo con setwd(), búscalo con getwd()

# Prueba ?read.csv ?write.csv para más información


#########################
# Gráficas
#########################

# FUNCIONES PREDEFINIDAS DE GRAFICACIÓN
# Gráficos de dispersión!
plot(list1$time, list1$price, main = "fake data")
# Regresiones!
linearModel <- lm(price  ~ time, data = list1)
linearModel # Muestra el resultado de la regresión
# Grafica la línea de regresión
abline(linearModel, col = "red")
# Obtiene una veridad de diagnósticos
plot(linearModel)
# Histogramas!
hist(rpois(n = 10000, lambda = 5), col = "thistle")
# Barras!
barplot(c(1,4,5,1,2), names.arg = c("red","blue","purple","green","yellow"))

# GGPLOT2
# Pero éstas no son las gráficas más bonitas de R
# Prueba el paquete ggplot2 para mayor variedad y mejores gráficas
install.packages("ggplot2")
require(ggplot2)
?ggplot2
pp <- ggplot(students, aes(x=house))
pp + geom_histogram()
ll <- as.data.table(list1)
pp <- ggplot(ll, aes(x=time,price))
pp + geom_point()
# ggplot2 tiene una excelente documentación 
# (disponible en http://docs.ggplot2.org/current/)



```

## ¿Cómo obtengo R?

* Obtén R y R GUI de [http://www.r-project.org/](http://www.r-project.org/)
* [RStudio](http://www.rstudio.com/ide/) es otro GUI