summaryrefslogtreecommitdiffhomepage
path: root/haxe.html.markdown
blob: e086dd7aa56aaa9416f390ca8e560a5f3d98b0e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
---
language: haxe
filename: LearnHaxe3.hx
contributors:
    - ["Justin Donaldson", "https://github.com/jdonaldson/"]
    - ["Dan Korostelev", "https://github.com/nadako/"]
---

[Haxe](https://haxe.org/) is a general-purpose language that provides platform support for C++, C#,
Swf/ActionScript, JavaScript, Java, PHP, Python, Lua, HashLink, and Neko bytecode
(the latter two being also written by the Haxe author). Note that this guide is for
Haxe version 3.  Some of the guide may be applicable to older versions, but it is
recommended to use other references.

```csharp
/*
   Welcome to Learn Haxe 3 in 15 minutes.  http://www.haxe.org
   This is an executable tutorial.  You can compile and run it using the haxe
   compiler, while in the same directory as LearnHaxe.hx:
   
       $ haxe -main LearnHaxe3 --interp

   Look for the slash-star marks surrounding these paragraphs.  We are inside
   a "Multiline comment".  We can leave some notes here that will get ignored
   by the compiler.

   Multiline comments are also used to generate javadoc-style documentation for
   haxedoc.  They will be used for haxedoc if they immediately precede a class,
   class function, or class variable.
 */

// Double slashes like this will give a single-line comment.

/*
   This is your first actual haxe code coming up, it's declaring an empty
   package.  A package isn't necessary, but it's useful if you want to create
   a namespace for your code (e.g. org.yourapp.ClassName).

   Omitting package declaration is the same as declaring an empty package.
 */
package; // empty package, no namespace.

/*
   Packages are directories that contain modules. Each module is a .hx file
   that contains types defined in a package. Package names (e.g. org.yourapp)
   must be lower case while module names are capitalized. A module contain one
   or more types whose names are also capitalized.

   E.g, the class "org.yourapp.Foo" should have the folder structure
   org/module/Foo.hx, as accessible from the compiler's working directory or
   class path.

   If you import code from other files, it must be declared before the rest of
   the code.  Haxe provides a lot of common default classes to get you started:
 */
import haxe.ds.ArraySort;

// you can import many classes/modules at once with "*"
import haxe.ds.*;

// you can import static fields
import Lambda.array;

// you can also use "*" to import all static fields
import Math.*;

// You can also import classes in a special way, enabling them to extend the
// functionality of other classes like a "mixin".  More on 'using' later.
using StringTools;

// Typedefs are like variables... for types.  They must be declared before any
// code.  More on this later.
typedef FooString = String;

// Typedefs can also reference "structural" types, more on that later as well.
typedef FooObject = { foo: String };

// Here's the class definition.  It's the main class for the file, since it has
// the same name (LearnHaxe3).
class LearnHaxe3 {
    /*
       If you want certain code to run automatically, you need to put it in
       a static main function, and specify the class in the compiler arguments.
       In this case, we've specified the "LearnHaxe3" class in the compiler
       arguments above.
     */
    static function main() {
        /*
           Trace is the default method of printing haxe expressions to the
           screen.  Different targets will have different methods of
           accomplishing this.  E.g., java, c++, c#, etc. will print to std
           out.  Javascript will print to console.log, and flash will print to
           an embedded TextField.  All traces come with a default newline.
           Finally, It's possible to prevent traces from showing by using the
           "--no-traces" argument on the compiler.
         */
        trace("Hello World, with trace()!");

        // Trace can handle any type of value or object.  It will try to print
        // a representation of the expression as best it can.  You can also
        // concatenate strings with the "+" operator:
        trace("Integer: " + 10 + " Float: " + 3.14 + " Boolean: " + true);

        // In Haxe, it's required to separate expressions in the same block with
        // semicolons.  But, you can put two expressions on one line:
        trace('two expressions..'); trace('one line');


        //////////////////////////////////////////////////////////////////
        // Types & Variables
        //////////////////////////////////////////////////////////////////
        trace("***Types & Variables***");

        // You can save values and references to data structures using the
        // "var" keyword:
        var an_integer:Int = 1;
        trace(an_integer + " is the value for an_integer");

        /*
           Haxe is statically typed, so "an_integer" is declared to have an
           "Int" type, and the rest of the expression assigns the value "1" to
           it.  It's not necessary to declare the type in many cases.  Here,
           the haxe compiler is inferring that the type of another_integer
           should be "Int".
         */
        var another_integer = 2;
        trace(another_integer + " is the value for another_integer");

        // The $type() method prints the type that the compiler assigns:
        $type(another_integer);

        // You can also represent integers with hexadecimal:
        var hex_integer = 0xffffff;

        /*
           Haxe uses platform precision for Int and Float sizes.  It also
           uses the platform behavior for overflow.
           (Other numeric types and behavior are possible using special
           libraries.)
           
           In addition to simple values like Integers, Floats, and Booleans,
           Haxe provides standard library implementations for common data
           structures like strings, arrays, lists, and maps:
         */

        // Strings can have double or single quotes.
        var a_string = "some" + 'string';
        trace(a_string + " is the value for a_string");

        // Strings can be "interpolated" by inserting variables into specific
        // positions.  The string must be single quoted, and the variable must
        // be preceded with "$".  Expressions can be enclosed in ${...}.
        var x = 1;
        var an_interpolated_string = 'the value of x is $x';
        var another_interpolated_string = 'the value of x + 1 is ${x + 1}';

        // Strings are immutable, instance methods will return a copy of
        // parts or all of the string. (See also the StringBuf class).
        var a_sub_string = a_string.substr(0,4);
        trace(a_sub_string + " is the value for a_sub_string");

        // Regexes are also supported, but there's not enough space here to go
        // into much detail.
        var re = ~/foobar/;
        trace(re.match('foo') + " is the value for (~/foobar/.match('foo')))");

        // Arrays are zero-indexed, dynamic, and mutable.  Missing values are
        // defined as null.
        var a = new Array<String>(); // an array that contains Strings
        a[0] = 'foo';
        trace(a.length + " is the value for a.length");
        a[9] = 'bar';
        trace(a.length + " is the value for a.length (after modification)");
        trace(a[3] + " is the value for a[3]"); //null

        // Arrays are *generic*, so you can indicate which values they contain
        // with a type parameter:
        var a2 = new Array<Int>(); // an array of Ints
        var a3 = new Array<Array<String>>(); // an Array of Arrays (of Strings).

        // Maps are simple key/value data structures.  The key and the value
        // can be of any type.
        // Here, the keys are strings, and the values are Ints:
        var m = new Map<String, Int>();
        m.set('foo', 4);
        // You can also use array notation:
        m['bar'] = 5;
        trace(m.exists('bar') + " is the value for m.exists('bar')");
        trace(m.get('bar') + " is the value for m.get('bar')");
        trace(m['bar'] + " is the value for m['bar']");

        var m2 = ['foo' => 4, 'baz' => 6]; // Alternative map syntax
        trace(m2 + " is the value for m2");

        // Remember, you can use type inference.  The Haxe compiler will
        // decide the type of the variable the first time you pass an
        // argument that sets a type parameter.
        var m3 = new Map();
        m3.set(6, 'baz'); // m3 is now a Map<Int,String>
        trace(m3 + " is the value for m3");

        // Haxe has some more common datastructures in the haxe.ds module, such
        // as List, Stack, and BalancedTree.


        //////////////////////////////////////////////////////////////////
        // Operators
        //////////////////////////////////////////////////////////////////
        trace("***OPERATORS***");

        // basic arithmetic
        trace((4 + 3) + " is the value for (4 + 3)");
        trace((5 - 1) + " is the value for (5 - 1)");
        trace((2 * 4) + " is the value for (2 * 4)");
        // Division always produces Floats.
        trace((8 / 3) + " is the value for (8 / 3) (a Float)");
        trace((12 % 4) + " is the value for (12 % 4)");

        // basic comparison
        trace((3 == 2) + " is the value for 3 == 2");
        trace((3 != 2) + " is the value for 3 != 2");
        trace((3 >  2) + " is the value for 3 > 2");
        trace((3 <  2) + " is the value for 3 < 2");
        trace((3 >= 2) + " is the value for 3 >= 2");
        trace((3 <= 2) + " is the value for 3 <= 2");

        // standard bitwise operators
        /*
            ~       Unary bitwise complement
            <<      Signed left shift
            >>      Signed right shift
            >>>     Unsigned right shift
            &       Bitwise AND
            ^       Bitwise exclusive OR
            |       Bitwise inclusive OR
        */
        
        var i = 0;
        trace("Pre-/Post- Increments and Decrements");
        trace(i++); // i = 1. Post-Increment
        trace(++i); // i = 2. Pre-Increment
        trace(i--); // i = 1. Post-Decrement
        trace(--i); // i = 0. Pre-Decrement


        //////////////////////////////////////////////////////////////////
        // Control Structures
        //////////////////////////////////////////////////////////////////
        trace("***CONTROL STRUCTURES***");

        // if statements
        var j = 10;
        if (j == 10) {
            trace("this is printed");
        } else if (j > 10) {
            trace("not greater than 10, so not printed");
        } else {
            trace("also not printed.");
        }

        // there is also a "ternary" if:
        (j == 10) ? trace("equals 10") : trace("not equals 10");

        // Finally, there is another form of control structure that operates
        // at compile time:  conditional compilation.
#if neko
        trace('hello from neko');
#elseif js
        trace('hello from js');
#else
        trace('hello from another platform!');
#end

        // The compiled code will change depending on the platform target.
        // Since we're compiling for neko (-x or -neko), we only get the neko
        // greeting.


        trace("Looping and Iteration");

        // while loop
        var k = 0;
        while (k < 100) {
            // trace(counter); // will print out numbers 0-99
            k++;
        }

        // do-while loop
        var l = 0;
        do {
            trace("do statement always runs at least once");
        } while (l > 0);

        // for loop
        // There is no c-style for loop in Haxe, because they are prone
        // to error, and not necessary.  Instead, Haxe has a much simpler
        // and safer version that uses Iterators (more on those later).
        var m = [1, 2, 3];
        for (val in m) {
            trace(val + " is the value for val in the m array");
        }

        // Note that you can iterate on an index using a range
        // (more on ranges later as well)
        var n = ['foo', 'bar', 'baz'];
        for (val in 0...n.length) {
            trace(val + " is the value for val (an index for n)");
        }


        trace("Array Comprehensions");

        // Array comprehensions give you the ability to iterate over arrays
        // while also creating filters and modifications.
        var filtered_n = [for (val in n) if (val != "foo") val];
        trace(filtered_n + " is the value for filtered_n");

        var modified_n = [for (val in n) val += '!'];
        trace(modified_n + " is the value for modified_n");

        var filtered_and_modified_n
            = [for (val in n) if (val != "foo") val += "!"];
        trace(filtered_and_modified_n
                + " is the value for filtered_and_modified_n");


        //////////////////////////////////////////////////////////////////
        // Switch Statements (Value Type)
        //////////////////////////////////////////////////////////////////
        trace("***SWITCH STATEMENTS (VALUE TYPES)***");

        /*
           Switch statements in Haxe are very powerful.  In addition to working
           on basic values like strings and ints, they can also work on the
           generalized algebraic data types in enums (more on enums later).
           Here are some basic value examples for now:
         */
        var my_dog_name = "fido";
        var favorite_thing  = "";
        switch (my_dog_name) {
            case "fido" : favorite_thing = "bone";
            case "rex"  : favorite_thing = "shoe";
            case "spot" : favorite_thing = "tennis ball";
            default     : favorite_thing = "some unknown treat";
            // same as default:
            // case _   : favorite_thing = "some unknown treat";
        }
        // The "_" case above is a "wildcard" value that will match anything.

        trace("My dog's name is " + my_dog_name
                + ", and his favorite thing is a: "
                + favorite_thing);


        //////////////////////////////////////////////////////////////////
        // Expression Statements
        //////////////////////////////////////////////////////////////////
        trace("***EXPRESSION STATEMENTS***");

        // Haxe control statements are very powerful because every statement
        // is also an expression, consider:

        // if statements
        var k = if (true) 10 else 20;

        trace("k equals ", k); // outputs 10

        var other_favorite_thing = switch (my_dog_name) {
            case "fido" : "teddy";
            case "rex"  : "stick";
            case "spot" : "football";
            default     : "some unknown treat";
        }

        trace("My dog's name is " + my_dog_name
                + ", and his other favorite thing is a: "
                + other_favorite_thing);


        //////////////////////////////////////////////////////////////////
        // Converting Value Types
        //////////////////////////////////////////////////////////////////
        trace("***CONVERTING VALUE TYPES***");

        // You can convert strings to ints fairly easily.

        // string to integer
        Std.parseInt("0");     // returns 0
        Std.parseFloat("0.4"); // returns 0.4

        // integer to string
        Std.string(0); // returns "0"
        // concatenation with strings will auto-convert to string.
        0 + "";    // returns "0"
        true + ""; // returns "true"
        // See documentation for parsing in Std for more details.


        //////////////////////////////////////////////////////////////////
        // Dealing with Types
        //////////////////////////////////////////////////////////////////

        /*
           As mentioned before, Haxe is a statically typed language.  All in
           all, static typing is a wonderful thing.  It enables
           precise autocompletions, and can be used to thoroughly check the
           correctness of a program.  Plus, the Haxe compiler is super fast.

           *HOWEVER*, there are times when you just wish the compiler would
           let something slide, and not throw a type error in a given case.

           To do this, Haxe has two separate keywords.  The first is the
           "Dynamic" type:
         */
        var dyn: Dynamic = "any type of variable, such as this string";

        /*
           All that you know for certain with a Dynamic variable is that the
           compiler will no longer worry about what type it is. It is like a
           wildcard variable:  You can pass it instead of any variable type,
           and you can assign any variable type you want.

           The other more extreme option is the "untyped" keyword:
         */
        untyped {
            var x:Int = 'foo'; // This can't be right!
            var y:String = 4;  // Madness!
        }

        /*
           The untyped keyword operates on entire *blocks* of code, skipping
           any type checks that might be otherwise required. This keyword should
           be used very sparingly, such as in limited conditionally-compiled
           situations where type checking is a hindrance.

           In general, skipping type checks is *not* recommended.  Use the
           enum, inheritance, or structural type models in order to help ensure
           the correctness of your program.  Only when you're certain that none
           of the type models work should you resort to "Dynamic" or "untyped".
         */


        //////////////////////////////////////////////////////////////////
        // Basic Object Oriented Programming
        //////////////////////////////////////////////////////////////////
        trace("***BASIC OBJECT ORIENTED PROGRAMMING***");

        // Create an instance of FooClass.  The classes for this are at the
        // end of the file.
        var foo_instance = new FooClass(3);

        // read the public variable normally
        trace(foo_instance.public_any
                + " is the value for foo_instance.public_any");

        // we can read this variable
        trace(foo_instance.public_read
                + " is the value for foo_instance.public_read");
        // but not write it; this will throw an error if uncommented:
        // foo_instance.public_read = 4;
        // trace(foo_instance.public_write); // as will this.

        // Calls the toString method:
        trace(foo_instance + " is the value for foo_instance");
        // same thing:
        trace(foo_instance.toString()
                + " is the value for foo_instance.toString()");

        // The foo_instance has the "FooClass" type, while acceptBarInstance
        // has the BarClass type.  However, since FooClass extends BarClass, it
        // is accepted.
        BarClass.acceptBarInstance(foo_instance);

        // The classes below have some more advanced examples, the "example()"
        // method will just run them here.
        SimpleEnumTest.example();
        ComplexEnumTest.example();
        TypedefsAndStructuralTypes.example();
        UsingExample.example();
    }
}

// This is the "child class" of the main LearnHaxe3 Class.
class FooClass extends BarClass implements BarInterface {
    public var public_any:Int; // public variables are accessible anywhere
    public var public_read (default, null): Int; // enable only public read
    public var public_write (null, default): Int; // or only public write
    // Use this style to enable getters/setters:
    public var property (get, set): Int;

    // private variables are not available outside the class.
    // see @:allow for ways around this.
    var _private:Int; // variables are private if they are not marked public

    // a public constructor
    public function new(arg:Int) {
        // call the constructor of the parent object, since we extended BarClass:
        super();

        this.public_any = 0;
        this._private = arg;
    }

    // getter for _private
    function get_property() : Int {
        return _private;
    }

    // setter for _private
    function set_property(val:Int) : Int {
        _private = val;
        return val;
    }

    // Special function that is called whenever an instance is cast to a string.
    public function toString() {
        return _private + " with toString() method!";
    }

    // this class needs to have this function defined, since it implements
    // the BarInterface interface.
    public function baseFunction(x: Int) : String {
        // convert the int to string automatically
        return x + " was passed into baseFunction!";
    }
}

// A simple class to extend.
class BarClass {
    var base_variable:Int;
    public function new() {
        base_variable = 4;
    }
    public static function acceptBarInstance(b:BarClass) {}
}

// A simple interface to implement
interface BarInterface {
    public function baseFunction(x:Int):String;
}


//////////////////////////////////////////////////////////////////
// Enums and Switch Statements
//////////////////////////////////////////////////////////////////

// Enums in Haxe are very powerful.  In their simplest form, enums
// are a type with a limited number of states:
enum SimpleEnum {
    Foo;
    Bar;
    Baz;
}

//   Here's a class that uses it:
class SimpleEnumTest {
    public static function example() {
        // You can specify the "full" name,
        var e_explicit:SimpleEnum = SimpleEnum.Foo;
        var e = Foo; // but inference will work as well.
        switch (e) {
            case Foo: trace("e was Foo");
            case Bar: trace("e was Bar");
            case Baz: trace("e was Baz"); // comment this line to throw an error.
        }

        /*
           This doesn't seem so different from simple value switches on strings.
           However, if we don't include *all* of the states, the compiler will
           complain.  You can try it by commenting out a line above.

           You can also specify a default for enum switches as well:
         */
        switch (e) {
            case Foo: trace("e was Foo again");
            default : trace("default works here too");
        }
    }
}

// Enums go much further than simple states, we can also enumerate
// *constructors*, but we'll need a more complex enum example.
enum ComplexEnum {
    IntEnum(i:Int);
    MultiEnum(i:Int, j:String, k:Float);
    SimpleEnumEnum(s:SimpleEnum);
    ComplexEnumEnum(c:ComplexEnum);
}
// Note: The enum above can include *other* enums as well, including itself!
// Note: This is what's called *Algebraic data type* in some other languages.

class ComplexEnumTest {
    public static function example() {
        var e1:ComplexEnum = IntEnum(4); // specifying the enum parameter
        // Now we can switch on the enum, as well as extract any parameters
        // it might have had.
        switch (e1) {
            case IntEnum(x) : trace('$x was the parameter passed to e1');
            default: trace("Shouldn't be printed");
        }

        // another parameter here that is itself an enum... an enum enum?
        var e2 = SimpleEnumEnum(Foo);
        switch (e2){
            case SimpleEnumEnum(s): trace('$s was the parameter passed to e2');
            default: trace("Shouldn't be printed");
        }

        // enums all the way down
        var e3 = ComplexEnumEnum(ComplexEnumEnum(MultiEnum(4, 'hi', 4.3)));
        switch (e3) {
            // You can look for certain nested enums by specifying them
            //  explicitly:
            case ComplexEnumEnum(ComplexEnumEnum(MultiEnum(i,j,k))) : {
                trace('$i, $j, and $k were passed into this nested monster');
            }
            default: trace("Shouldn't be printed");
        }
        // Check out "generalized algebraic data types" (GADT) for more details
        // on why these are so great.
    }
}

class TypedefsAndStructuralTypes {
    public static function example() {
        // Here we're going to use typedef types, instead of base types.
        // At the top we've declared the type "FooString" to mean a "String" type.
        var t1:FooString = "some string";

        // We can use typedefs for "structural types" as well.  These types are
        // defined by their field structure, not by class inheritance.  Here's
        // an anonymous object with a String field named "foo":
        var anon_obj = { foo: 'hi' };

        /*
           The anon_obj variable doesn't have a type declared, and is an
           anonymous object according to the compiler.  However, remember back at
           the top where we declared the FooObj typedef?  Since anon_obj matches
           that structure, we can use it anywhere that a "FooObject" type is
           expected.
         */
        var f = function(fo:FooObject) {
            trace('$fo was passed in to this function');
        }
        f(anon_obj); // call the FooObject signature function with anon_obj.

        /*
           Note that typedefs can have optional fields as well, marked with "?"

           typedef OptionalFooObj = {
                ?optionalString: String,
                requiredInt: Int
           }

           Typedefs work well with conditional compilation.  For instance,
           we could have included this at the top of the file:

#if( js )
        typedef Surface = js.html.CanvasRenderingContext2D;
#elseif( nme )
        typedef Surface = nme.display.Graphics;
#elseif( !flash9 )
        typedef Surface = flash8.MovieClip;
#elseif( java )
        typedef Surface = java.awt.geom.GeneralPath;
#end

           That would give us a single "Surface" type to work with across
           all of those platforms.
         */
    }
}

class UsingExample {
    public static function example() {
        /*
           The "using" import keyword is a special type of class import that
           alters the behavior of any static methods in the class.

           In this file, we've applied "using" to "StringTools", which contains
           a number of static methods for dealing with String types.
         */
        trace(StringTools.endsWith("foobar", "bar") + " should be true!");

        /*
           With a "using" import, the first argument type is extended with the
           method.  What does that mean?  Well, since "endsWith" has a first
           argument type of "String", that means all String types now have the
           "endsWith" method:
         */
        trace("foobar".endsWith("bar") + " should be true!");

        /*
           This technique enables a good deal of expression for certain types,
           while limiting the scope of modifications to a single file.

           Note that the String instance is *not* modified in the run time.
           The newly attached method is not really part of the attached
           instance, and the compiler still generates code equivalent to a
           static method.
         */
    }
}

```

We're still only scratching the surface here of what Haxe can do.  For a formal
overview of all Haxe features, see the [manual](https://haxe.org/manual) and
the [API docs](https://api.haxe.org/). For a comprehensive directory of available
third-party Haxe libraries, see [Haxelib](https://lib.haxe.org/).

For more advanced topics, consider checking out:

* [Abstract types](https://haxe.org/manual/types-abstract.html)
* [Macros](https://haxe.org/manual/macro.html)
* [Compiler Features](https://haxe.org/manual/cr-features.html)


Finally, please join us on [the Haxe forum](https://community.haxe.org/),
on IRC [#haxe on
freenode](http://webchat.freenode.net/), or on the
[Haxe Gitter chat](https://gitter.im/HaxeFoundation/haxe).