summaryrefslogtreecommitdiffhomepage
path: root/julia.html.markdown
blob: cf3a464b94644f324a5664ef35333ebe3e8bfede (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
---
language: julia
contributors:
    - ["Leah Hanson", "http://leahhanson.us"]
filename: learnjulia.jl
---

Julia is a new homoiconic functional language focused on technical computing.
While having the full power of homoiconic macros, first-class functions, and low-level control, Julia is as easy to learn and use as Python.

This is based on the current development version of Julia, as of June 29th, 2013.

```ruby

# Single line comments start with a hash.

####################################################
## 1. Primitive Datatypes and Operators
####################################################

# Everything in Julia is a expression.

# You have numbers
3 #=> 3 (Int64)
3.2 #=> 3.2 (Float64)
2 + 1im #=> 2 + 1im (Complex{Int64})
2//3 #=> 2//3 (Rational{Int64})

# Math is what you would expect
1 + 1 #=> 2
8 - 1 #=> 7
10 * 2 #=> 20
35 / 5 #=> 7.0
5 \ 35 #=> 7.0
5 / 2 #=> 2.5
div(5, 2) #=> 2
2 ^ 2 #=> 4 # power, not bitwise xor
12 % 10 #=> 2

# Enforce precedence with parentheses
(1 + 3) * 2 #=> 8

# Bitwise Operators
~2 #=> -3   # bitwise not
3 & 5 #=> 1 # bitwise and
2 | 4 #=> 6 # bitwise or
2 $ 4 #=> 6 # bitwise xor
2 >>> 1 #=> 1 # logical shift right
2 >> 1  #=> 1 # arithmetic shift right
2 << 1  #=> 4 # logical/arithmetic shift left

# You can use the bits function to see the binary representation of a number.
bits(12345)
#=> "0000000000000000000000000000000000000000000000000011000000111001"
bits(12345.0)
#=> "0100000011001000000111001000000000000000000000000000000000000000"

# Boolean values are primitives
true
false

# Boolean operators
!true #=> false
!false #=> true
1 == 1 #=> true
2 == 1 #=> false
1 != 1 #=> false
2 != 1 #=> true
1 < 10 #=> true
1 > 10 #=> false
2 <= 2 #=> true
2 >= 2 #=> true
# Comparisons can be chained
1 < 2 < 3 #=> true
2 < 3 < 2 #=> false

# Strings are created with "
"This is a string."

# Character literals written with '
'a'

# A string can be treated like a list of characters
"This is a string"[1] #=> 'T' # Julia indexes from 1

# $ can be used for string interpolation:
"2 + 2 = $(2 + 2)" #=> "2 + 2 = 4"
# You can put any Julia expression inside the parenthesis.

# Another way to format strings is the printf macro.
@printf "%d is less than %f" 4.5 5.3 # 5 is less than 5.300000

####################################################
## 2. Variables and Collections
####################################################

# Printing is pretty easy
println("I'm Julia. Nice to meet you!")

# No need to declare variables before assigning to them.
some_var = 5 #=> 5 
some_var #=> 5

# Accessing a previously unassigned variable is an error
try
  some_other_var #=> ERROR: some_other_var not defined
catch e
    println(e)
end

# Variable name start with a letter. You can use uppercase letters, digits,
# and exclamation points as well after the initial alphabetic character.
SomeOtherVar123! = 6 #=> 6

# You can also use unicode characters
☃ = 8 #=> 8

# A note on naming conventions in Julia:
#
# * Names of variables are in lower case, with word separation indicated by
#   underscores ('\_').
#
# * Names of Types begin with a capital letter and word separation is shown
#   with CamelCase instead of underscores.
#
# * Names of functions and macros are in lower case, without underscores.
#
# * Functions that modify their inputs have names that end in !. These
#   functions are sometimes called mutating functions or in-place functions.

# Arrays store a sequence of values indexed by integers 1 through n:
a = Int64[] #=> 0-element Int64 Array

# 1-dimensional array literals can be written with comma-separated values.
b = [4, 5, 6] #=> 3-element Int64 Array: [4, 5, 6]
b[1] #=> 4
b[end] #=> 6

# 2-dimentional arrays use space-separated values and semicolon-separated rows.
matrix = [1 2; 3 4] #=> 2x2 Int64 Array: [1 2; 3 4]

# Add stuff to the end of a list with push! and append!
push!(a,1)     #=> [1]
push!(a,2)     #=> [1,2]
push!(a,4)     #=> [1,2,4]
push!(a,3)     #=> [1,2,4,3]
append!(a,b) #=> [1,2,4,3,4,5,6]

# Remove from the end with pop
pop!(b)        #=> 6 and b is now [4,5]

# Let's put it back
push!(b,6)   # b is now [4,5,6] again.

a[1] #=> 1 # remember that Julia indexes from 1, not 0!

# end is a shorthand for the last index. It can be used in any
# indexing expression
a[end] #=> 6

# Function names that end in exclamations points indicate that they modify
# their argument.
arr = [5,4,6] #=> 3-element Int64 Array: [5,4,6]
sort(arr) #=> [4,5,6]; arr is still [5,4,6]
sort!(arr) #=> [4,5,6]; arr is now [4,5,6]

# Looking out of bounds is a BoundsError
try
    a[0] #=> ERROR: BoundsError() in getindex at array.jl:270
    a[end+1] #=> ERROR: BoundsError() in getindex at array.jl:270
catch e
    println(e)
end

# Errors list the line and file they came from, even if it's in the standard
# library. If you built Julia from source, you can look in the folder base
# inside the julia folder to find these files.

# You can initialize arrays from ranges
a = [1:5] #=> 5-element Int64 Array: [1,2,3,4,5]

# You can look at ranges with slice syntax.
a[1:3] #=> [1, 2, 3]
a[2:] #=> [2, 3, 4, 5]

# Remove arbitrary elements from a list with splice!
arr = [3,4,5]
splice!(arr,2) #=> 4 ; arr is now [3,5]

# Concatenate lists with append!
b = [1,2,3]
append!(a,b) # Now a is [1, 3, 4, 5, 1, 2, 3]

# Check for existence in a list with contains
contains(a,1) #=> true

# Examine the length with length
length(a) #=> 7

# Tuples are immutable.
tup = (1, 2, 3) #=>(1,2,3) # an (Int64,Int64,Int64) tuple.
tup[1] #=> 1
try:
    tup[0] = 3 #=> ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
catch e
    println(e)
end

# Many list functions also work on tuples
length(tup) #=> 3
tup[1:2] #=> (1,2)
contains(tup,2) #=> true

# You can unpack tuples into variables
a, b, c = (1, 2, 3) #=> (1,2,3)  # a is now 1, b is now 2 and c is now 3

# Tuples are created by default if you leave out the parentheses
d, e, f = 4, 5, 6 #=> (4,5,6)

# Now look how easy it is to swap two values
e, d = d, e  #=> (5,4) # d is now 5 and e is now 4


# Dictionaries store mappings
empty_dict = Dict() #=> Dict{Any,Any}()

# Here is a prefilled dictionary
filled_dict = ["one"=> 1, "two"=> 2, "three"=> 3]
# => Dict{ASCIIString,Int64}

# Look up values with []
filled_dict["one"] #=> 1

# Get all keys
keys(filled_dict)
#=> KeyIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
# Note - dictionary keys are not sorted or in the order you inserted them.

# Get all values 
values(filled_dict)
#=> ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
# Note - Same as above regarding key ordering.

# Check for existence of keys in a dictionary with contains, haskey
contains(filled_dict, ("one", 1)) #=> true
contains(filled_dict, ("two", 3)) #=> false
haskey(filled_dict, "one") #=> true
haskey(filled_dict, 1) #=> false

# Trying to look up a non-existing key will raise an error
try
    filled_dict["four"] #=> ERROR: key not found: four in getindex at dict.jl:489
catch e
    println(e)
end

# Use get method to avoid the error
# get(dictionary,key,default_value)
get(filled_dict,"one",4) #=> 1
get(filled_dict,"four",4) #=> 4

# Sets store sets
empty_set = Set() #=> Set{Any}()
# Initialize a set with a bunch of values
filled_set = Set(1,2,2,3,4) #=> Set{Int64}(1,2,3,4)

# Add more items to a set
add!(filled_set,5) #=> Set{Int64}(5,4,2,3,1)

# There are functions for set intersection, union, and difference.
other_set = Set(3, 4, 5, 6) #=> Set{Int64}(6,4,5,3)
intersect(filled_set, other_set) #=> Set{Int64}(3,4,5)
union(filled_set, other_set) #=> Set{Int64}(1,2,3,4,5,6)
setdiff(Set(1,2,3,4),Set(2,3,5)) #=> Set{Int64}(1,4)

# Check for existence in a set with contains 
contains(filled_set,2) #=> true
contains(filled_set,10) #=> false


####################################################
## 3. Control Flow
####################################################

# Let's make a variable
some_var = 5

# Here is an if statement. Indentation is NOT meaningful in Julia.
# prints "some var is smaller than 10"
if some_var > 10
    println("some_var is totally bigger than 10.")
elseif some_var < 10    # This elseif clause is optional.
    println("some_var is smaller than 10.")
else                    # The else clause is optional too.
    println("some_var is indeed 10.")
end


# For loops iterate over iterables, such as ranges, lists, sets, dicts, strings.

for animal=["dog", "cat", "mouse"]
    # You can use $ to interpolate into strings
    println("$animal is a mammal")
end
# prints:
#    dog is a mammal
#    cat is a mammal
#    mouse is a mammal

# You can use in instead of =, if you want.
for animal in ["dog", "cat", "mouse"]
    println("$animal is a mammal")
end

for a in ["dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal"]
    println("$(a[1]) is $(a[2])")
end

for (k,v) in ["dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal"]
    println("$k is $v")
end


# While loops go until a condition is no longer met.
# prints:
#   0
#   1
#   2
#   3
x = 0
while x < 4
    println(x)
    x += 1  # Shorthand for x = x + 1
end

# Handle exceptions with a try/except block
try
   error("help")
catch e
   println("caught it $e")
end
#=> caught it ErrorException("help")


####################################################
## 4. Functions
####################################################

# Use the keyword function to create new functions
function add(x, y)
    println("x is $x and y is $y")

    # Functions implicitly return the value of their last statement
    x + y
end

add(5, 6) #=> 11 after printing out "x is 5 and y is 6"

# You can define functions that take a variable number of
# positional arguments
function varargs(args...)
    return args
end

varargs(1,2,3) #=> (1,2,3)

# The ... is called a splat.
# It can also be used in a fuction call
# to splat a list or tuple out to be the arguments
Set([1,2,3])    #=> Set{Array{Int64,1}}([1,2,3]) # produces a Set of Arrays
Set([1,2,3]...) #=> Set{Int64}(1,2,3) # this is equivalent to Set(1,2,3)

x = (1,2,3)     #=> (1,2,3)
Set(x)          #=> Set{(Int64,Int64,Int64)}((1,2,3)) # a Set of Tuples
Set(x...)       #=> Set{Int64}(2,3,1)


# You can define functions with optional positional arguments
function defaults(a,b,x=5,y=6)
    return "$a $b and $x $y"
end

defaults('h','g') #=> "h g and 5 6"
defaults('h','g','j') #=> "h g and j 6"
defaults('h','g','j','k') #=> "h g and j k"
try
    defaults('h') #=> ERROR: no method defaults(Char,)
    defaults() #=> ERROR: no methods defaults()
catch e
println(e)
end

# You can define functions that take keyword arguments
function keyword_args(;k1=4,name2="hello") # note the ;
    return ["k1"=>k1,"name2"=>name2]
end 

keyword_args(name2="ness") #=> ["name2"=>"ness","k1"=>4]
keyword_args(k1="mine") #=> ["k1"=>"mine","name2"=>"hello"]
keyword_args() #=> ["name2"=>"hello","k2"=>4]

# You can also do both at once
function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo")
    println("normal arg: $normal_arg")
    println("optional arg: $optional_positional_arg")
    println("keyword arg: $keyword_arg")
end

all_the_args(1, 3, keyword_arg=4)
# prints:
#   normal arg: 1
#   optional arg: 3
#   keyword arg: 4

# Julia has first class functions
function create_adder(x)
    adder = function (y)
        return x + y
    end
    return adder
end

# or equivalently
function create_adder(x)
    y -> x + y
end

# you can also name the internal function, if you want
function create_adder(x)
    function adder(y)
        x + y
    end
    adder
end

add_10 = create_adder(10)
add_10(3) #=> 13

# The first two inner functions above are anonymous functions
(x -> x > 2)(3) #=> true

# There are built-in higher order functions
map(add_10, [1,2,3]) #=> [11, 12, 13]
filter(x -> x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]

# We can use list comprehensions for nice maps and filters
[add_10(i) for i=[1, 2, 3]] #=> [11, 12, 13]
[add_10(i) for i in [1, 2, 3]] #=> [11, 12, 13]

####################################################
## 5. Types and Multiple-Dispatch 
####################################################

# Type definition
type Tiger
  taillength::Float64
  coatcolor # no type annotation is implicitly Any
end
# default constructor is the properties in order
# so, Tiger(taillength,coatcolor)

# Type instantiation
tigger = Tiger(3.5,"orange") # the type doubles as the constructor function

# Abtract Types
abstract Cat # just a name and point in the type hierarchy

# * types defined with the type keyword are concrete types; they can be
#   instantiated
#
# * types defined with the abstract keyword are abstract types; they can
#   have subtypes.
#
# * each type has one supertype; a supertype can have zero or more subtypes.

type Lion <: Cat # Lion is a subtype of Cat
  mane_color
  roar::String
end

type Panther <: Cat # Panther is also a subtype of Cat
  eye_color
  Panther() = new("green")
  # Panthers will only have this constructor, and no default constructor.
end

# Multiple Dispatch

# In Julia, all named functions are generic functions
# This means that they are built up from many small methods
# For example, let's make a function meow:
function meow(cat::Lion)
  cat.roar # access properties using dot notation
end

function meow(cat::Panther)
  "grrr"
end

function meow(cat::Tiger)
  "rawwwr"
end

meow(tigger) #=> "rawwr"
meow(Lion("brown","ROAAR")) #=> "ROAAR"
meow(Panther()) #=> "grrr"

function pet_cat(cat::Cat)
  println("The cat says $(meow(cat))")
end

try
    pet_cat(tigger) #=> ERROR: no method pet_cat(Tiger,)
catch e
    println(e)
end

pet_cat(Lion(Panther(),"42")) #=> prints "The cat says 42"

```

## Further Reading

You can get a lot more detail from [The Julia Manual](http://docs.julialang.org/en/latest/manual/)