summaryrefslogtreecommitdiffhomepage
path: root/pt-br/haskell-pt.html.markdown
blob: f9f9f510e80b8015119edf73c44b0c072781811d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
---
linguagem: haskell
tradutor/contribuidor:
    - ["Lucas Tonussi", "http://www.inf.ufsc.br/~tonussi/"]
---

As linguagens funcionais são linguagens de programação com base em avaliação
de funções matemáticas (expressões), evitando-se o conceito de mudança de
estado com alteração de dados. Neste aspecto, este paradigma é oposto ao
paradigma imperativo que se baseia em alterações de estados.

A programação funcional começou no cálculo lambda, que foi base teórica para
o desenvolvimento deste paradigma de programação.


```haskell
-- Para comentar a linha basta dois traços seguidos.

{- Abre chaves traço e traço fecha chaves cria um campo
   para comentário em múltiplas linhas.
-}

----------------------------------------------------
-- 1. Tipos Primitivos de Dados e Operadores
----------------------------------------------------

-- Numerais

0 -- 3
1 -- 1
2 -- 2 ...

-- Alguns Operadores Fundamentais

7 + 7 -- 7 mais 7
7 - 7 -- 7 menos 7
7 * 7 -- 7 vezes 7
7 / 7 -- 7 dividido por 7

-- Divisões não são inteiras, são fracionádas por padrão da linguagem
28736 / 82374 -- 0.3488479374559934


-- Divisão inteira
82374 `div` 28736 -- 2

-- Divisão modular
82374 `mod` 28736 -- 24902

-- Booleanos como tipo primitivo de dado
True -- Verdadeiro
False -- Falso

-- Operadores unitário
not True -- Nega uma verdade
not False -- Nega uma falácia


-- Operadores binários
7 == 7 -- 7 é igual a 7 ?
7 /= 7 -- 7 é diferente de 7 ?
7 < 7 -- 7 é menor que 7 ?
7 > 7 -- 7 é maior que 7 ?


{- Haskell é uma linguagem que tem uma sintáxe bastante familiar na
   matemática, por exemplo em chamadas de funções você tem:

   NomeFunção ArgumentoA ArgumentoB ArgumentoC ...
-}

-- Strings e Caractéres
"Texto entre abre áspas e fecha áspas define uma string"
'a' -- Caractere
'A' -- Caractere

'Strings entre aspas simples sobe um erro' -- Erro léxico!

-- Concatenação de Strings
"StringA" ++ "StringB" -- "StringAStringB"

-- Concatenação de Caracteres
"haskell" == ['h','a','s','k','e','l','l'] -- True
"haskell" == 'h':'a':'s':'k':'e':'l':'l':[] -- True

-- Você pode listar uma string pelos seus caractéres
"AbBbbcAbbcbBbcbcb" !! 0 -- 'A'
"AbBbbcAbbcbBbcbcb" !! 1 -- 'b'
"AbBbbcAbbcbBbcbcb" !! 2 -- 'B'

----------------------------------------------------
-- Listas e Túplas
----------------------------------------------------

-- A construção de uma lista precisa ser de elementos homogêneos
[1, 2, 3, 4, 5] -- Homogênea
[1, a, 2, b, 3] -- Heterogênea (Erro)

-- Haskell permite que você crie sequências
[1..5]

{- Haskell usa avaliação preguiçosa o que
   permite você ter listas "infinitas".
-}

-- Uma lista "infinita" cuja razão é 1
[1..]

-- O 777º elemento de uma lista de razão 1
[1..] !! 777 -- 778

-- União de listas [lista_0] ++ [lista_1] ++ [lista_i]
[1..5] ++ [6..10] ++ [1..4] -- [1,2,3,4,5,6,7,8,9,10,1,2,3,4]

-- Adiciona um cabeçalho a sua lista e desloca a cauda
0:[1..10] -- [0, 1, 2, 3, 4, 5]
'a':['a'..'e'] -- "aabcde"

-- Indexação em uma lista
[0..] !! 5 -- 5

-- Operadores de Listas usuais
head ['a'..'e'] -- Qual o cabeçalho da lista ?
tail ['a'..'e'] -- Qual a cauda da lista ?
init ['a'..'e'] -- Qual a lista menos o último elemento ?
last ['a'..'e'] -- Qual o último elemento ?

-- Compreensão de Lista (List Comprehension)

{- Uma lista pode ser especificada
   pela definição de eus elementos.
   A compreensão de listas é feita
   com um construtor de listas que
   utiliza conceitos  e notações
   da teoria dos conjuntos.

   Exemplo:

   A = { x**2 | X pertence aos Naturais && x é par}
-}

let par x = mod x 2 == 0
let constroi_lista = [x * x | x <- [9 ..39], par x]
-- [100,144,196,256,324,400,484,576,676,784,900,1024,1156,1296,1444]

par 4 -- True
par 3 -- False


-- Listas com regras
{- Para todo x se x é elemento da lista
   faça 2 vezes x mas componha a lista
   com apenas aqueles elementos cujo
   2*x é maior que 4
-}
[x*2 | x <- [1..5], x*2 > 4] -- [6, 8, 10]

-- Tuplas
("Q", "Gamma", "b", "Sigma", "delta", "q0", "F") -- 7-Tuple Turing Machine

-- Retirando da tupla

{- Com as funções fst (primeiro) e snd (segundo)
   você só pode enviar por parâmetro uma tupla
   bi-dimensional ou seja, 2 dimensões == (x,y)
-}

fst ((2,3), [2,3]) -- (2,3)
snd ((2,3), [4,3]) -- [4,3]


----------------------------------------------------
-- 3. Funções em Haskell
----------------------------------------------------

-- Uma função simples que toma duas variáveis
{- Haskell trabalha em cima de recursão
   Portanto certifique-se que você
   Entende como recurssão funciona.
-}

soma a b = a + b -- Função que vai em um programa.hs

{- Dentro do GHCi (Interpretador Haskell)
   Você terá que fazer da seguinte maneira-- Podemos criar nos

   Prelude> let soma a b = a + b
   Prelude> soma 7 7 -- 14
-}

let constroi_lista = [x * x | x <- [9 ..39], par x]

{- Você pode usar crases para chamar
   Funcões de maneira diferente
-}

7 `soma` 7 -- 14

{- Haskell permite que você crie os
   seus próprios operadores baseados
   nos já existendes
-}

let (~/\) a b = a `mod` b
15^13 ~/\ 432 -- 759375

-- Casamento de Padrões em Tuplas
coordenadas (x, y) = (x + 13, y - 31)

{- Haskell trabalha com casamento de padrões onde dada
   um conjunto de funções definidas de diferentes maneiras
   Haskell vai procurar por aquela que trabalha o seu tipo
   de entrada.
-}

-- Guardas "|" É um jeito simples de representar funções recursivas

let fatorial n | n == 0 = 1 | otherwise = fatorial (n - 1) * n -- Teste: fatorial 5

-- Ainda podemos fazer:

let fatorial 0 = 1
let fatorial n = fatorial (n - 1) * n

{- Podemos criar nossos próprios Mapeadores
   Onde `primeiro` é o primeiro elemento de
   uma lista é `resto`  é o resto da lista.
-}

mapa mapeador _ [] = []
mapa mapeador (primeiro : resto) = mapeador primeiro : (mapa mapeador resto)

{- Uma função anônima é uma função sem um nome.
   É uma abstração do cálculo lambda:

   \x -> x + 1
   λ.x (x + 1)

   Em Haskell Barra Invertida é um jeito para
   se escrever Lambda (λ). Uma ótima pedida
   Para entender Haskell e outras linguagens como Lisp
   É estudar Cálculo Lambda, é um entendimento matemático
   mais apurado. E do ponto de vista computacional é
   bastante interessante. Em EXTRAS você encontrará
   Links para aprender Cálculo Lambda.
-}

(\x -> x + 1) 4 -- 5


{- Algumas vezes é mais conveniente usar expressões lambda
   do que definir um nome para uma função. Na matemática
   Nomes são muito simbólicos. Isso acontece bastante
   quando você estiver trabalhando `map` ou `foldl` / `foldr`
-}

-- Sem usar expressões anônimas !
listaSomaUm lst = map somaUm' lst where somaUm' x = x + 1

-- Usando expressões anônimas !
listaSomaUm' lst = map (\x -> x + 1) lst

----------------------------------------------------
-- 4. Mais Funções
----------------------------------------------------

{- Currying: Se você não passar todos os argumentos
   para uma função, ela irá ser "currificada". O que
   significa que irá retornar a função que pega o resto
   dos elementos.
-}

soma a b = a + b
foo = soma 10 -- foo ganha a propriedade "currying"
foo 5 -- 15

-- Outra maneira
foo = (+10)
foo 5 -- 15

{- Composição de Funções
   O (.) encadeia funções! Por exemplo,
   aqui foo é uma função que recebe um valor.
   Ela soma 10 a ela, multiplica o resultado por 5
   e então retorna o resultado final.
-}
foo = (*5) . (+10)

-- (5 + 10) * 5 = 75
foo 5 -- 75

{- Concertando precedência:
   Haskell tem outra função chamada `$`. Isso altera a precedência
   de computação. Ou seja Haskell computa o que está sendo sinalizado com $
   da esquerda para a direita . Você pode usar `.` e `$` para se livrar
   de parentízação desnecessária.
-}

(even (fatorial 3)) -- true

-- Usando `.` e `$`
even . fatorial $ 3 -- true

----------------------------------------------------
-- 5. Tipos
----------------------------------------------------

-- Haskell é fortemente tipado e tudo tem uma assinatura típica.

-- Tipos Básicos:
460 :: Integer
"music" :: String
True :: Bool

{- Funções também tem tipos.
   `not` recebe um booleano e retorna um booleano:
   not :: Bool -> Bool
-}

{- Aqui temos uma função que recebe dois argumentos
   soma :: Integer -> Integer -> Integer
-}

{- Quando você define um valor em Haskell
   uma boa prática de programação é escrever
   o TIPO acima dessa mesma. Como segue:
-}

double :: Integer -> Integer
double x = x * 2

----------------------------------------------------
-- 6. Controle de Fluxo e IF-THEN-ELSE
----------------------------------------------------

-- Blocos IF-THEN-ELSE
let valor_alternado = if 144 `mod` 6 == 4 then "acertou" else "errou" -- errou

-- É legal identar quando você tem múltiplos branchs para acontecer

let valor_alternado = if 144 `mod` 6 == 4
                      then "acertou"
                      else "errou"

-- Blocos CASE

{- caso <argumento> seja :
        <ajuda>  -> mostra_ajuda
        <inicia> -> inicia_programa
        <_>      -> putStrLn "ExArgumentoInvalido"

    Onde `_` Significa Qualquer Outra Coisa.
-}


case args of
     "ajuda"  -> mostra_ajuda
     "inicia" -> inicia_programa
     _        -> putStrLn "ExArgumentoInvalido"

{- Haskell não funciona na base de loops pois ele é
   fortemente baseado em funcões recursivas e cálculo lambda

   Use `map` uma função build-in do interpretador
   para, por exemplo, mapear uma lista:
-}
map (*2) [1..5] -- [2, 4, 6, 8, 10]

-- Você pode criar um FOR-LOOP usando map
let for array funcao = map funcao array
for [0..5] $ \i -> show i

-- Ou ainda (Pesquise sobre show em Haskell):
for [0..5] show


{- foldl computação é feita esquerda para direita
   foldr computação é feita  direita para esquerda

   Você pode usar foldl or foldr a fim de reduzir uma lista
   fold(l||r) <funcao> <valor inicial> <lista>
-}

-- Fold Left
foldl (\x y -> 2*x + y) 4 [1,2,3] -- 43

-- Pensando Recursivamente Esquerda-Direita
(2 * (2 * (2 * 4 + 1) + 2) + 3) -- 43

-- Fold Right
foldr (\x y -> 2*x + y) 4 [1,2,3] -- 16

-- Pensando Recursivamente Direita-Esquerda
(2 * 3 + (2 * 2 + (2 * 1 + 4)))

----------------------------------------------------
-- 7. Declaração de Dados
----------------------------------------------------

{- Vamos começar definindo um tipo de
   dado que é uma cor rgb então ela
   tem valores para vermelho azul e verde
   ela é composta desses 3 comprimentos
   Vamos usar `data` e `say` que são built-in:
   
   Haskell pede que você user letra
   maiuscula para tipos (types) ou classes (Class)
   
   Por favor, visite: http://www.haskell.org/haskellwiki/Type
   E de uma olhada na fórmula genérica de declaração de dados.
-}

data Cor = Vermelho | Azul | Verde

-- say :: Color -> String

let say Vermelho = "Vermelho"
let say Azul = "Azul"
let say Verde = "Verde"

{- O seu tipo de dados por receber parâmetros também
   vamos com um exemplo usando `data` e a Classe `Maybe`.
-}

data Maybe a = Nothing | Just a

-- Just e Nothing são todos derivadas de Maybe
Just "hello" -- tipo `Maybe String`
Just 1       -- tipo `Maybe Int`
Nothing      -- tipo `Maybe a` para algum `a`

----------------------------------------------------
-- 8. Haskell IO
----------------------------------------------------

-- While IO can't be explained fully without explaining monads,
-- it is not hard to explain enough to get going.

-- When a Haskell program is executed, the function `main` is
-- called. It must return a value of type `IO ()`. For example:

main :: IO ()
main = putStrLn $ "Hello, sky! " ++ (say Blue)
-- putStrLn has type String -> IO ()

-- It is easiest to do IO if you can implement your program as
-- a function from String to String. The function
--    interact :: (String -> String) -> IO ()
-- inputs some text, runs a function on it, and prints out the
-- output.

countLines :: String -> String
countLines = show . length . lines

main' = interact countLines

-- You can think of a value of type `IO ()` as representing a
-- sequence of actions for the computer to do, much like a
-- computer program written in an imperative language. We can use
-- the `do` notation to chain actions together. For example:

sayHello :: IO ()
sayHello = do
   putStrLn "What is your name?"
   name <- getLine -- this gets a line and gives it the name "name"
   putStrLn $ "Hello, " ++ name

-- Exercise: write your own version of `interact` that only reads
--           one line of input.

-- The code in `sayHello` will never be executed, however. The only
-- action that ever gets executed is the value of `main`.
-- To run `sayHello` comment out the above definition of `main`
-- and replace it with:
--   main = sayHello

-- Let's understand better how the function `getLine` we just
-- used works. Its type is:
--    getLine :: IO String
-- You can think of a value of type `IO a` as representing a
-- computer program that will generate a value of type `a`
-- when executed (in addition to anything else it does). We can
-- store and reuse this value using `<-`. We can also
-- make our own action of type `IO String`:

action :: IO String
action = do
   putStrLn "This is a line. Duh"
   input1 <- getLine
   input2 <- getLine
   -- The type of the `do` statement is that of its last line.
   -- `return` is not a keyword, but merely a function
   return (input1 ++ "\n" ++ input2) -- return :: String -> IO String

-- We can use this just like we used `getLine`:

main'' = do
    putStrLn "I will echo two lines!"
    result <- action
    putStrLn result
    putStrLn "This was all, folks!"

-- The type `IO` is an example of a "monad". The way Haskell uses a monad to
-- do IO allows it to be a purely functional language. Any function that
-- interacts with the outside world (i.e. does IO) gets marked as `IO` in its
-- type signature. This lets us reason about what functions are "pure" (don't
-- interact with the outside world or modify state) and what functions aren't.

-- This is a powerful feature, because it's easy to run pure functions
-- concurrently; so, concurrency in Haskell is very easy.


----------------------------------------------------
-- 9. O Haskell REPL (Read Eval Print Loop)
----------------------------------------------------

{- Digite dhci no seu terminal
   para começar o interpretador
   lembre-se que para definir
   funções e variáveis em haskell
   pelo interpretador você precisar
   iniciar com `let`
-}

Prelude> let foo = 1.4

-- Você pode ver o tipo de algo usando `:t`:

Prelude> :t foo
foo :: Double

----------------------------------------------------
-- 9. Mônadas
----------------------------------------------------

```


# Extra

Compilador e Interpretador Haskell

* [GHC](http://www.haskell.org/ghc/docs/latest/html/users_guide/index.html)
* [GHC/GHCi](http://www.haskell.org/haskellwiki/GHC)

Instale Haskell [Aqui!](http://www.haskell.org/platform/).

Aplicações Haskell Muito Interessantes:

* [Música e Som](http://www.haskell.org/haskellwiki/Applications_and_libraries/Music_and_sound)
* [Haskell SuperCollider Servidor](https://github.com/kaoskorobase/hsc3-server)
* [Haskell SuperCollider Cliente](http://hackage.haskell.org/package/hsc3)
* [Física e Matemática](http://www.haskell.org/haskellwiki/Applications_and_libraries/Mathematics)
* [Jogos](http://www.haskell.org/haskellwiki/Applications_and_libraries/Games)
* [Bio Informática](http://www.haskell.org/haskellwiki/Applications_and_libraries/Bioinformatics)
* [Muitos Outras Aplicações](http://www.haskell.org/haskellwiki/Libraries_and_tools)

Comunidade Haskell
* [Musica das Mônadas](http://www.haskell.org/haskellwiki/Music_of_monads)

Tutoriais:

* [Mapeadores](http://www.haskell.org/ghc/docs/6.12.2/html/libraries/containers-0.3.0.0/Data-Map.html)
* [Aprenda Haskell!](http://haskell.tailorfontela.com.br/chapters)
* [Fundação Teórica da Linguagem Haskell](http://www.haskell.org/haskellwiki/Lambda_calculus)
* [Classe Maybe](http://www.haskell.org/haskellwiki/Maybe)
* [Zvon Referência Haskell](http://www.zvon.org/other/haskell/)

Obtenha Também Haskell Wiki Book [Aqui!](https://en.wikibooks.org/wiki/Haskell)

Leia Sobre As Mônadas [Aqui!](http://www.haskell.org/haskellwiki/Monads)

Livro: Haskell Uma Abordagem Prática - Claudio Cesar de Sá e Márcio Ferreira da Silva