1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
|
---
language: racket
filename: learnracket.rkt
contributors:
- ["th3rac25", "https://github.com/voila"]
---
Racket is a general purpose, multi-paradigm programming language in the Lisp/Scheme family.
Feedback is appreciated! You can reach me at [@th3rac25](http://twitter.com/th3rac25) or th3rac25 [at] [google's email service]
```racket
#lang racket ; defines the language we are using
;;; Comments
;; Single line comments start with a semicolon
#| Block comments
can span multiple lines and...
#|
they can be nested!
|#
|#
;; S-expression comments discard the following expression,
;; useful to comment expressions when debugging
#; (this expression is discarded)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 1. Primitive Datatypes and Operators
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Numbers
9999999999999999999999 ; integers
3.14 ; reals
6.02e+23
1/2 ; rationals
1+2i ; complex numbers
;; Function application is written (f x y z ...)
;; where f is a function and x, y, z, ... are operands
;; If you want to create a literal list of data, use ' to stop it from
;; being evaluated
'(+ 1 2) ; => (+ 1 2)
;; Now, some arithmetic operations
(+ 1 1) ; => 2
(- 8 1) ; => 7
(* 10 2) ; => 20
(quotient 5 2) ; => 2
(remainder 5 2) ; => 1
(/ 35 5) ; => 7
(/ 1 3) ; => 1/3
(exact->inexact 1/3) ; => 0.3333333333333333
(+ 1+2i 2-3i) ; => 3-1i
;;; Booleans
#t ; for true
#f ; for false -- any value other than #f is true
(not #t) ; => #f
(and 0 #f (error "doesn't get here")) ; => #f
(or #f 0 (error "doesn't get here")) ; => 0
;;; Characters
#\A ; => #\A
#\λ ; => #\λ
#\u03BB ; => #\λ
;;; Strings are fixed-length array of characters.
"Hello, world!"
"Benjamin \"Bugsy\" Siegel" ; backslash is an escaping character
"Foo\tbar\41\x21\u0021\a\r\n" ; includes C escapes, Unicode
"λx:(μα.α→α).xx" ; can include Unicode characters
;; Strings can be added too!
(string-append "Hello " "world!") ; => "Hello world!"
;; A string can be treated like a list of characters
(string-ref "Apple" 0) ; => #\A
;; format can be used to format strings:
(format "~a can be ~a" "strings" "formatted")
;; Printing is pretty easy
(printf "I'm Racket. Nice to meet you!\n")
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 2. Variables
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; You can create a variable using define
;; a variable name can use any character except: ()[]{}",'`;#|\
(define some-var 5)
some-var ; => 5
;; You can also use unicode characters
(define ⊆ subset?)
(⊆ (set 3 2) (set 1 2 3)) ; => #t
;; Accessing a previously unassigned variable is an exception
; x ; => x: undefined ...
;; Local binding: `me' is bound to "Bob" only within the (let ...)
(let ([me "Bob"])
"Alice"
me) ; => "Bob"
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 3. Structs and Collections
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Structs
(struct dog (name breed age))
(define my-pet
(dog "lassie" "collie" 5))
my-pet ; => #<dog>
(dog? my-pet) ; => #t
(dog-name my-pet) ; => "lassie"
;;; Pairs (immutable)
;; `cons' constructs pairs, `car' and `cdr' extract the first
;; and second elements
(cons 1 2) ; => '(1 . 2)
(car (cons 1 2)) ; => 1
(cdr (cons 1 2)) ; => 2
;;; Lists
;; Lists are linked-list data structures, made of `cons' pairs and end
;; with a `null' (or '()) to mark the end of the list
(cons 1 (cons 2 (cons 3 null))) ; => '(1 2 3)
;; `list' is a convenience variadic constructor for lists
(list 1 2 3) ; => '(1 2 3)
;; and a quote can also be used for a literal list value
'(1 2 3) ; => '(1 2 3)
;; Can still use `cons' to add an item to the beginning of a list
(cons 4 '(1 2 3)) ; => '(4 1 2 3)
;; Use `append' to add lists together
(append '(1 2) '(3 4)) ; => '(1 2 3 4)
;; Lists are a very basic type, so there is a *lot* of functionality for
;; them, a few examples:
(map add1 '(1 2 3)) ; => '(2 3 4)
(map + '(1 2 3) '(10 20 30)) ; => '(11 22 33)
(filter even? '(1 2 3 4)) ; => '(2 4)
(count even? '(1 2 3 4)) ; => 2
(take '(1 2 3 4) 2) ; => '(1 2)
(drop '(1 2 3 4) 2) ; => '(3 4)
;;; Vectors
;; Vectors are fixed-length arrays
#(1 2 3) ; => '#(1 2 3)
;; Use `vector-append' to add vectors together
(vector-append #(1 2 3) #(4 5 6)) ; => #(1 2 3 4 5 6)
;;; Sets
;; Create a set from a list
(list->set '(1 2 3 1 2 3 3 2 1 3 2 1)) ; => (set 1 2 3)
;; Add a member with `set-add'
;; (Functional: returns the extended set rather than mutate the input)
(set-add (set 1 2 3) 4) ; => (set 1 2 3 4)
;; Remove one with `set-remove'
(set-remove (set 1 2 3) 1) ; => (set 2 3)
;; Test for existence with `set-member?'
(set-member? (set 1 2 3) 1) ; => #t
(set-member? (set 1 2 3) 4) ; => #f
;;; Hashes
;; Create an immutable hash table (mutable example below)
(define m (hash 'a 1 'b 2 'c 3))
;; Retrieve a value
(hash-ref m 'a) ; => 1
;; Retrieving a non-present value is an exception
; (hash-ref m 'd) => no value found
;; You can provide a default value for missing keys
(hash-ref m 'd 0) ; => 0
;; Use `hash-set' to extend an immutable hash table
;; (Returns the extended hash instdead of mutating it)
(define m2 (hash-set m 'd 4))
m2 ; => '#hash((b . 2) (a . 1) (d . 4) (c . 3))
;; Remember, these hashes are immutable!
m ; => '#hash((b . 2) (a . 1) (c . 3)) <-- no `d'
;; Use `hash-remove' to remove keys (functional too)
(hash-remove m 'a) ; => '#hash((b . 2) (c . 3))
;; Create an empty mutable hash table and manipulate it
(define m3 (make-hash))
(hash-set! m3 'a 1)
(hash-set! m3 'b 2)
(hash-set! m3 'c 3)
(hash-ref m3 'a) ; => 1
(hash-ref m3 'd 0) ; => 0
(hash-remove! m3 'a)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 3. Functions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Use `lambda' to create functions.
;; A function always returns the value of its last expression
(lambda () "Hello World") ; => #<procedure>
;; Can also use a unicode `λ'
(λ () "Hellow World") ; => same function
;; Use parens to call all functions, including a lambda expression
((lambda () "Hello World")) ; => "Hello World"
((λ () "Hello World")) ; => "Hello World"
;; Assign a function to a var
(define hello-world (lambda () "Hello World"))
(hello-world) ; => "Hello World"
;; You can shorten this using the function definition syntatcic sugae:
(define (hello-world2) "Hello World")
;; The () in the above is the list of arguments for the function
(define hello
(lambda (name)
(string-append "Hello " name)))
(hello "Steve") ; => "Hello Steve"
;; ... or equivalently, using a sugared definition:
(define (hello2 name)
(string-append "Hello " name))
;; You can have multi-variadic functions too, using `case-lambda'
(define hello3
(case-lambda
[() "Hello World"]
[(name) (string-append "Hello " name)]))
(hello3 "Jake") ; => "Hello Jake"
(hello3) ; => "Hello World"
;; ... or specify optional arguments with a default value expression
(define (hello4 [name "World"])
(string-append "Hello " name))
;; Functions can pack extra arguments up in a list
(define (count-args . args)
(format "You passed ~a args: ~a" (length args) args))
(count-args 1 2 3) ; => "You passed 3 args: (1 2 3)"
;; ... or with the unsugared `lambda' form:
(define count-args2
(lambda args
(format "You passed ~a args: ~a" (length args) args)))
;; You can mix regular and packed arguments
(define (hello-count name . args)
(format "Hello ~a, you passed ~a extra args" name (length args)))
(hello-count "Finn" 1 2 3)
; => "Hello Finn, you passed 3 extra args"
;; ... unsugared:
(define hello-count2
(lambda (name . args)
(format "Hello ~a, you passed ~a extra args" name (length args))))
;; And with keywords
(define (hello-k #:name [name "World"] #:greeting [g "Hello"] . args)
(format "~a ~a, ~a extra args" g name (length args)))
(hello-k) ; => "Hello World, 0 extra args"
(hello-k 1 2 3) ; => "Hello World, 3 extra args"
(hello-k #:greeting "Hi") ; => "Hi World, 0 extra args"
(hello-k #:name "Finn" #:greeting "Hey") ; => "Hey Finn, 0 extra args"
(hello-k 1 2 3 #:greeting "Hi" #:name "Finn" 4 5 6)
; => "Hi Finn, 6 extra args"
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 4. Equality
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; for numbers use `='
(= 3 3.0) ; => #t
(= 2 1) ; => #f
;; for object identity use `eq?'
(eq? 3 3) ; => #t
(eq? 3 3.0) ; => #f
(eq? (list 3) (list 3)) ; => #f
;; for collections use `equal?'
(equal? (list 'a 'b) (list 'a 'b)) ; => #t
(equal? (list 'a 'b) (list 'b 'a)) ; => #f
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 5. Control Flow
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Conditionals
(if #t ; test expression
"this is true" ; then expression
"this is false") ; else expression
; => "this is true"
;; In conditionals, all non-#f values are treated as true
(member 'Groucho '(Harpo Groucho Zeppo)) ; => '(Groucho Zeppo)
(if (member 'Groucho '(Harpo Groucho Zeppo))
'yep
'nope)
; => 'yep
;; `cond' chains a series of tests to select a result
(cond [(> 2 2) (error "wrong!")]
[(< 2 2) (error "wrong again!")]
[else 'ok]) ; => 'ok
;;; Pattern Matching
(define (fizzbuzz? n)
(match (list (remainder n 3) (remainder n 5))
[(list 0 0) 'fizzbuzz]
[(list 0 _) 'fizz]
[(list _ 0) 'buzz]
[_ #f]))
(fizzbuzz? 15) ; => 'fizzbuzz
(fizzbuzz? 37) ; => #f
;;; Loops
;; Looping can be done through (tail-) recursion
(define (loop i)
(when (< i 10)
(printf "i=~a\n" i)
(loop (add1 i))))
(loop 5) ; => i=5, i=6, ...
;; Similarly, with a named let
(let loop ((i 0))
(when (< i 10)
(printf "i=~a\n" i)
(loop (add1 i)))) ; => i=0, i=1, ...
;; See below how to add a new `loop' form, but Racket already has a very
;; flexible `for' form for loops:
(for ([i 10])
(printf "i=~a\n" i)) ; => i=0, i=1, ...
(for ([i (in-range 5 10)])
(printf "i=~a\n" i)) ; => i=5, i=6, ...
;;; Other Sequences
;; `for' allows iteration over many other kinds of sequences:
;; lists, vectors, strings, sets, hash tables, etc...
(for ([i (in-list '(l i s t))])
(displayln i))
(for ([i (in-vector #(v e c t o r))])
(displayln i))
(for ([i (in-string "string")])
(displayln i))
(for ([i (in-set (set 'x 'y 'z))])
(displayln i))
(for ([(k v) (in-hash (hash 'a 1 'b 2 'c 3 ))])
(printf "key:~a value:~a\n" k v))
;;; More Complex Iterations
;; Parallel scan of multiple sequences (stops on shortest)
(for ([i 10] [j '(x y z)]) (printf "~a:~a\n" i j))
; => 0:x 1:y 2:z
;; Nested loops
(for* ([i 2] [j '(x y z)]) (printf "~a:~a\n" i j))
; => 0:x, 0:y, 0:z, 1:x, 1:y, 1:z
;; Conditions
(for ([i 1000]
#:when (> i 5)
#:unless (odd? i)
#:break (> i 10))
(printf "i=~a\n" i))
; => i=6, i=8, i=10
;;; Comprehensions
;; Very similar to `for' loops -- just collect the results
(for/list ([i '(1 2 3)])
(add1 i)) ; => '(2 3 4)
(for/list ([i '(1 2 3)] #:when (even? i))
i) ; => '(2)
(for/list ([i 10] [j '(x y z)])
(list i j)) ; => '((0 x) (1 y) (2 z))
(for/list ([i 1000] #:when (> i 5) #:unless (odd? i) #:break (> i 10))
i) ; => '(6 8 10)
(for/hash ([i '(1 2 3)])
(values i (number->string i)))
; => '#hash((1 . "1") (2 . "2") (3 . "3"))
;; There are many kinds of other built-in ways to collect loop values:
(for/sum ([i 10]) (* i i)) ; => 285
(for/product ([i (in-range 1 11)]) (* i i)) ; => 13168189440000
(for/and ([i 10] [j (in-range 10 20)]) (< i j)) ; => #t
(for/or ([i 10] [j (in-range 0 20 2)]) (= i j)) ; => #t
;; And to use any arbitrary combination, use `for/fold'
(for/fold ([sum 0]) ([i '(1 2 3 4)]) (+ sum i)) ; => 10
;; (This can often replace common imperative loops)
;;; Exceptions
;; To catch exceptions, use the `with-handlers' form
(with-handlers ([exn:fail? (lambda (exn) 999)])
(+ 1 "2")) ; => 999
(with-handlers ([exn:break? (lambda (exn) "no time")])
(sleep 3)
"phew") ; => "phew", but if you break it => "no time"
;; Use `raise' to throw exceptions or any other value
(with-handlers ([number? ; catch numeric values raised
identity]) ; return them as plain values
(+ 1 (raise 2))) ; => 2
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 6. Mutation
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Use `set!' to assign a new value to an existing variable
(define n 5)
(set! n (add1 n))
n ; => 6
;; Use boxes for explicitly mutable values (similar to pointers or
;; references in other languages)
(define n* (box 5))
(set-box! n* (add1 (unbox n*)))
(unbox n*) ; => 6
;; Many Racket datatypes are immutable (pairs, lists, etc), some come in
;; both mutable and immutable flavors (strings, vectors, hash tables,
;; etc...)
;; Use `vector' or `make-vector' to create mutable vectors
(define vec (vector 2 2 3 4))
(define wall (make-vector 100 'bottle-of-beer))
;; Use vector-set! to update a slot
(vector-set! vec 0 1)
(vector-set! wall 99 'down)
vec ; => #(1 2 3 4)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 7. Modules
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Modules let you organize code into multiple files and reusable
;; libraries; here we use sub-modules, nested in the whole module that
;; this text makes (starting from the "#lang" line)
(module cake racket/base ; define a `cake' module based on racket/base
(provide print-cake) ; function exported by the module
(define (print-cake n)
(show " ~a " n #\.)
(show " .-~a-. " n #\|)
(show " | ~a | " n #\space)
(show "---~a---" n #\-))
(define (show fmt n ch) ; internal function
(printf fmt (make-string n ch))
(newline)))
;; Use `require' to get all `provide'd names from a module
(require 'cake) ; the ' is for a local submodule
(print-cake 3)
; (show "~a" 1 #\A) ; => error, `show' was not exported
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 8. Classes and Objects
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Create a class fish% (-% is idomatic for class bindings)
(define fish%
(class object%
(init size) ; initialization argument
(super-new) ; superclass initialization
;; Field
(define current-size size)
;; Public methods
(define/public (get-size)
current-size)
(define/public (grow amt)
(set! current-size (+ amt current-size)))
(define/public (eat other-fish)
(grow (send other-fish get-size)))))
;; Create an instance of fish%
(define charlie
(new fish% [size 10]))
;; Use `send' to call an object's methods
(send charlie get-size) ; => 10
(send charlie grow 6)
(send charlie get-size) ; => 16
;; `fish%' is a plain "first class" value, which can get us mixins
(define (add-color c%)
(class c%
(init color)
(super-new)
(define my-color color)
(define/public (get-color) my-color)))
(define colored-fish% (add-color fish%))
(define charlie2 (new colored-fish% [size 10] [color 'red]))
(send charlie2 get-color)
;; or, with no names:
(send (new (add-color fish%) [size 10] [color 'red]) get-color)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 9. Macros
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Macros let you extend the syntax of the language
;; Let's add a while loop
(define-syntax-rule (while condition body ...)
(let loop ()
(when condition
body ...
(loop))))
(let ([i 0])
(while (< i 10)
(displayln i)
(set! i (add1 i))))
;; Macros are hygienic, you cannot clobber existing variables!
(define-syntax-rule (swap! x y) ; -! is idomatic for mutation
(let ([tmp x])
(set! x y)
(set! y tmp)))
(define tmp 1)
(define a 2)
(define b 3)
(swap! a b)
(printf "tmp = ~a; a = ~a; b = ~a\n" tmp a b) ; tmp is unaffected
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 10. Contracts
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Contracts impose constraints on values exported from modules
(module bank-account racket
(provide (contract-out
[deposit (-> positive? any)] ; amounts are always positive
[balance (-> positive?)]))
(define amount 0)
(define (deposit a) (set! amount (+ amount a)))
(define (balance) amount)
)
(require 'bank-account)
(deposit 5)
(balance) ; => 5
;; Clients that attempt to deposit a non-positive amount are blamed
;; (deposit -5) ; => deposit: contract violation
;; expected: positive?
;; given: -5
;; more details....
```
## Further Reading
Still up for more? Try [Getting Started with Racket](http://docs.racket-lang.org/getting-started/)
|