summaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorAdam <adam@adambard.com>2013-08-13 19:59:19 -0700
committerAdam <adam@adambard.com>2013-08-13 19:59:19 -0700
commit4d705abd99dbe13fbdb50b5d5e74d6fe8c18f559 (patch)
treed335a3c30a6d6a5d2754ae362b2af5cc112b4db9
parentf733ea36d2da7748b21a7ec356bdf147541b3b2b (diff)
Piddly things
-rw-r--r--go.html.markdown354
-rw-r--r--pt-br/elisp-pt.html.markdown16
2 files changed, 185 insertions, 185 deletions
diff --git a/go.html.markdown b/go.html.markdown
index e7b35926..4db76a49 100644
--- a/go.html.markdown
+++ b/go.html.markdown
@@ -18,7 +18,7 @@ help with large-scale programming.
Go comes with a great standard library and an enthusiastic community.
-```Go
+```go
// Single line comment
/* Multi-
line comment */
@@ -29,260 +29,260 @@ package main
// Import declaration declares library packages referenced in this file.
import (
- "fmt" // A package in the Go standard library
- "net/http" // Yes, a web server!
- "strconv" // String conversions
+ "fmt" // A package in the Go standard library
+ "net/http" // Yes, a web server!
+ "strconv" // String conversions
)
// A function definition. Main is special. It is the entry point for the
// executable program. Love it or hate it, Go uses brace brackets.
func main() {
- // Println outputs a line to stdout.
- // Qualify it with the package name, fmt.
- fmt.Println("Hello world!")
+ // Println outputs a line to stdout.
+ // Qualify it with the package name, fmt.
+ fmt.Println("Hello world!")
- // Call another function within this package.
- beyondHello()
+ // Call another function within this package.
+ beyondHello()
}
// Functions have parameters in parentheses.
// If there are no parameters, empty parens are still required.
func beyondHello() {
- var x int // Variable declaration. Variables must be declared before use.
- x = 3 // Variable assignment.
- // "Short" declarations use := to infer the type, declare, and assign.
- y := 4
- sum, prod := learnMultiple(x, y) // function returns two values
- fmt.Println("sum:", sum, "prod:", prod) // simple output
- learnTypes() // < y minutes, learn more!
+ var x int // Variable declaration. Variables must be declared before use.
+ x = 3 // Variable assignment.
+ // "Short" declarations use := to infer the type, declare, and assign.
+ y := 4
+ sum, prod := learnMultiple(x, y) // function returns two values
+ fmt.Println("sum:", sum, "prod:", prod) // simple output
+ learnTypes() // < y minutes, learn more!
}
// Functions can have parameters and (multiple!) return values.
func learnMultiple(x, y int) (sum, prod int) {
- return x + y, x * y // return two values
+ return x + y, x * y // return two values
}
// Some built-in types and literals.
func learnTypes() {
- // Short declaration usually gives you what you want.
- s := "Learn Go!" // string type
+ // Short declaration usually gives you what you want.
+ s := "Learn Go!" // string type
- s2 := `A "raw" string literal
+ s2 := `A "raw" string literal
can include line breaks.` // same string type
- // non-ASCII literal. Go source is UTF-8.
- g := 'Σ' // rune type, an alias for uint32, holds a UTF-8 code point
+ // non-ASCII literal. Go source is UTF-8.
+ g := 'Σ' // rune type, an alias for uint32, holds a UTF-8 code point
- f := 3.14195 // float64, an IEEE-754 64-bit floating point number
- c := 3 + 4i // complex128, represented internally with two float64s
+ f := 3.14195 // float64, an IEEE-754 64-bit floating point number
+ c := 3 + 4i // complex128, represented internally with two float64s
- // Var syntax with an initializers.
- var u uint = 7 // unsigned, but implementation dependent size as with int
- var pi float32 = 22. / 7
+ // Var syntax with an initializers.
+ var u uint = 7 // unsigned, but implementation dependent size as with int
+ var pi float32 = 22. / 7
- // Conversion syntax with a short declaration.
- n := byte('\n') // byte is an alias for uint8
+ // Conversion syntax with a short declaration.
+ n := byte('\n') // byte is an alias for uint8
- // Arrays have size fixed at compile time.
- var a4 [4]int // an array of 4 ints, initialized to all 0
- a3 := [...]int{3, 1, 5} // an array of 3 ints, initialized as shown
+ // Arrays have size fixed at compile time.
+ var a4 [4]int // an array of 4 ints, initialized to all 0
+ a3 := [...]int{3, 1, 5} // an array of 3 ints, initialized as shown
- // Slices have dynamic size. Arrays and slices each have advantages
- // but use cases for slices are much more common.
- s3 := []int{4, 5, 9} // compare to a3. no ellipsis here
- s4 := make([]int, 4) // allocates slice of 4 ints, initialized to all 0
- var d2 [][]float64 // declaration only, nothing allocated here
- bs := []byte("a slice") // type conversion syntax
+ // Slices have dynamic size. Arrays and slices each have advantages
+ // but use cases for slices are much more common.
+ s3 := []int{4, 5, 9} // compare to a3. no ellipsis here
+ s4 := make([]int, 4) // allocates slice of 4 ints, initialized to all 0
+ var d2 [][]float64 // declaration only, nothing allocated here
+ bs := []byte("a slice") // type conversion syntax
- p, q := learnMemory() // declares p, q to be type pointer to int.
- fmt.Println(*p, *q) // * follows a pointer. This prints two ints.
+ p, q := learnMemory() // declares p, q to be type pointer to int.
+ fmt.Println(*p, *q) // * follows a pointer. This prints two ints.
- // Maps are a dynamically growable associative array type, like the
- // hash or dictionary types of some other languages.
- m := map[string]int{"three": 3, "four": 4}
- m["one"] = 1
+ // Maps are a dynamically growable associative array type, like the
+ // hash or dictionary types of some other languages.
+ m := map[string]int{"three": 3, "four": 4}
+ m["one"] = 1
- // Unused variables are an error in Go.
- // The underbar lets you "use" a variable but discard its value.
- _, _, _, _, _, _, _, _, _ = s2, g, f, u, pi, n, a3, s4, bs
- // Output of course counts as using a variable.
- fmt.Println(s, c, a4, s3, d2, m)
+ // Unused variables are an error in Go.
+ // The underbar lets you "use" a variable but discard its value.
+ _, _, _, _, _, _, _, _, _ = s2, g, f, u, pi, n, a3, s4, bs
+ // Output of course counts as using a variable.
+ fmt.Println(s, c, a4, s3, d2, m)
- learnFlowControl() // back in the flow
+ learnFlowControl() // back in the flow
}
// Go is fully garbage collected. It has pointers but no pointer arithmetic.
// You can make a mistake with a nil pointer, but not by incrementing a pointer.
func learnMemory() (p, q *int) {
- // Named return values p and q have type pointer to int.
- p = new(int) // built-in function new allocates memory.
- // The allocated int is initialized to 0, p is no longer nil.
- s := make([]int, 20) // allocate 20 ints as a single block of memory
- s[3] = 7 // assign one of them
- r := -2 // declare another local variable
- return &s[3], &r // & takes the address of an object.
+ // Named return values p and q have type pointer to int.
+ p = new(int) // built-in function new allocates memory.
+ // The allocated int is initialized to 0, p is no longer nil.
+ s := make([]int, 20) // allocate 20 ints as a single block of memory
+ s[3] = 7 // assign one of them
+ r := -2 // declare another local variable
+ return &s[3], &r // & takes the address of an object.
}
func expensiveComputation() int {
- return 1e6
+ return 1e6
}
func learnFlowControl() {
- // If statements require brace brackets, and do not require parens.
- if true {
- fmt.Println("told ya")
- }
- // Formatting is standardized by the command line command "go fmt."
- if false {
- // pout
- } else {
- // gloat
- }
- // Use switch in preference to chained if statements.
- x := 1
- switch x {
- case 0:
- case 1:
- // cases don't "fall through"
- case 2:
- // unreached
- }
- // Like if, for doesn't use parens either.
- for x := 0; x < 3; x++ { // ++ is a statement
- fmt.Println("iteration", x)
- }
- // x == 1 here.
-
- // For is the only loop statement in Go, but it has alternate forms.
- for { // infinite loop
- break // just kidding
- continue // unreached
- }
- // As with for, := in an if statement means to declare and assign y first,
- // then test y > x.
- if y := expensiveComputation(); y > x {
- x = y
- }
- // Function literals are closures.
- xBig := func() bool {
- return x > 100 // references x declared above switch statement.
- }
- fmt.Println("xBig:", xBig()) // true (we last assigned 1e6 to x)
- x /= 1e5 // this makes it == 10
- fmt.Println("xBig:", xBig()) // false now
-
- // When you need it, you'll love it.
- goto love
+ // If statements require brace brackets, and do not require parens.
+ if true {
+ fmt.Println("told ya")
+ }
+ // Formatting is standardized by the command line command "go fmt."
+ if false {
+ // pout
+ } else {
+ // gloat
+ }
+ // Use switch in preference to chained if statements.
+ x := 1
+ switch x {
+ case 0:
+ case 1:
+ // cases don't "fall through"
+ case 2:
+ // unreached
+ }
+ // Like if, for doesn't use parens either.
+ for x := 0; x < 3; x++ { // ++ is a statement
+ fmt.Println("iteration", x)
+ }
+ // x == 1 here.
+
+ // For is the only loop statement in Go, but it has alternate forms.
+ for { // infinite loop
+ break // just kidding
+ continue // unreached
+ }
+ // As with for, := in an if statement means to declare and assign y first,
+ // then test y > x.
+ if y := expensiveComputation(); y > x {
+ x = y
+ }
+ // Function literals are closures.
+ xBig := func() bool {
+ return x > 100 // references x declared above switch statement.
+ }
+ fmt.Println("xBig:", xBig()) // true (we last assigned 1e6 to x)
+ x /= 1e5 // this makes it == 10
+ fmt.Println("xBig:", xBig()) // false now
+
+ // When you need it, you'll love it.
+ goto love
love:
- learnInterfaces() // Good stuff coming up!
+ learnInterfaces() // Good stuff coming up!
}
// Define Stringer as an interface type with one method, String.
type Stringer interface {
- String() string
+ String() string
}
// Define pair as a struct with two fields, ints named x and y.
type pair struct {
- x, y int
+ x, y int
}
// Define a method on type pair. Pair now implements Stringer.
func (p pair) String() string { // p is called the "receiver"
- // Sprintf is another public function in package fmt.
- // Dot syntax references fields of p.
- return fmt.Sprintf("(%d, %d)", p.x, p.y)
+ // Sprintf is another public function in package fmt.
+ // Dot syntax references fields of p.
+ return fmt.Sprintf("(%d, %d)", p.x, p.y)
}
func learnInterfaces() {
- // Brace syntax is a "struct literal." It evaluates to an initialized
- // struct. The := syntax declares and initializes p to this struct.
- p := pair{3, 4}
- fmt.Println(p.String()) // call String method of p, of type pair.
- var i Stringer // declare i of interface type Stringer.
- i = p // valid because pair implements Stringer
- // Call String method of i, of type Stringer. Output same as above.
- fmt.Println(i.String())
-
- // Functions in the fmt package call the String method to ask an object
- // for a printable representation of itself.
- fmt.Println(p) // output same as above. Println calls String method.
- fmt.Println(i) // output same as above
-
- learnErrorHandling()
+ // Brace syntax is a "struct literal." It evaluates to an initialized
+ // struct. The := syntax declares and initializes p to this struct.
+ p := pair{3, 4}
+ fmt.Println(p.String()) // call String method of p, of type pair.
+ var i Stringer // declare i of interface type Stringer.
+ i = p // valid because pair implements Stringer
+ // Call String method of i, of type Stringer. Output same as above.
+ fmt.Println(i.String())
+
+ // Functions in the fmt package call the String method to ask an object
+ // for a printable representation of itself.
+ fmt.Println(p) // output same as above. Println calls String method.
+ fmt.Println(i) // output same as above
+
+ learnErrorHandling()
}
func learnErrorHandling() {
- // ", ok" idiom used to tell if something worked or not.
- m := map[int]string{3: "three", 4: "four"}
- if x, ok := m[1]; !ok { // ok will be false because 1 is not in the map.
- fmt.Println("no one there")
- } else {
- fmt.Print(x) // x would be the value, if it were in the map.
- }
- // An error value communicates not just "ok" but more about the problem.
- if _, err := strconv.Atoi("non-int"); err != nil { // _ discards value
- // prints "strconv.ParseInt: parsing "non-int": invalid syntax"
- fmt.Println(err)
- }
- // We'll revisit interfaces a little later. Meanwhile,
- learnConcurrency()
+ // ", ok" idiom used to tell if something worked or not.
+ m := map[int]string{3: "three", 4: "four"}
+ if x, ok := m[1]; !ok { // ok will be false because 1 is not in the map.
+ fmt.Println("no one there")
+ } else {
+ fmt.Print(x) // x would be the value, if it were in the map.
+ }
+ // An error value communicates not just "ok" but more about the problem.
+ if _, err := strconv.Atoi("non-int"); err != nil { // _ discards value
+ // prints "strconv.ParseInt: parsing "non-int": invalid syntax"
+ fmt.Println(err)
+ }
+ // We'll revisit interfaces a little later. Meanwhile,
+ learnConcurrency()
}
// c is a channel, a concurrency-safe communication object.
func inc(i int, c chan int) {
- c <- i + 1 // <- is the "send" operator when a channel appears on the left.
+ c <- i + 1 // <- is the "send" operator when a channel appears on the left.
}
// We'll use inc to increment some numbers concurrently.
func learnConcurrency() {
- // Same make function used earlier to make a slice. Make allocates and
- // initializes slices, maps, and channels.
- c := make(chan int)
- // Start three concurrent goroutines. Numbers will be incremented
- // concurrently, perhaps in parallel if the machine is capable and
- // properly configured. All three send to the same channel.
- go inc(0, c) // go is a statement that starts a new goroutine.
- go inc(10, c)
- go inc(-805, c)
- // Read three results from the channel and print them out.
- // There is no telling in what order the results will arrive!
- fmt.Println(<-c, <-c, <-c) // channel on right, <- is "receive" operator.
-
- cs := make(chan string) // another channel, this one handles strings.
- cc := make(chan chan string) // a channel of channels.
- go func() { c <- 84 }() // start a new goroutine just to send a value
- go func() { cs <- "wordy" }() // again, for cs this time
- // Select has syntax like a switch statement but each case involves
- // a channel operation. It selects a case at random out of the cases
- // that are ready to communicate.
- select {
- case i := <-c: // the value received can be assigned to a variable
- fmt.Println("it's a", i)
- case <-cs: // or the value received can be discarded
- fmt.Println("it's a string")
- case <-cc: // empty channel, not ready for communication.
- fmt.Println("didn't happen.")
- }
- // At this point a value was taken from either c or cs. One of the two
- // goroutines started above has completed, the other will remain blocked.
-
- learnWebProgramming() // Go does it. You want to do it too.
+ // Same make function used earlier to make a slice. Make allocates and
+ // initializes slices, maps, and channels.
+ c := make(chan int)
+ // Start three concurrent goroutines. Numbers will be incremented
+ // concurrently, perhaps in parallel if the machine is capable and
+ // properly configured. All three send to the same channel.
+ go inc(0, c) // go is a statement that starts a new goroutine.
+ go inc(10, c)
+ go inc(-805, c)
+ // Read three results from the channel and print them out.
+ // There is no telling in what order the results will arrive!
+ fmt.Println(<-c, <-c, <-c) // channel on right, <- is "receive" operator.
+
+ cs := make(chan string) // another channel, this one handles strings.
+ cc := make(chan chan string) // a channel of channels.
+ go func() { c <- 84 }() // start a new goroutine just to send a value
+ go func() { cs <- "wordy" }() // again, for cs this time
+ // Select has syntax like a switch statement but each case involves
+ // a channel operation. It selects a case at random out of the cases
+ // that are ready to communicate.
+ select {
+ case i := <-c: // the value received can be assigned to a variable
+ fmt.Println("it's a", i)
+ case <-cs: // or the value received can be discarded
+ fmt.Println("it's a string")
+ case <-cc: // empty channel, not ready for communication.
+ fmt.Println("didn't happen.")
+ }
+ // At this point a value was taken from either c or cs. One of the two
+ // goroutines started above has completed, the other will remain blocked.
+
+ learnWebProgramming() // Go does it. You want to do it too.
}
// A single function from package http starts a web server.
func learnWebProgramming() {
- // ListenAndServe first parameter is TCP address to listen at.
- // Second parameter is an interface, specifically http.Handler.
- err := http.ListenAndServe(":8080", pair{})
- fmt.Println(err) // don't ignore errors
+ // ListenAndServe first parameter is TCP address to listen at.
+ // Second parameter is an interface, specifically http.Handler.
+ err := http.ListenAndServe(":8080", pair{})
+ fmt.Println(err) // don't ignore errors
}
// Make pair an http.Handler by implementing its only method, ServeHTTP.
func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) {
- // Serve data with a method of http.ResponseWriter
- w.Write([]byte("You learned Go in Y minutes!"))
+ // Serve data with a method of http.ResponseWriter
+ w.Write([]byte("You learned Go in Y minutes!"))
}
```
diff --git a/pt-br/elisp-pt.html.markdown b/pt-br/elisp-pt.html.markdown
index 9031cad9..fc2d1e40 100644
--- a/pt-br/elisp-pt.html.markdown
+++ b/pt-br/elisp-pt.html.markdown
@@ -4,7 +4,7 @@ contributors:
- ["Bastien Guerry", "http://bzg.fr"]
translators:
- ["Lucas Tadeu Teixeira", "http://ltt.me"]
-lang: pt-br
+lang: pt-br
filename: learn-emacs-lisp-pt.el
---
@@ -30,9 +30,9 @@ filename: learn-emacs-lisp-pt.el
;; Realizar este tutorial não danificará seu computador, a menos
;; que você fique tão irritado a ponto de jogá-lo no chão. Neste caso,
;; me abstenho de qualquer responsabilidade. Divirta-se!
-
+
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
-;;
+;;
;; Abra o Emacs.
;;
;; Aperte a tecla `q' para ocultar a mensagem de boas vindas.
@@ -45,11 +45,11 @@ filename: learn-emacs-lisp-pt.el
;; O buffer de rascunho (i.e., "scratch") é o buffer padrão quando
;; o Emacs é aberto. Você nunca está editando arquivos: você está
;; editando buffers que você pode salvar em um arquivo.
-;;
+;;
;; "Lisp interaction" refere-se a um conjunto de comandos disponíveis aqui.
-;;
-;; O Emacs possui um conjunto de comandos embutidos (disponíveis em
-;; qualquer buffer) e vários subconjuntos de comandos disponíveis
+;;
+;; O Emacs possui um conjunto de comandos embutidos (disponíveis em
+;; qualquer buffer) e vários subconjuntos de comandos disponíveis
;; quando você ativa um modo específico. Aqui nós utilizamos
;; `lisp-interaction-mode', que possui comandos para interpretar e navegar
;; em código Elisp.
@@ -137,7 +137,7 @@ filename: learn-emacs-lisp-pt.el
;; => [a tela exibirá duas janelas e o cursor estará no buffer *test*]
;; Posicione o mouse sobre a janela superior e clique com o botão
-;; esquerdo para voltar. Ou você pode utilizar `C-xo' (i.e. segure
+;; esquerdo para voltar. Ou você pode utilizar `C-xo' (i.e. segure
;; ctrl-x e aperte o) para voltar para a outra janela, de forma interativa.
;; Você pode combinar várias "sexps" com `progn':