summaryrefslogtreecommitdiffhomepage
path: root/ATS.html.markdown
diff options
context:
space:
mode:
authorBoris Verkhovskiy <boris.verk@gmail.com>2024-05-12 02:42:27 -0600
committerBoris Verkhovskiy <boris.verk@gmail.com>2024-05-12 02:48:10 -0600
commitc7564c958c8b630b84bfd81ce01dd44d5fc48541 (patch)
tree1db7bc56bf8e60d70d3447be4066e82bae5b4eba /ATS.html.markdown
parentff34febd6a954dfa78fbe5055ad0a4bf9bbfa964 (diff)
Lowercase URLs
Diffstat (limited to 'ATS.html.markdown')
-rw-r--r--ATS.html.markdown607
1 files changed, 0 insertions, 607 deletions
diff --git a/ATS.html.markdown b/ATS.html.markdown
deleted file mode 100644
index f290ac0f..00000000
--- a/ATS.html.markdown
+++ /dev/null
@@ -1,607 +0,0 @@
----
-language: ATS
-contributors:
- - ["Mark Barbone", "https://github.com/mb64"]
-filename: learnats.dats
----
-
-ATS is a low-level functional programming language. It has a powerful type
-system which lets you write programs with the same level of control and
-efficiency as C, but in a memory safe and type safe way.
-
-The ATS type system supports:
-
-* Full type erasure: ATS compiles to efficient C
-* Dependent types, including [LF](http://twelf.org/wiki/LF) and proving
- metatheorems
-* Refinement types
-* Linearity for resource tracking
-* An effect system that tracks exceptions, mutation, termination, and other
- side effects
-
-This tutorial is not an introduction to functional programming, dependent types,
-or linear types, but rather to how they all fit together in ATS. That said, ATS
-is a very complex language, and this tutorial doesn't cover it all. Not only
-does ATS's type system boast a wide array of confusing features, its
-idiosyncratic syntax can make even "simple" examples hard to understand. In the
-interest of keeping it a reasonable length, this document is meant to give a
-taste of ATS, giving a high-level overview of what's possible and how, rather
-than attempting to fully explain how everything works.
-
-You can [try ATS in your browser](http://www.ats-lang.org/SERVER/MYCODE/Patsoptaas_serve.php),
-or install it from [http://www.ats-lang.org/](http://www.ats-lang.org/).
-
-
-```ocaml
-// Include the standard library
-#include "share/atspre_define.hats"
-#include "share/atspre_staload.hats"
-
-// To compile, either use
-// $ patscc -DATS_MEMALLOC_LIBC program.dats -o program
-// or install the ats-acc wrapper https://github.com/sparverius/ats-acc and use
-// $ acc pc program.dats
-
-// C-style line comments
-/* and C-style block comments */
-(* as well as ML-style block comments *)
-
-/*************** Part 1: the ML fragment ****************/
-
-val () = print "Hello, World!\n"
-
-// No currying
-fn add (x: int, y: int) = x + y
-
-// fn vs fun is like the difference between let and let rec in OCaml/F#
-fun fact (n: int): int = if n = 0 then 1 else n * fact (n-1)
-
-// Multi-argument functions need parentheses when you call them; single-argument
-// functions can omit parentheses
-val forty_three = add (fact 4, 19)
-
-// let is like let in SML
-fn sum_and_prod (x: int, y: int): (int, int) =
- let
- val sum = x + y
- val prod = x * y
- in (sum, prod) end
-
-// 'type' is the type of all heap-allocated, non-linear types
-// Polymorphic parameters go in {} after the function name
-fn id {a:type} (x: a) = x
-
-// ints aren't heap-allocated, so we can't pass them to 'id'
-// val y: int = id 7 // doesn't compile
-
-// 't@ype' is the type of all non-linear potentially unboxed types. It is a
-// supertype of 'type'.
-// Templated parameters go in {} before the function name
-fn {a:t@ype} id2 (x: a) = x
-
-val y: int = id2 7 // works
-
-// can't have polymorphic t@ype parameters
-// fn id3 {a:t@ype} (x: a) = x // doesn't compile
-
-// explicity specifying type parameters:
-fn id4 {a:type} (x: a) = id {a} x // {} for non-template parameters
-fn id5 {a:type} (x: a) = id2<a> x // <> for template parameters
-fn id6 {a:type} (x: a) = id {..} x // {..} to explicitly infer it
-
-// Heap allocated shareable datatypes
-// using datatypes leaks memory
-datatype These (a:t@ype, b:t@ype) = This of a
- | That of b
- | These of (a, b)
-
-// Pattern matching using 'case'
-fn {a,b: t@ype} from_these (x: a, y: b, these: These(a,b)): (a, b) =
- case these of
- | This(x) => (x, y) // Shadowing of variable names is fine; here, x shadows
- // the parameter x
- | That(y) => (x, y)
- | These(x, y) => (x, y)
-
-// Partial pattern match using 'case-'
-// Will throw an exception if passed This
-fn {a,b:t@ype} unwrap_that (these: These(a,b)): b =
- case- these of
- | That(y) => y
- | These(_, y) => y
-
-
-/*************** Part 2: refinements ****************/
-
-// Parameterize functions by what values they take and return
-fn cool_add {n:int} {m:int} (x: int n, y: int m): int (n+m) = x + y
-
-// list(a, n) is a list of n a's
-fun square_all {n:int} (xs: list(int, n)): list(int, n) =
- case xs of
- | list_nil() => list_nil()
- | list_cons(x, rest) => list_cons(x * x, square_all rest)
-
-fn {a:t@ype} get_first {n:int | n >= 1} (xs: list(a, n)): a =
- case+ xs of // '+' asks ATS to prove it's total
- | list_cons(x, _) => x
-
-// Can't run get_first on lists of length 0
-// val x: int = get_first (list_nil()) // doesn't compile
-
-// in the stdlib:
-// sortdef nat = {n:int | n >= 0}
-// sortdef pos = {n:int | n >= 1}
-
-fn {a:t@ype} also_get_first {n:pos} (xs: list(a, n)): a =
- let
- val+ list_cons(x, _) = xs // val+ also works
- in x end
-
-// tail-recursive reverse
-fun {a:t@ype} reverse {n:int} (xs: list(a, n)): list(a, n) =
- let
- // local functions can use type variables from their enclosing scope
- // this one uses both 'a' and 'n'
- fun rev_helper {i:nat} (xs: list(a, n-i), acc: list(a, i)): list(a, n) =
- case xs of
- | list_nil() => acc
- | list_cons(x, rest) => rev_helper(rest, list_cons(x, acc))
- in rev_helper(xs, list_nil) end
-
-// ATS has three context-dependent namespaces
-// the two 'int's mean different things in this example, as do the two 'n's
-fn namespace_example {n:int} (n: int n): int n = n
-// ^^^ sort namespace
-// ^ ^^^ ^ ^^^ ^ statics namespace
-// ^^^^^^^^^^^^^^^^^ ^ ^ value namespace
-
-// a termination metric can go in .< >.
-// it must decrease on each recursive call
-// then ATS will prove it doesn't infinitely recurse
-fun terminating_factorial {n:nat} .<n>. (n: int n): int =
- if n = 0 then 1 else n * terminating_factorial (n-1)
-
-
-/*************** Part 3: the LF fragment ****************/
-
-// ATS supports proving theorems in LF (http://twelf.org/wiki/LF)
-
-// Relations are represented by inductive types
-
-// Proofs that the nth fibonacci number is f
-dataprop Fib(n:int, m:int) =
- | FibZero(0, 0)
- | FibOne(1, 1)
- | {n, f1, f2: int} FibInd(n, f1 + f2) of (Fib(n-1,f1), Fib(n-2,f2))
-
-// Proved-correct fibonacci implementation
-// [A] B is an existential type: "there exists A such that B"
-// (proof | value)
-fun fib {n:nat} .<n>. (n: int n): [f:int] (Fib(n,f) | int f) =
- if n = 0 then (FibZero | 0) else
- if n = 1 then (FibOne | 1) else
- let
- val (proof1 | val1) = fib (n-1)
- val (proof2 | val2) = fib (n-2)
- // the existential type is inferred
- in (FibInd(proof1, proof2) | val1 + val2) end
-
-// Faster proved-correct fibonacci implementation
-fn fib_tail {n:nat} (n: int n): [f:int] (Fib(n,f) | int f) =
- let
- fun loop {i:int | i < n} {f1, f2: int} .<n - i>.
- (p1: Fib(i,f1), p2: Fib(i+1,f2)
- | i: int i, f1: int f1, f2: int f2, n: int n
- ): [f:int] (Fib(n,f) | int f) =
- if i = n - 1
- then (p2 | f2)
- else loop (p2, FibInd(p2,p1) | i+1, f2, f1+f2, n)
- in if n = 0 then (FibZero | 0) else loop (FibZero, FibOne | 0, 0, 1, n) end
-
-// Proof-level lists of ints, of type 'sort'
-datasort IntList = ILNil of ()
- | ILCons of (int, IntList)
-
-// ILAppend(x,y,z) iff x ++ y = z
-dataprop ILAppend(IntList, IntList, IntList) =
- | {y:IntList} AppendNil(ILNil, y, y)
- | {a:int} {x,y,z: IntList}
- AppendCons(ILCons(a,x), y, ILCons(a,z)) of ILAppend(x,y,z)
-
-// prfuns/prfns are compile-time functions acting on proofs
-
-// metatheorem: append is total
-prfun append_total {x,y: IntList} .<x>. (): [z:IntList] ILAppend(x,y,z)
- = scase x of // scase lets you inspect static arguments (only in prfuns)
- | ILNil() => AppendNil
- | ILCons(a,rest) => AppendCons(append_total())
-
-
-/*************** Part 4: views ****************/
-
-// views are like props, but linear; ie they must be consumed exactly once
-// prop is a subtype of view
-
-// 'type @ address' is the most basic view
-
-fn {a:t@ype} read_ptr {l:addr} (pf: a@l | p: ptr l): (a@l | a) =
- let
- // !p searches for usable proofs that say something is at that address
- val x = !p
- in (pf | x) end
-
-// oops, tried to dereference a potentially invalid pointer
-// fn {a:t@ype} bad {l:addr} (p: ptr l): a = !p // doesn't compile
-
-// oops, dropped the proof (leaked the memory)
-// fn {a:t@ype} bad {l:addr} (pf: a@l | p: ptr l): a = !p // doesn't compile
-
-fn inc_at_ptr {l:addr} (pf: int@l | p: ptr l): (int@l | void) =
- let
- // !p := value writes value to the location at p
- // like !p, it implicitly searches for usable proofs that are in scope
- val () = !p := !p + 1
- in (pf | ()) end
-
-// threading proofs through gets annoying
-fn inc_three_times {l:addr} (pf: int@l | p: ptr l): (int@l | void) =
- let
- val (pf2 | ()) = inc_at_ptr (pf | p)
- val (pf3 | ()) = inc_at_ptr (pf2 | p)
- val (pf4 | ()) = inc_at_ptr (pf3 | p)
- in (pf4 | ()) end
-
-// so there's special syntactic sugar for when you don't consume a proof
-fn dec_at_ptr {l:addr} (pf: !int@l | p: ptr l): void =
- !p := !p - 1 // ^ note the exclamation point
-
-fn dec_three_times {l:addr} (pf: !int@l | p: ptr l): void =
- let
- val () = dec_at_ptr (pf | p)
- val () = dec_at_ptr (pf | p)
- val () = dec_at_ptr (pf | p)
- in () end
-
-// dataview is like dataprop, but linear
-// A proof that either the address is null, or there is a value there
-dataview MaybeNull(a:t@ype, addr) =
- | NullPtr(a, null)
- | {l:addr | l > null} NonNullPtr(a, l) of (a @ l)
-
-fn maybe_inc {l:addr} (pf: !MaybeNull(int, l) | p: ptr l): void =
- if ptr1_is_null p
- then ()
- else let
- // Deconstruct the proof to access the proof of a @ l
- prval NonNullPtr(value_exists) = pf
- val () = !p := !p + 1
- // Reconstruct it again for the caller
- prval () = pf := NonNullPtr(value_exists)
- in () end
-
-// array_v(a,l,n) represents and array of n a's at location l
-// this gets compiled into an efficient for loop, since all proofs are erased
-fn sum_array {l:addr}{n:nat} (pf: !array_v(int,l,n) | p: ptr l, n: int n): int =
- let
- fun loop {l:addr}{n:nat} .<n>. (
- pf: !array_v(int,l,n)
- | ptr: ptr l,
- length: int n,
- acc: int
- ): int = if length = 0
- then acc
- else let
- prval (head, rest) = array_v_uncons(pf)
- val result = loop(rest | ptr_add<int>(ptr, 1), length - 1, acc + !ptr)
- prval () = pf := array_v_cons(head, rest)
- in result end
- in loop (pf | p, n, 0) end
-
-// 'var' is used to create stack-allocated (lvalue) variables
-val seven: int = let
- var res: int = 3
- // they can be modified
- val () = res := res + 1
- // addr@ res is a pointer to it, and view@ res is the associated proof
- val (pf | ()) = inc_three_times(view@ res | addr@ res)
- // need to give back the view before the variable goes out of scope
- prval () = view@ res := pf
- in res end
-
-// References let you pass lvalues, like in C++
-fn square (x: &int): void =
- x := x * x // they can be modified
-
-val sixteen: int = let
- var res: int = 4
- val () = square res
- in res end
-
-fn inc_at_ref (x: &int): void =
- let
- // like vars, references have views and addresses
- val (pf | ()) = inc_at_ptr(view@ x | addr@ x)
- prval () = view@ x := pf
- in () end
-
-// Like ! for views, & references are only legal as argument types
-// fn bad (x: &int): &int = x // doesn't compile
-
-// this takes a proof int n @ l, but returns a proof int (n+1) @ l
-// since they're different types, we can't use !int @ l like before
-fn refined_inc_at_ptr {n:int}{l:addr} (
- pf: int n @ l | p: ptr l
-): (int (n+1) @ l | void) =
- let
- val () = !p := !p + 1
- in (pf | ()) end
-
-// special syntactic sugar for returning a proof at a different type
-fn refined_dec_at_ptr {n:int}{l:addr} (
- pf: !int n @ l >> int (n-1) @ l | p: ptr l
-): void =
- !p := !p - 1
-
-// legal but very bad code
-prfn swap_proofs {v1,v2:view} (a: !v1 >> v2, b: !v2 >> v1): void =
- let
- prval tmp = a
- prval () = a := b
- prval () = b := tmp
- in () end
-
-// also works with references
-fn refined_square {n:int} (x: &int n >> int (n*n)): void =
- x := x * x
-
-fn replace {a,b:vtype} (dest: &a >> b, src: b): a =
- let
- val old = dest
- val () = dest := src
- in old end
-
-// values can be uninitialized
-fn {a:vt@ype} write (place: &a? >> a, value: a): void =
- place := value
-
-val forty: int = let
- var res: int
- val () = write (res, 40)
- in res end
-
-// viewtype: a view and a type
-viewtypedef MaybeNullPtr(a:t@ype) = [l:addr] (MaybeNull(a, l) | ptr l)
-// MaybeNullPtr has type 'viewtype' (aka 'vtype')
-// type is a subtype of vtype and t@ype is a subtype of vt@ype
-
-// The most general identity function:
-fn {a:vt@ype} id7 (x: a) = x
-
-// since they contain views, viewtypes must be used linearly
-// fn {a:vt@ype} duplicate (x: a) = (x, x) // doesn't compile
-// fn {a:vt@ype} ignore (x: a) = () // doesn't compile
-
-// arrayptr(a,l,n) is a convenient built-in viewtype
-fn easier_sum_array {l:addr}{n:nat} (p: !arrayptr(int,l,n), n: int n): int =
- let
- fun loop {i:nat | i <= n} (
- p: !arrayptr(int,l,n), n: int n, i: int i, acc: int
- ): int =
- if i = n
- then acc
- else loop(p, n, i+1, acc + p[i])
- in loop(p, n, 0, 0) end
-
-
-/*************** Part 5: dataviewtypes ****************/
-
-// a dataviewtype is a heap-allocated non-shared inductive type
-
-// in the stdlib:
-// dataviewtype list_vt(a:vt@ype, int) =
-// | list_vt_nil(a, 0)
-// | {n:nat} list_vt_cons(a, n+1) of (a, list_vt(a, n))
-
-fn {a:vt@ype} length {n:int} (l: !list_vt(a, n)): int n =
- let // ^ since we're not consuming it
- fun loop {acc:int} (l: !list_vt(a, n-acc), acc: int acc): int n =
- case l of
- | list_vt_nil() => acc
- | list_vt_cons(head, tail) => loop(tail, acc + 1)
- in loop (l, 0) end
-
-// vvvvv not vt@ype, because you can't easily get rid of a vt@ype
-fun {a:t@ype} destroy_list {n:nat} (l: list_vt(a,n)): void =
- case l of
- // ~ pattern match consumes and frees that node
- | ~list_vt_nil() => ()
- | ~list_vt_cons(_, tail) => destroy_list tail
-
-// unlike a datatype, a dataviewtype can be modified:
-fun {a:vt@ype} push_back {n:nat} (
- x: a,
- l: &list_vt(a,n) >> list_vt(a,n+1)
-): void =
- case l of
- | ~list_vt_nil() => l := list_vt_cons(x, list_vt_nil)
- // @ pattern match disassembles/"unfolds" the datavtype's view, so you can
- // modify its components
- | @list_vt_cons(head, tail) => let
- val () = push_back (x, tail)
- // reassemble it with fold@
- prval () = fold@ l
- in () end
-
-fun {a:vt@ype} pop_last {n:pos} (l: &list_vt(a,n) >> list_vt(a,n-1)): a =
- let
- val+ @list_vt_cons(head, tail) = l
- in case tail of
- | list_vt_cons _ => let
- val res = pop_last tail
- prval () = fold@ l
- in res end
- | ~list_vt_nil() => let
- val head = head
- // Deallocate empty datavtype nodes with free@
- val () = free@{..}{0} l
- val () = l := list_vt_nil()
- in head end
- /** Equivalently:
- * | ~list_vt_nil() => let
- * prval () = fold@ l
- * val+ ~list_vt_cons(head, ~list_vt_nil()) = l
- * val () = l := list_vt_nil()
- * in head end
- */
- end
-
-// "holes" (ie uninitialized memory) can be created with _ on the RHS
-// This function uses destination-passing-style to copy the list in a single
-// tail-recursive pass.
-fn {a:t@ype} copy_list {n:nat} (l: !list_vt(a, n)): list_vt(a, n) =
- let
- var res: ptr
- fun loop {k:nat} (l: !list_vt(a, k), hole: &ptr? >> list_vt(a, k)): void =
- case l of
- | list_vt_nil() => hole := list_vt_nil
- | list_vt_cons(first, rest) => let
- val () = hole := list_vt_cons{..}{k-1}(first, _)
- // ^ on RHS: a hole
- val+list_vt_cons(_, new_hole) = hole
- // ^ on LHS: wildcard pattern (not a hole)
- val () = loop (rest, new_hole)
- prval () = fold@ hole
- in () end
- val () = loop (l, res)
- in res end
-
-// Reverse a linked-list *in place* -- no allocations or frees
-fn {a:vt@ype} in_place_reverse {n:nat} (l: list_vt(a, n)): list_vt(a, n) =
- let
- fun loop {k:nat} (l: list_vt(a, n-k), acc: list_vt(a, k)): list_vt(a, n) =
- case l of
- | ~list_vt_nil() => acc
- | @list_vt_cons(x, tail) => let
- val rest = replace(tail, acc)
- // the node 'l' is now part of acc instead of the original list
- prval () = fold@ l
- in loop (rest, l) end
- in loop (l, list_vt_nil) end
-
-
-/*************** Part 6: miscellaneous extras ****************/
-
-// a record
-// Point has type 't@ype'
-typedef Point = @{ x= int, y= int }
-val origin: Point = @{ x= 0, y= 0 }
-
-// tuples and records are normally unboxed, but there are boxed variants
-// BoxedPoint has type 'type'
-typedef BoxedPoint = '{ x= int, y= int }
-val boxed_pair: '(int,int) = '(5, 3)
-
-// When passing a pair as the single argument to a function, it needs to be
-// written @(a,b) to avoid ambiguity with multi-argument functions
-val six_plus_seven = let
- fun sum_of_pair (pair: (int,int)) = pair.0 + pair.1
- in sum_of_pair @(6, 7) end
-
-// When a constructor has no associated data, such as None(), the parentheses
-// are optional in expressions. However, they are mandatory in patterns
-fn inc_option (opt: Option int) =
- case opt of
- | Some(x) => Some(x+1)
- | None() => None
-
-// ATS has a simple FFI, since it compiles to C and (mostly) uses the C ABI
-%{
-// Inline C code
-int scanf_wrapper(void *format, void *value) {
- return scanf((char *) format, (int *) value);
-}
-%}
-// If you wanted to, you could define a custom dataviewtype more accurately
-// describing the result of scanf
-extern fn scanf (format: string, value: &int): int = "scanf_wrapper"
-
-fn get_input_number (): Option int =
- let
- var x: int = 0
- in
- if scanf("%d\n", x) = 1
- then Some(x)
- else None
- end
-
-// extern is also used for separate declarations and definitions
-extern fn say_hi (): void
-// later on, or in another file:
-implement say_hi () = print "hi\n"
-
-// if you implement main0, it will run as the main function
-// implmnt is an alias for implement
-implmnt main0 () = ()
-
-// as well as for axioms:
-extern praxi view_id {a:view} (x: a): a
-// you don't need to actually implement the axioms, but you could
-primplmnt view_id x = x
-// primplmnt is an alias for primplement
-
-// Some standard aliases are:
-// List0(a) = [n:nat] list(a,n) and List0_vt(a) = [n:nat] list_vt(a,n)
-// t0p = t@ype and vt0p = vt@ype
-fun {a:t0p} append (xs: List0 a, ys: List0 a): List0 a =
- case xs of
- | list_nil() => ys
- | list_cons(x, xs) => list_cons(x, append(xs, ys))
-
-// there are many ways of doing things after one another
-val let_in_example = let
- val () = print "thing one\n"
- val () = print "thing two\n"
- in () end
-
-val parens_example = (print "thing one\n"; print "thing two\n")
-
-val begin_end_example = begin
- print "thing one\n";
- print "thing two\n"; // optional trailing semicolon
- end
-
-// and many ways to use local variables
-fun times_four_let x =
- let
- fun times_two (x: int) = x * 2
- in times_two (times_two x) end
-
-local
- fun times_two (x: int) = x * 2
-in
- fun times_four_local x = times_two (times_two x)
-end
-
-fun times_four_where x = times_two (times_two x)
- where {
- fun times_two (x: int) = x * 2
- }
-
-//// The last kind of comment in ATS is an end-of-file comment.
-
-Anything between the four slashes and the end of the file is ignored.
-
-Have fun with ATS!
-```
-
-## Learn more
-
-This isn't all there is to ATS -- notably, some core features like closures and
-the effect system are left out, as well as other less type-y stuff like modules
-and the build system. If you'd like to write these sections yourself,
-contributions would be welcome!
-
-To learn more about ATS, visit the [ATS website](http://www.ats-lang.org/), in
-particular the [documentation page](http://www.ats-lang.org/Documents.html).
-