summaryrefslogtreecommitdiffhomepage
path: root/c.html.markdown
diff options
context:
space:
mode:
authorwikibook <dylee@wikibook.kr>2013-08-20 10:46:10 +0900
committerwikibook <dylee@wikibook.kr>2013-08-20 10:46:10 +0900
commit276d73bdd3b1e43c471a86191dcda87c7e3c5241 (patch)
treee13b9640f2a54cb4378eef1c6ef70c08ae8b2175 /c.html.markdown
parent4e7f0ce330914cded8be937b8e5f1700350623d2 (diff)
parentf33dea8b83bf64ecde36337a5e02cae77f5210de (diff)
fix typo in Java tutorial
Diffstat (limited to 'c.html.markdown')
-rw-r--r--c.html.markdown651
1 files changed, 379 insertions, 272 deletions
diff --git a/c.html.markdown b/c.html.markdown
index d243b19d..24a96463 100644
--- a/c.html.markdown
+++ b/c.html.markdown
@@ -1,23 +1,23 @@
---
-name: c
-category: language
language: c
filename: learnc.c
contributors:
- ["Adam Bard", "http://adambard.com/"]
+ - ["Árpád Goretity", "http://twitter.com/H2CO3_iOS"]
+
---
-Ah, C. Still the language of modern high-performance computing.
+Ah, C. Still **the** language of modern high-performance computing.
C is the lowest-level language most programmers will ever use, but
it more than makes up for it with raw speed. Just be aware of its manual
memory management and C will take you as far as you need to go.
```c
-// Single-line comments start with //
+// Single-line comments start with // - only available in C99 and later.
/*
-Multi-line comments look like this.
+Multi-line comments look like this. They work in C89 as well.
*/
// Import headers with #include
@@ -25,6 +25,10 @@ Multi-line comments look like this.
#include <stdio.h>
#include <string.h>
+// (File names between <angle brackets> are headers from the C standard library.)
+// For your own headers, use double quotes instead of angle brackets:
+#include "my_header.h"
+
// Declare function signatures in advance in a .h file, or at the top of
// your .c file.
void function_1();
@@ -33,261 +37,337 @@ void function_2();
// Your program's entry point is a function called
// main with an integer return type.
int main() {
+ // print output using printf, for "print formatted"
+ // %d is an integer, \n is a newline
+ printf("%d\n", 0); // => Prints 0
+ // All statements must end with a semicolon
+
+ ///////////////////////////////////////
+ // Types
+ ///////////////////////////////////////
+
+ // ints are usually 4 bytes
+ int x_int = 0;
+
+ // shorts are usually 2 bytes
+ short x_short = 0;
-// print output using printf, for "print formatted"
-// %d is an integer, \n is a newline
-printf("%d\n", 0); // => Prints 0
-// All statements must end with a semicolon
-
-///////////////////////////////////////
-// Types
-///////////////////////////////////////
-
-// You have to declare variables before using them. A variable declaration
-// requires you to specify its type; a variable's type determines its size
-// in bytes.
-
-// ints are usually 4 bytes
-int x_int = 0;
-
-// shorts are usually 2 bytes
-short x_short = 0;
-
-// chars are guaranteed to be 1 byte
-char x_char = 0;
-char y_char = 'y'; // Char literals are quoted with ''
-
-// longs are often 4 to 8 bytes; long longs are guaranteed to be at least
-// 64 bits
-long x_long = 0;
-long long x_long_long = 0;
-
-// floats are usually 32-bit floating point numbers
-float x_float = 0.0;
-
-// doubles are usually 64-bit floating-point numbers
-double x_double = 0.0;
-
-// Integral types may be unsigned. This means they can't be negative, but
-// the maximum value of an unsigned variable is greater than the maximum
-// signed value of the same size.
-unsigned char ux_char;
-unsigned short ux_short;
-unsigned int ux_int;
-unsigned long long ux_long_long;
-
-// Other than char, which is always 1 byte, these types vary in size depending
-// on your machine. sizeof(T) gives you the size of a variable with type T in
-// bytes so you can express the size of these types in a portable way.
-// For example,
-printf("%lu\n", sizeof(int)); // => 4 (on machines with 4-byte words)
-
-// Arrays must be initialized with a concrete size.
-char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes
-int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes
- // (assuming 4-byte words)
-
-
-// You can initialize an array to 0 thusly:
-char my_array[20] = {0};
-
-// Indexing an array is like other languages -- or,
-// rather, other languages are like C
-my_array[0]; // => 0
-
-// Arrays are mutable; it's just memory!
-my_array[1] = 2;
-printf("%d\n", my_array[1]); // => 2
-
-// Strings are just arrays of chars terminated by a NUL (0x00) byte,
-// represented in strings as the special character '\0'.
-// (We don't have to include the NUL byte in string literals; the compiler
-// inserts it at the end of the array for us.)
-char a_string[20] = "This is a string";
-printf("%s\n", a_string); // %s formats a string
-
-/*
-You may have noticed that a_string is only 16 chars long.
-Char #17 is the NUL byte.
-Chars #18, 19 and 20 have undefined values.
-*/
-
-printf("%d\n", a_string[16]); // => 0
-
-///////////////////////////////////////
-// Operators
-///////////////////////////////////////
-
-int i1 = 1, i2 = 2; // Shorthand for multiple declaration
-float f1 = 1.0, f2 = 2.0;
-
-// Arithmetic is straightforward
-i1 + i2; // => 3
-i2 - i1; // => 1
-i2 * i1; // => 2
-i1 / i2; // => 0 (0.5, but truncated towards 0)
-
-f1 / f2; // => 0.5, plus or minus epsilon
-
-// Modulo is there as well
-11 % 3; // => 2
-
-// Comparison operators are probably familiar, but
-// there is no boolean type in c. We use ints instead.
-// 0 is false, anything else is true. (The comparison
-// operators always return 0 or 1.)
-3 == 2; // => 0 (false)
-3 != 2; // => 1 (true)
-3 > 2; // => 1
-3 < 2; // => 0
-2 <= 2; // => 1
-2 >= 2; // => 1
-
-// Logic works on ints
-!3; // => 0 (Logical not)
-!0; // => 1
-1 && 1; // => 1 (Logical and)
-0 && 1; // => 0
-0 || 1; // => 1 (Logical or)
-0 || 0; // => 0
-
-// Bitwise operators!
-~0x0F; // => 0xF0 (bitwise negation)
-0x0F & 0xF0; // => 0x00 (bitwise AND)
-0x0F | 0xF0; // => 0xFF (bitwise OR)
-0x04 ^ 0x0F; // => 0x0B (bitwise XOR)
-0x01 << 1; // => 0x02 (bitwise left shift (by 1))
-0x02 >> 1; // => 0x01 (bitwise right shift (by 1))
-
-///////////////////////////////////////
-// Control Structures
-///////////////////////////////////////
-
-if (0) {
- printf("I am never run\n");
-} else if (0) {
- printf("I am also never run\n");
-} else {
- printf("I print\n");
-}
-
-// While loops exist
-int ii = 0;
-while (ii < 10) {
- printf("%d, ", ii++); // ii++ increments ii in-place, after using its value.
-} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
-
-printf("\n");
-
-int kk = 0;
-do {
- printf("%d, ", kk);
-} while (++kk < 10); // ++kk increments kk in-place, before using its value
-// => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
-
-printf("\n");
-
-// For loops too
-int jj;
-for (jj=0; jj < 10; jj++) {
- printf("%d, ", jj);
-} // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
-
-printf("\n");
-
-///////////////////////////////////////
-// Typecasting
-///////////////////////////////////////
-
-// Every value in C has a type, but you can cast one value into another type
-// if you want.
-
-int x_hex = 0x01; // You can assign vars with hex literals
-
-// Casting between types will attempt to preserve their numeric values
-printf("%d\n", x_hex); // => Prints 1
-printf("%d\n", (short) x_hex); // => Prints 1
-printf("%d\n", (char) x_hex); // => Prints 1
-
-// Types will overflow without warning
-printf("%d\n", (char) 257); // => 1 (Max char = 255)
-
-// Integral types can be cast to floating-point types, and vice-versa.
-printf("%f\n", (float)100); // %f formats a float
-printf("%lf\n", (double)100); // %lf formats a double
-printf("%d\n", (char)100.0);
-
-///////////////////////////////////////
-// Pointers
-///////////////////////////////////////
+ // chars are guaranteed to be 1 byte
+ char x_char = 0;
+ char y_char = 'y'; // Char literals are quoted with ''
+
+ // longs are often 4 to 8 bytes; long longs are guaranteed to be at least
+ // 64 bits
+ long x_long = 0;
+ long long x_long_long = 0;
+
+ // floats are usually 32-bit floating point numbers
+ float x_float = 0.0;
+
+ // doubles are usually 64-bit floating-point numbers
+ double x_double = 0.0;
+
+ // Integral types may be unsigned.
+ unsigned short ux_short;
+ unsigned int ux_int;
+ unsigned long long ux_long_long;
+
+ // sizeof(T) gives you the size of a variable with type T in bytes
+ // sizeof(obj) yields the size of the expression (variable, literal, etc.).
+ printf("%zu\n", sizeof(int)); // => 4 (on most machines with 4-byte words)
+
+
+ // If the argument of the `sizeof` operator an expression, then its argument
+ // is not evaluated (except VLAs (see below)).
+ // The value it yields in this case is a compile-time constant.
+ int a = 1;
+ size_t size = sizeof(a++); // a++ is not evaluated
+ printf("sizeof(a++) = %zu where a = %d\n", size, a);
+ // prints "sizeof(a++) = 4 where a = 1" (on a 32-bit architecture)
+
+ // Arrays must be initialized with a concrete size.
+ char my_char_array[20]; // This array occupies 1 * 20 = 20 bytes
+ int my_int_array[20]; // This array occupies 4 * 20 = 80 bytes
+ // (assuming 4-byte words)
+
+
+ // You can initialize an array to 0 thusly:
+ char my_array[20] = {0};
+
+ // Indexing an array is like other languages -- or,
+ // rather, other languages are like C
+ my_array[0]; // => 0
+
+ // Arrays are mutable; it's just memory!
+ my_array[1] = 2;
+ printf("%d\n", my_array[1]); // => 2
+
+ // In C99 (and as an optional feature in C11), variable-length arrays (VLAs)
+ // can be declared as well. The size of such an array need not be a compile
+ // time constant:
+ printf("Enter the array size: "); // ask the user for an array size
+ char buf[0x100];
+ fgets(buf, sizeof buf, stdin);
+
+ // strtoul parses a string to an unsigned integer
+ size_t size = strtoul(buf, NULL, 10);
+ int var_length_array[size]; // declare the VLA
+ printf("sizeof array = %zu\n", sizeof var_length_array);
+
+ // A possible outcome of this program may be:
+ // > Enter the array size: 10
+ // > sizeof array = 40
+
+ // Strings are just arrays of chars terminated by a NUL (0x00) byte,
+ // represented in strings as the special character '\0'.
+ // (We don't have to include the NUL byte in string literals; the compiler
+ // inserts it at the end of the array for us.)
+ char a_string[20] = "This is a string";
+ printf("%s\n", a_string); // %s formats a string
+
+ printf("%d\n", a_string[16]); // => 0
+ // i.e., byte #17 is 0 (as are 18, 19, and 20)
+
+ // If we have characters between single quotes, that's a character literal.
+ // It's of type `int`, and *not* `char` (for historical reasons).
+ int cha = 'a'; // fine
+ char chb = 'a'; // fine too (implicit conversion from int to char)
+
+ ///////////////////////////////////////
+ // Operators
+ ///////////////////////////////////////
+
+ int i1 = 1, i2 = 2; // Shorthand for multiple declaration
+ float f1 = 1.0, f2 = 2.0;
+
+ // Arithmetic is straightforward
+ i1 + i2; // => 3
+ i2 - i1; // => 1
+ i2 * i1; // => 2
+ i1 / i2; // => 0 (0.5, but truncated towards 0)
+
+ f1 / f2; // => 0.5, plus or minus epsilon
+ // Floating-point numbers and calculations are not exact
+
+ // Modulo is there as well
+ 11 % 3; // => 2
+
+ // Comparison operators are probably familiar, but
+ // there is no boolean type in c. We use ints instead.
+ // (Or _Bool or bool in C99.)
+ // 0 is false, anything else is true. (The comparison
+ // operators always yield 0 or 1.)
+ 3 == 2; // => 0 (false)
+ 3 != 2; // => 1 (true)
+ 3 > 2; // => 1
+ 3 < 2; // => 0
+ 2 <= 2; // => 1
+ 2 >= 2; // => 1
+
+ // C is not Python - comparisons don't chain.
+ int a = 1;
+ // WRONG:
+ int between_0_and_2 = 0 < a < 2;
+ // Correct:
+ int between_0_and_2 = 0 < a && a < 2;
+
+ // Logic works on ints
+ !3; // => 0 (Logical not)
+ !0; // => 1
+ 1 && 1; // => 1 (Logical and)
+ 0 && 1; // => 0
+ 0 || 1; // => 1 (Logical or)
+ 0 || 0; // => 0
+
+ // Bitwise operators!
+ ~0x0F; // => 0xF0 (bitwise negation, "1's complement")
+ 0x0F & 0xF0; // => 0x00 (bitwise AND)
+ 0x0F | 0xF0; // => 0xFF (bitwise OR)
+ 0x04 ^ 0x0F; // => 0x0B (bitwise XOR)
+ 0x01 << 1; // => 0x02 (bitwise left shift (by 1))
+ 0x02 >> 1; // => 0x01 (bitwise right shift (by 1))
+
+ // Be careful when shifting signed integers - the following are undefined:
+ // - shifting into the sign bit of a signed integer (int a = 1 << 32)
+ // - left-shifting a negative number (int a = -1 << 2)
+ // - shifting by an offset which is >= the width of the type of the LHS:
+ // int a = 1 << 32; // UB if int is 32 bits wide
+
+ ///////////////////////////////////////
+ // Control Structures
+ ///////////////////////////////////////
+
+ if (0) {
+ printf("I am never run\n");
+ } else if (0) {
+ printf("I am also never run\n");
+ } else {
+ printf("I print\n");
+ }
-// A pointer is a variable declared to store a memory address. Its declaration will
-// also tell you the type of data it points to. You can retrieve the memory address
-// of your variables, then mess with them.
-
-int x = 0;
-printf("%p\n", &x); // Use & to retrieve the address of a variable
-// (%p formats a pointer)
-// => Prints some address in memory;
-
-// Pointer types end with * in their declaration
-int* px; // px is a pointer to an int
-px = &x; // Stores the address of x in px
-printf("%p\n", px); // => Prints some address in memory
-
-// To retreive the value at the address a pointer is pointing to,
-// put * in front to de-reference it.
-printf("%d\n", *px); // => Prints 0, the value of x, which is what px is pointing to the address of
-
-// You can also change the value the pointer is pointing to.
-// We'll have to wrap the de-reference in parenthesis because
-// ++ has a higher precedence than *.
-(*px)++; // Increment the value px is pointing to by 1
-printf("%d\n", *px); // => Prints 1
-printf("%d\n", x); // => Prints 1
-
-int x_array[20]; // Arrays are a good way to allocate a contiguous block of memory
-int xx;
-for (xx=0; xx<20; xx++) {
- x_array[xx] = 20 - xx;
-} // Initialize x_array to 20, 19, 18,... 2, 1
-
-// Declare a pointer of type int and initialize it to point to x_array
-int* x_ptr = x_array;
-// x_ptr now points to the first element in the array (the integer 20).
-// This works because arrays are actually just pointers to their first element.
-
-// Arrays are pointers to their first element
-printf("%d\n", *(x_ptr)); // => Prints 20
-printf("%d\n", x_array[0]); // => Prints 20
-
-// Pointers are incremented and decremented based on their type
-printf("%d\n", *(x_ptr + 1)); // => Prints 19
-printf("%d\n", x_array[1]); // => Prints 19
-
-// You can also dynamically allocate contiguous blocks of memory with the
-// standard library function malloc, which takes one integer argument
-// representing the number of bytes to allocate from the heap.
-int* my_ptr = (int*) malloc(sizeof(int) * 20);
-for (xx=0; xx<20; xx++) {
- *(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx would also work here
-} // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints)
-
-// Dereferencing memory that you haven't allocated gives
-// unpredictable results
-printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what?
-
-// When you're done with a malloc'd block of memory, you need to free it,
-// or else no one else can use it until your program terminates
-free(my_ptr);
-
-// Strings can be char arrays, but are usually represented as char
-// pointers:
-char* my_str = "This is my very own string";
-
-printf("%c\n", *my_str); // => 'T'
-
-function_1();
+ // While loops exist
+ int ii = 0;
+ while (ii < 10) {
+ printf("%d, ", ii++); // ii++ increments ii in-place
+ // after yielding its value ("postincrement").
+ } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
+
+ printf("\n");
+
+ int kk = 0;
+ do {
+ printf("%d, ", kk);
+ } while (++kk < 10); // ++kk increments kk in-place, and yields
+ // the already incremented value ("preincrement")
+ // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
+
+ printf("\n");
+
+ // For loops too
+ int jj;
+ for (jj=0; jj < 10; jj++) {
+ printf("%d, ", jj);
+ } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
+
+ printf("\n");
+
+ // branching with multiple choices: switch()
+ switch (some_integral_expression) {
+ case 0: // labels need to be integral *constant* epxressions
+ do_stuff();
+ break; // if you don't break, control flow falls over labels
+ case 1:
+ do_something_else();
+ break;
+ default:
+ // if `some_integral_expression` didn't match any of the labels
+ fputs("error!\n", stderr);
+ exit(-1);
+ break;
+ }
+
+
+ ///////////////////////////////////////
+ // Typecasting
+ ///////////////////////////////////////
+
+ // Every value in C has a type, but you can cast one value into another type
+ // if you want (with some constraints).
+
+ int x_hex = 0x01; // You can assign vars with hex literals
+
+ // Casting between types will attempt to preserve their numeric values
+ printf("%d\n", x_hex); // => Prints 1
+ printf("%d\n", (short) x_hex); // => Prints 1
+ printf("%d\n", (char) x_hex); // => Prints 1
+
+ // Types will overflow without warning
+ printf("%d\n", (unsigned char) 257); // => 1 (Max char = 255 if char is 8 bits long)
+
+ // For determining the max value of a `char`, a `signed char` and an `unisigned char`,
+ // respectively, use the CHAR_MAX, SCHAR_MAX and UCHAR_MAX macros from <limits.h>
+
+ // Integral types can be cast to floating-point types, and vice-versa.
+ printf("%f\n", (float)100); // %f formats a float
+ printf("%lf\n", (double)100); // %lf formats a double
+ printf("%d\n", (char)100.0);
+
+ ///////////////////////////////////////
+ // Pointers
+ ///////////////////////////////////////
+
+ // A pointer is a variable declared to store a memory address. Its declaration will
+ // also tell you the type of data it points to. You can retrieve the memory address
+ // of your variables, then mess with them.
+
+ int x = 0;
+ printf("%p\n", (void *)&x); // Use & to retrieve the address of a variable
+ // (%p formats an object pointer of type void *)
+ // => Prints some address in memory;
+
+
+ // Pointers start with * in their declaration
+ int *px, not_a_pointer; // px is a pointer to an int
+ px = &x; // Stores the address of x in px
+ printf("%p\n", (void *)px); // => Prints some address in memory
+ printf("%zu, %zu\n", sizeof(px), sizeof(not_a_pointer));
+ // => Prints "8, 4" on a typical 64-bit system
+
+ // To retreive the value at the address a pointer is pointing to,
+ // put * in front to de-reference it.
+ // Note: yes, it may be confusing that '*' is used for _both_ declaring a
+ // pointer and dereferencing it.
+ printf("%d\n", *px); // => Prints 0, the value of x
+
+ // You can also change the value the pointer is pointing to.
+ // We'll have to wrap the de-reference in parenthesis because
+ // ++ has a higher precedence than *.
+ (*px)++; // Increment the value px is pointing to by 1
+ printf("%d\n", *px); // => Prints 1
+ printf("%d\n", x); // => Prints 1
+
+ // Arrays are a good way to allocate a contiguous block of memory
+ int x_array[20];
+ int xx;
+ for (xx = 0; xx < 20; xx++) {
+ x_array[xx] = 20 - xx;
+ } // Initialize x_array to 20, 19, 18,... 2, 1
+
+ // Declare a pointer of type int and initialize it to point to x_array
+ int* x_ptr = x_array;
+ // x_ptr now points to the first element in the array (the integer 20).
+ // This works because arrays often decay into pointers to their first element.
+ // For example, when an array is passed to a function or is assigned to a pointer,
+ // it decays into (implicitly converted to) a pointer.
+ // Exceptions: when the array is the argument of the `&` (address-od) operator:
+ int arr[10];
+ int (*ptr_to_arr)[10] = &arr; // &arr is NOT of type `int *`!
+ // It's of type "pointer to array" (of ten `int`s).
+ // or when the array is a string literal used for initializing a char array:
+ char arr[] = "foobarbazquirk";
+ // or when it's the argument of the `sizeof` or `alignof` operator:
+ int arr[10];
+ int *ptr = arr; // equivalent with int *ptr = &arr[0];
+ printf("%zu %zu\n", sizeof arr, sizeof ptr); // probably prints "40, 4" or "40, 8"
+
+
+ // Pointers are incremented and decremented based on their type
+ // (this is called pointer arithmetic)
+ printf("%d\n", *(x_ptr + 1)); // => Prints 19
+ printf("%d\n", x_array[1]); // => Prints 19
+
+ // You can also dynamically allocate contiguous blocks of memory with the
+ // standard library function malloc, which takes one argument of type size_t
+ // representing the number of bytes to allocate (usually from the heap, although this
+ // may not be true on e. g. embedded systems - the C standard says nothing about it).
+ int *my_ptr = malloc(sizeof(*my_ptr) * 20);
+ for (xx = 0; xx < 20; xx++) {
+ *(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx
+ } // Initialize memory to 20, 19, 18, 17... 2, 1 (as ints)
+
+ // Dereferencing memory that you haven't allocated gives
+ // "unpredictable results" - the program is said to invoke "undefined behavior"
+ printf("%d\n", *(my_ptr + 21)); // => Prints who-knows-what? It may even crash.
+
+ // When you're done with a malloc'd block of memory, you need to free it,
+ // or else no one else can use it until your program terminates
+ // (this is called a "memory leak"):
+ free(my_ptr);
+
+ // Strings are arrays of char, but they are usually represented as a
+ // pointer-to-char (which is a pointer to the first element of the array).
+ // It's good practice to use `const char *' when referring to a string literal,
+ // since string literals shall not be modified (i. e. "foo"[0] = 'a' is ILLEGAL.)
+ const char *my_str = "This is my very own string literal";
+ printf("%c\n", *my_str); // => 'T'
+
+ // This is not the case if the string is an array
+ // (potentially initialized with a string literal)
+ // that resides in writable memory, as in:
+ char foo[] = "foo";
+ foo[0] = 'a'; // this is legal, foo now contains "aoo"
+
+ function_1();
} // end main function
///////////////////////////////////////
@@ -297,7 +377,8 @@ function_1();
// Function declaration syntax:
// <return type> <function name>(<args>)
-int add_two_ints(int x1, int x2){
+int add_two_ints(int x1, int x2)
+{
return x1 + x2; // Use return to return a value
}
@@ -309,10 +390,12 @@ Example: in-place string reversal
*/
// A void function returns no value
-void str_reverse(char* str_in){
+void str_reverse(char *str_in)
+{
char tmp;
- int ii=0, len = strlen(str_in); // Strlen is part of the c standard library
- for(ii=0; ii<len/2; ii++){
+ int ii = 0;
+ size_t len = strlen(str_in); // `strlen()` is part of the c standard library
+ for (ii = 0; ii < len / 2; ii++) {
tmp = str_in[ii];
str_in[ii] = str_in[len - ii - 1]; // ii-th char from end
str_in[len - ii - 1] = tmp;
@@ -333,15 +416,20 @@ printf("%s\n", c); // => ".tset a si sihT"
typedef int my_type;
my_type my_type_var = 0;
-// Structs are just collections of data
+// Structs are just collections of data, the members are allocated sequentially,
+// in the order they are written:
struct rectangle {
int width;
int height;
};
+// It's not generally true that
+// sizeof(struct rectangle) == sizeof(int) + sizeof(int)
+// due to potential padding between the structure members (this is for alignment
+// reasons). [1]
-void function_1(){
-
+void function_1()
+{
struct rectangle my_rec;
// Access struct members with .
@@ -349,37 +437,46 @@ void function_1(){
my_rec.height = 20;
// You can declare pointers to structs
- struct rectangle* my_rec_ptr = &my_rec;
+ struct rectangle *my_rec_ptr = &my_rec;
// Use dereferencing to set struct pointer members...
(*my_rec_ptr).width = 30;
- // ... or use the -> shorthand
+ // ... or even better: prefer the -> shorthand for the sake of readability
my_rec_ptr->height = 10; // Same as (*my_rec_ptr).height = 10;
}
// You can apply a typedef to a struct for convenience
typedef struct rectangle rect;
-int area(rect r){
+int area(rect r)
+{
return r.width * r.height;
}
+// if you have large structs, you can pass them "by pointer" to avoid copying
+// the whole struct:
+int area(const rect *r)
+{
+ return r->width * r->height;
+}
+
///////////////////////////////////////
// Function pointers
///////////////////////////////////////
/*
At runtime, functions are located at known memory addresses. Function pointers are
-much likely any other pointer (they just store a memory address), but can be used
+much like any other pointer (they just store a memory address), but can be used
to invoke functions directly, and to pass handlers (or callback functions) around.
However, definition syntax may be initially confusing.
Example: use str_reverse from a pointer
*/
-void str_reverse_through_pointer(char * str_in) {
+void str_reverse_through_pointer(char *str_in) {
// Define a function pointer variable, named f.
void (*f)(char *); // Signature should exactly match the target function.
f = &str_reverse; // Assign the address for the actual function (determined at runtime)
+ // f = str_reverse; would work as well - functions decay into pointers, similar to arrays
(*f)(str_in); // Just calling the function through the pointer
// f(str_in); // That's an alternative but equally valid syntax for calling it.
}
@@ -391,7 +488,7 @@ Function pointers are usually typedef'd for simplicity and readability, as follo
typedef void (*my_fnp_type)(char *);
-// The used when declaring the actual pointer variable:
+// Then used when declaring the actual pointer variable:
// ...
// my_fnp_type f;
@@ -400,7 +497,17 @@ typedef void (*my_fnp_type)(char *);
## Further Reading
Best to find yourself a copy of [K&R, aka "The C Programming Language"](https://en.wikipedia.org/wiki/The_C_Programming_Language)
+It is *the* book about C, written by the creators of C. Be careful, though - it's ancient and it contains some
+inaccuracies (well, ideas that are not considered good anymore) or now-changed practices.
-Another good resource is [Learn C the hard way](http://c.learncodethehardway.org/book/)
+Another good resource is [Learn C the hard way](http://c.learncodethehardway.org/book/).
+
+If you have a question, read the [compl.lang.c Frequently Asked Questions](http://c-faq.com).
+
+It's very important to use proper spacing, indentation and to be consistent with your coding style in general.
+Readable code is better than clever code and fast code. For a good, sane coding style to adopt, see the
+[Linux kernel coding stlye](https://www.kernel.org/doc/Documentation/CodingStyle).
Other than that, Google is your friend.
+
+[1] http://stackoverflow.com/questions/119123/why-isnt-sizeof-for-a-struct-equal-to-the-sum-of-sizeof-of-each-member