diff options
author | Boris Verkhovskiy <boris.verk@gmail.com> | 2024-04-04 04:26:14 -0700 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-04-04 04:26:14 -0700 |
commit | 4d59048f0df8441e5ad2c2c440e8d54b0e9c11b6 (patch) | |
tree | fa2dbdd40da35b3c27f928f1112ea43193a7482e /de-de/elixir-de.html.markdown | |
parent | b38d4437120e700646a45dff68b7c4ff3f7109c0 (diff) | |
parent | 327001f58739489b41f6b1f7bbc8be900847b381 (diff) |
Merge branch 'master' into patch-2
Diffstat (limited to 'de-de/elixir-de.html.markdown')
-rw-r--r-- | de-de/elixir-de.html.markdown | 846 |
1 files changed, 423 insertions, 423 deletions
diff --git a/de-de/elixir-de.html.markdown b/de-de/elixir-de.html.markdown index 254cca51..4acb8e23 100644 --- a/de-de/elixir-de.html.markdown +++ b/de-de/elixir-de.html.markdown @@ -1,423 +1,423 @@ ----
-language: elixir
-contributors:
- - ["Joao Marques", "http://github.com/mrshankly"]
-translators:
- - ["Gregor Große-Bölting", "http://www.ideen-und-soehne.de"]
-filename: learnelixir-de.ex
-lang: de-de
----
-
-Elixir ist eine moderne, funktionale Sprache für die Erlang VM. Sie ist voll
-kompatibel mit Erlang, verfügt aber über eine freundlichere Syntax und bringt
-viele Features mit.
-
-```ruby
-
-# Einzeilige Kommentare werden mit der Raute gesetzt.
-
-# Es gibt keine mehrzeiligen Kommentare;
-# es ist aber problemlos möglich mehrere einzeilige Kommentare hintereinander
-# zu setzen (so wie hier).
-
-# Mit 'iex' ruft man die Elixir-Shell auf.
-# Zum kompilieren von Modulen dient der Befehl 'elixirc'.
-
-# Beide Befehle sollten als Umgebungsvariable gesetzt sein, wenn Elixir korrekt
-# installiert wurde.
-
-## ---------------------------
-## -- Basistypen
-## ---------------------------
-
-# Es gibt Nummern:
-3 # Integer
-0x1F # Integer
-3.0 # Float
-
-# Für bessere Lesbarkeit des Codes können Unterstriche "_" als Trennzeichen verwendet werden
-1_000_000 == 1000000 # Integer
-1_000.567 == 1000.567 # Float
-
-# Atome, das sind Literale, sind Konstanten mit Namen. Sie starten mit einem
-# ':'.
-:hello # Atom
-
-# Außerdem gibt es Tupel, deren Werte im Arbeitsspeicher vorgehalten werden.
-{1,2,3} # Tupel
-
-# Die Werte innerhalb eines Tupels können mit der 'elem'-Funktion ausgelesen
-# werden:
-elem({1, 2, 3}, 0) # => 1
-
-# Listen sind als verkettete Listen implementiert.
-[1, 2, 3] # list
-
-# Auf Kopf und Rest einer Liste kann wie folgt zugegriffen werden:
-[ kopf | rest ] = [1,2,3]
-kopf # => 1
-rest # => [2, 3]
-
-# In Elixir, wie auch in Erlang, kennzeichnet '=' ein 'pattern matching'
-# (Musterabgleich) und keine Zuweisung.
-# Das heißt, dass die linke Seite auf die rechte Seite 'abgeglichen' wird.
-# Auf diese Weise kann im Beispiel oben auf Kopf und Rest der Liste zugegriffen
-# werden.
-
-# Ein Musterabgleich wird einen Fehler werfen, wenn die beiden Seiten nicht
-# zusammenpassen.
-# Im folgenden Beispiel haben die Tupel eine unterschiedliche Anzahl an
-# Elementen:
-{a, b, c} = {1, 2} #=> ** (MatchError) no match of right hand side value: {1,2}
-
-# Es gibt außerdem 'binaries',
-<<1,2,3>> # binary.
-
-# Strings und 'char lists'
-"hello" # String
-'hello' # Char-Liste
-
-# ... und mehrzeilige Strings
-"""
-Ich bin ein
-mehrzeiliger String.
-"""
-#=> "Ich bin ein\nmehrzeiliger String.\n"
-
-# Alles Strings werden in UTF-8 enkodiert:
-"héllò" #=> "héllò"
-
-# Eigentlich sind Strings in Wahrheit nur binaries und 'char lists' einfach
-# Listen.
-<<?a, ?b, ?c>> #=> "abc"
-[?a, ?b, ?c] #=> 'abc'
-
-# In Elixir gibt `?a` den ASCII-Integer für den Buchstaben zurück.
-?a #=> 97
-
-# Um Listen zu verbinden gibt es den Operator '++', für binaries nutzt man '<>'
-[1,2,3] ++ [4,5] #=> [1,2,3,4,5]
-'hello ' ++ 'world' #=> 'hello world'
-
-<<1,2,3>> <> <<4,5>> #=> <<1,2,3,4,5>>
-"hello " <> "world" #=> "hello world"
-
-## ---------------------------
-## -- Operatoren
-## ---------------------------
-
-# Einfache Arithmetik
-1 + 1 #=> 2
-10 - 5 #=> 5
-5 * 2 #=> 10
-10 / 2 #=> 5.0
-
-# In Elixir gibt der Operator '/' immer einen Float-Wert zurück.
-
-# Für Division mit ganzzahligen Ergebnis gibt es 'div'
-div(10, 2) #=> 5
-
-# Um den Rest der ganzzahligen Division zu erhalten gibt es 'rem'
-rem(10, 3) #=> 1
-
-# Natürlich gibt es auch Operatoren für Booleans: 'or', 'and' und 'not'. Diese
-# Operatoren erwarten einen Boolean als erstes Argument.
-true and true #=> true
-false or true #=> true
-# 1 and true #=> ** (ArgumentError) argument error
-
-# Elixir bietet auch '||', '&&' und '!', die Argumente jedweden Typs
-# akzeptieren. Alle Werte außer 'false' und 'nil' werden zu wahr evaluiert.
-1 || true #=> 1
-false && 1 #=> false
-nil && 20 #=> nil
-
-!true #=> false
-
-# Für Vergleiche gibt es die Operatoren `==`, `!=`, `===`, `!==`, `<=`, `>=`,
-# `<` und `>`
-1 == 1 #=> true
-1 != 1 #=> false
-1 < 2 #=> true
-
-# '===' und '!==' sind strikter beim Vergleich von Integern und Floats:
-1 == 1.0 #=> true
-1 === 1.0 #=> false
-
-# Es ist außerdem möglich zwei verschiedene Datentypen zu vergleichen:
-1 < :hello #=> true
-
-# Die gesamte Ordnung über die Datentypen ist wie folgt definiert:
-# number < atom < reference < functions < port < pid < tuple < list < bitstring
-
-# Um Joe Armstrong zu zitieren: "The actual order is not important, but that a
-# total ordering is well defined is important."
-
-## ---------------------------
-## -- Kontrollstrukturen
-## ---------------------------
-
-# Es gibt die `if`-Verzweigung
-if false do
- "Dies wird nie jemand sehen..."
-else
- "...aber dies!"
-end
-
-# ...und ebenso `unless`
-unless true do
- "Dies wird nie jemand sehen..."
-else
- "...aber dies!"
-end
-
-# Du erinnerst dich an 'pattern matching'? Viele Kontrollstrukturen in Elixir
-# arbeiten damit.
-
-# 'case' erlaubt es uns Werte mit vielerlei Mustern zu vergleichen.
-case {:one, :two} do
- {:four, :five} ->
- "Das wird nicht passen"
- {:one, x} ->
- "Das schon und außerdem wird es ':two' dem Wert 'x' zuweisen."
- _ ->
- "Dieser Fall greift immer."
-end
-
-# Es ist eine übliche Praxis '_' einen Wert zuzuweisen, sofern dieser Wert
-# nicht weiter verwendet wird.
-# Wenn wir uns zum Beispiel nur für den Kopf einer Liste interessieren:
-[kopf | _] = [1,2,3]
-kopf #=> 1
-
-# Für bessere Lesbarkeit können wir auch das Folgende machen:
-[kopf | _rest] = [:a, :b, :c]
-kopf #=> :a
-
-# Mit 'cond' können diverse Bedingungen zur selben Zeit überprüft werden. Man
-# benutzt 'cond' statt viele if-Verzweigungen zu verschachteln.
-cond do
- 1 + 1 == 3 ->
- "Ich werde nie aufgerufen."
- 2 * 5 == 12 ->
- "Ich auch nicht."
- 1 + 2 == 3 ->
- "Aber ich!"
-end
-
-# Es ist üblich eine letzte Bedingung einzufügen, die immer zu wahr evaluiert.
-cond do
- 1 + 1 == 3 ->
- "Ich werde nie aufgerufen."
- 2 * 5 == 12 ->
- "Ich auch nicht."
- true ->
- "Aber ich! (dies ist im Grunde ein 'else')"
-end
-
-# 'try/catch' wird verwendet um Werte zu fangen, die zuvor 'geworfen' wurden.
-# Das Konstrukt unterstützt außerdem eine 'after'-Klausel die aufgerufen wird,
-# egal ob zuvor ein Wert gefangen wurde.
-try do
- throw(:hello)
-catch
- nachricht -> "#{nachricht} gefangen."
-after
- IO.puts("Ich bin die 'after'-Klausel.")
-end
-#=> Ich bin die 'after'-Klausel.
-# ":hello gefangen"
-
-## ---------------------------
-## -- Module und Funktionen
-## ---------------------------
-
-# Anonyme Funktionen (man beachte den Punkt)
-square = fn(x) -> x * x end
-square.(5) #=> 25
-
-# Anonyme Funktionen unterstützen auch 'pattern' und 'guards'. Guards erlauben
-# es die Mustererkennung zu justieren und werden mit dem Schlüsselwort 'when'
-# eingeführt:
-f = fn
- x, y when x > 0 -> x + y
- x, y -> x * y
-end
-
-f.(1, 3) #=> 4
-f.(-1, 3) #=> -3
-
-# Elixir bietet zahlreiche eingebaute Funktionen. Diese sind im gleichen
-# Geltungsbereich ('scope') verfügbar.
-is_number(10) #=> true
-is_list("hello") #=> false
-elem({1,2,3}, 0) #=> 1
-
-# Mehrere Funktionen können in einem Modul gruppiert werden. Innerhalb eines
-# Moduls ist es möglich mit dem Schlüsselwort 'def' eine Funktion zu
-# definieren.
-defmodule Math do
- def sum(a, b) do
- a + b
- end
-
- def square(x) do
- x * x
- end
-end
-
-Math.sum(1, 2) #=> 3
-Math.square(3) #=> 9
-
-# Um unser einfaches Mathe-Modul zu kompilieren muss es unter 'math.ex'
-# gesichert werden. Anschließend kann es mit 'elixirc' im Terminal aufgerufen
-# werden: elixirc math.ex
-
-# Innerhalb eines Moduls definieren wir private Funktionen mit 'defp'. Eine
-# Funktion, die mit 'def' erstellt wurde, kann von anderen Modulen aufgerufen
-# werden; eine private Funktion kann nur lokal angesprochen werden.
-defmodule PrivateMath do
- def sum(a, b) do
- do_sum(a, b)
- end
-
- defp do_sum(a, b) do
- a + b
- end
-end
-
-PrivateMath.sum(1, 2) #=> 3
-# PrivateMath.do_sum(1, 2) #=> ** (UndefinedFunctionError)
-
-# Auch Funktionsdeklarationen unterstützen 'guards' und Mustererkennung:
-defmodule Geometry do
- def area({:rectangle, w, h}) do
- w * h
- end
-
- def area({:circle, r}) when is_number(r) do
- 3.14 * r * r
- end
-end
-
-Geometry.area({:rectangle, 2, 3}) #=> 6
-Geometry.area({:circle, 3}) #=> 28.25999999999999801048
-# Geometry.area({:circle, "not_a_number"})
-#=> ** (FunctionClauseError) no function clause matching in Geometry.area/1
-
-# Wegen der Unveränderlichkeit von Variablen ist Rekursion ein wichtiger
-# Bestandteil von Elixir.
-defmodule Recursion do
- def sum_list([head | tail], acc) do
- sum_list(tail, acc + head)
- end
-
- def sum_list([], acc) do
- acc
- end
-end
-
-Recursion.sum_list([1,2,3], 0) #=> 6
-
-# Elixir-Module unterstützen Attribute. Es gibt eingebaute Attribute, ebenso
-# ist es möglich eigene Attribute hinzuzufügen.
-defmodule MyMod do
- @moduledoc """
- Dies ist ein eingebautes Attribut in einem Beispiel-Modul
- """
-
- @my_data 100 # Dies ist ein selbst-definiertes Attribut.
- IO.inspect(@my_data) #=> 100
-end
-
-## ---------------------------
-## -- 'Records' und Ausnahmebehandlung
-## ---------------------------
-
-# 'Records' sind im Grunde Strukturen, die es erlauben einem Wert einen eigenen
-# Namen zuzuweisen.
-defrecord Person, name: nil, age: 0, height: 0
-
-joe_info = Person.new(name: "Joe", age: 30, height: 180)
-#=> Person[name: "Joe", age: 30, height: 180]
-
-# Zugriff auf den Wert von 'name'
-joe_info.name #=> "Joe"
-
-# Den Wert von 'age' überschreiben
-joe_info = joe_info.age(31) #=> Person[name: "Joe", age: 31, height: 180]
-
-# Der 'try'-Block wird zusammen mit dem 'rescue'-Schlüsselwort dazu verwendet,
-# um Ausnahmen beziehungsweise Fehler zu behandeln.
-try do
- raise "Irgendein Fehler."
-rescue
- RuntimeError -> "Laufzeit-Fehler gefangen."
- _error -> "Und dies fängt jeden Fehler."
-end
-
-# Alle Ausnahmen haben das Attribut 'message'
-try do
- raise "ein Fehler"
-rescue
- x in [RuntimeError] ->
- x.message
-end
-
-## ---------------------------
-## -- Nebenläufigkeit
-## ---------------------------
-
-# Elixir beruht auf dem Aktoren-Model zur Behandlung der Nebenläufigkeit. Alles
-# was man braucht um in Elixir nebenläufige Programme zu schreiben sind drei
-# Primitive: Prozesse erzeugen, Nachrichten senden und Nachrichten empfangen.
-
-# Um einen neuen Prozess zu erzeugen nutzen wir die 'spawn'-Funktion, die
-# wiederum eine Funktion als Argument entgegen nimmt.
-f = fn -> 2 * 2 end #=> #Function<erl_eval.20.80484245>
-spawn(f) #=> #PID<0.40.0>
-
-# 'spawn' gibt eine pid (einen Identifikator des Prozesses) zurück. Diese kann
-# nun verwendet werden, um Nachrichten an den Prozess zu senden. Um
-# zu senden nutzen wir den '<-' Operator. Damit das alles Sinn macht müssen wir
-# in der Lage sein Nachrichten zu empfangen. Dies wird mit dem
-# 'receive'-Mechanismus sichergestellt:
-defmodule Geometry do
- def area_loop do
- receive do
- {:rectangle, w, h} ->
- IO.puts("Area = #{w * h}")
- area_loop()
- {:circle, r} ->
- IO.puts("Area = #{3.14 * r * r}")
- area_loop()
- end
- end
-end
-
-# Kompiliere das Modul, starte einen Prozess und gib die 'area_loop' Funktion
-# in der Shell mit, etwa so:
-pid = spawn(fn -> Geometry.area_loop() end) #=> #PID<0.40.0>
-
-# Sende eine Nachricht an die 'pid', die ein Muster im 'receive'-Ausdruck
-# erfüllt:
-pid <- {:rectangle, 2, 3}
-#=> Area = 6
-# {:rectangle,2,3}
-
-pid <- {:circle, 2}
-#=> Area = 12.56000000000000049738
-# {:circle,2}
-
-# Die Shell selbst ist ein Prozess und mit dem Schlüsselwort 'self' kann man
-# die aktuelle pid herausfinden.
-self() #=> #PID<0.27.0>
-
-```
-
-## Referenzen und weitere Lektüre
-
-* [Getting started guide](http://elixir-lang.org/getting_started/1.html) auf der [elixir Website](http://elixir-lang.org)
-* [Elixir Documentation](http://elixir-lang.org/docs/master/)
-* ["Learn You Some Erlang for Great Good!"](http://learnyousomeerlang.com/) von Fred Hebert
-* "Programming Erlang: Software for a Concurrent World" von Joe Armstrong
+--- +language: Elixir +contributors: + - ["Joao Marques", "http://github.com/mrshankly"] +translators: + - ["Gregor Große-Bölting", "http://www.ideen-und-soehne.de"] +filename: learnelixir-de.ex +lang: de-de +--- + +Elixir ist eine moderne, funktionale Sprache für die Erlang VM. Sie ist voll +kompatibel mit Erlang, verfügt aber über eine freundlichere Syntax und bringt +viele Features mit. + +```ruby + +# Einzeilige Kommentare werden mit der Raute gesetzt. + +# Es gibt keine mehrzeiligen Kommentare; +# es ist aber problemlos möglich mehrere einzeilige Kommentare hintereinander +# zu setzen (so wie hier). + +# Mit 'iex' ruft man die Elixir-Shell auf. +# Zum kompilieren von Modulen dient der Befehl 'elixirc'. + +# Beide Befehle sollten als Umgebungsvariable gesetzt sein, wenn Elixir korrekt +# installiert wurde. + +## --------------------------- +## -- Basistypen +## --------------------------- + +# Es gibt Nummern: +3 # Integer +0x1F # Integer +3.0 # Float + +# Für bessere Lesbarkeit des Codes können Unterstriche "_" als Trennzeichen verwendet werden +1_000_000 == 1000000 # Integer +1_000.567 == 1000.567 # Float + +# Atome, das sind Literale, sind Konstanten mit Namen. Sie starten mit einem +# ':'. +:hello # Atom + +# Außerdem gibt es Tupel, deren Werte im Arbeitsspeicher vorgehalten werden. +{1,2,3} # Tupel + +# Die Werte innerhalb eines Tupels können mit der 'elem'-Funktion ausgelesen +# werden: +elem({1, 2, 3}, 0) # => 1 + +# Listen sind als verkettete Listen implementiert. +[1, 2, 3] # list + +# Auf Kopf und Rest einer Liste kann wie folgt zugegriffen werden: +[ kopf | rest ] = [1,2,3] +kopf # => 1 +rest # => [2, 3] + +# In Elixir, wie auch in Erlang, kennzeichnet '=' ein 'pattern matching' +# (Musterabgleich) und keine Zuweisung. +# Das heißt, dass die linke Seite auf die rechte Seite 'abgeglichen' wird. +# Auf diese Weise kann im Beispiel oben auf Kopf und Rest der Liste zugegriffen +# werden. + +# Ein Musterabgleich wird einen Fehler werfen, wenn die beiden Seiten nicht +# zusammenpassen. +# Im folgenden Beispiel haben die Tupel eine unterschiedliche Anzahl an +# Elementen: +{a, b, c} = {1, 2} #=> ** (MatchError) no match of right hand side value: {1,2} + +# Es gibt außerdem 'binaries', +<<1,2,3>> # binary. + +# Strings und 'char lists' +"hello" # String +'hello' # Char-Liste + +# ... und mehrzeilige Strings +""" +Ich bin ein +mehrzeiliger String. +""" +#=> "Ich bin ein\nmehrzeiliger String.\n" + +# Alles Strings werden in UTF-8 enkodiert: +"héllò" #=> "héllò" + +# Eigentlich sind Strings in Wahrheit nur binaries und 'char lists' einfach +# Listen. +<<?a, ?b, ?c>> #=> "abc" +[?a, ?b, ?c] #=> 'abc' + +# In Elixir gibt `?a` den ASCII-Integer für den Buchstaben zurück. +?a #=> 97 + +# Um Listen zu verbinden gibt es den Operator '++', für binaries nutzt man '<>' +[1,2,3] ++ [4,5] #=> [1,2,3,4,5] +'hello ' ++ 'world' #=> 'hello world' + +<<1,2,3>> <> <<4,5>> #=> <<1,2,3,4,5>> +"hello " <> "world" #=> "hello world" + +## --------------------------- +## -- Operatoren +## --------------------------- + +# Einfache Arithmetik +1 + 1 #=> 2 +10 - 5 #=> 5 +5 * 2 #=> 10 +10 / 2 #=> 5.0 + +# In Elixir gibt der Operator '/' immer einen Float-Wert zurück. + +# Für Division mit ganzzahligen Ergebnis gibt es 'div' +div(10, 2) #=> 5 + +# Um den Rest der ganzzahligen Division zu erhalten gibt es 'rem' +rem(10, 3) #=> 1 + +# Natürlich gibt es auch Operatoren für Booleans: 'or', 'and' und 'not'. Diese +# Operatoren erwarten einen Boolean als erstes Argument. +true and true #=> true +false or true #=> true +# 1 and true #=> ** (ArgumentError) argument error + +# Elixir bietet auch '||', '&&' und '!', die Argumente jedweden Typs +# akzeptieren. Alle Werte außer 'false' und 'nil' werden zu wahr evaluiert. +1 || true #=> 1 +false && 1 #=> false +nil && 20 #=> nil + +!true #=> false + +# Für Vergleiche gibt es die Operatoren `==`, `!=`, `===`, `!==`, `<=`, `>=`, +# `<` und `>` +1 == 1 #=> true +1 != 1 #=> false +1 < 2 #=> true + +# '===' und '!==' sind strikter beim Vergleich von Integern und Floats: +1 == 1.0 #=> true +1 === 1.0 #=> false + +# Es ist außerdem möglich zwei verschiedene Datentypen zu vergleichen: +1 < :hello #=> true + +# Die gesamte Ordnung über die Datentypen ist wie folgt definiert: +# number < atom < reference < functions < port < pid < tuple < list < bitstring + +# Um Joe Armstrong zu zitieren: "The actual order is not important, but that a +# total ordering is well defined is important." + +## --------------------------- +## -- Kontrollstrukturen +## --------------------------- + +# Es gibt die `if`-Verzweigung +if false do + "Dies wird nie jemand sehen..." +else + "...aber dies!" +end + +# ...und ebenso `unless` +unless true do + "Dies wird nie jemand sehen..." +else + "...aber dies!" +end + +# Du erinnerst dich an 'pattern matching'? Viele Kontrollstrukturen in Elixir +# arbeiten damit. + +# 'case' erlaubt es uns Werte mit vielerlei Mustern zu vergleichen. +case {:one, :two} do + {:four, :five} -> + "Das wird nicht passen" + {:one, x} -> + "Das schon und außerdem wird es ':two' dem Wert 'x' zuweisen." + _ -> + "Dieser Fall greift immer." +end + +# Es ist eine übliche Praxis '_' einen Wert zuzuweisen, sofern dieser Wert +# nicht weiter verwendet wird. +# Wenn wir uns zum Beispiel nur für den Kopf einer Liste interessieren: +[kopf | _] = [1,2,3] +kopf #=> 1 + +# Für bessere Lesbarkeit können wir auch das Folgende machen: +[kopf | _rest] = [:a, :b, :c] +kopf #=> :a + +# Mit 'cond' können diverse Bedingungen zur selben Zeit überprüft werden. Man +# benutzt 'cond' statt viele if-Verzweigungen zu verschachteln. +cond do + 1 + 1 == 3 -> + "Ich werde nie aufgerufen." + 2 * 5 == 12 -> + "Ich auch nicht." + 1 + 2 == 3 -> + "Aber ich!" +end + +# Es ist üblich eine letzte Bedingung einzufügen, die immer zu wahr evaluiert. +cond do + 1 + 1 == 3 -> + "Ich werde nie aufgerufen." + 2 * 5 == 12 -> + "Ich auch nicht." + true -> + "Aber ich! (dies ist im Grunde ein 'else')" +end + +# 'try/catch' wird verwendet um Werte zu fangen, die zuvor 'geworfen' wurden. +# Das Konstrukt unterstützt außerdem eine 'after'-Klausel die aufgerufen wird, +# egal ob zuvor ein Wert gefangen wurde. +try do + throw(:hello) +catch + nachricht -> "#{nachricht} gefangen." +after + IO.puts("Ich bin die 'after'-Klausel.") +end +#=> Ich bin die 'after'-Klausel. +# ":hello gefangen" + +## --------------------------- +## -- Module und Funktionen +## --------------------------- + +# Anonyme Funktionen (man beachte den Punkt) +square = fn(x) -> x * x end +square.(5) #=> 25 + +# Anonyme Funktionen unterstützen auch 'pattern' und 'guards'. Guards erlauben +# es die Mustererkennung zu justieren und werden mit dem Schlüsselwort 'when' +# eingeführt: +f = fn + x, y when x > 0 -> x + y + x, y -> x * y +end + +f.(1, 3) #=> 4 +f.(-1, 3) #=> -3 + +# Elixir bietet zahlreiche eingebaute Funktionen. Diese sind im gleichen +# Geltungsbereich ('scope') verfügbar. +is_number(10) #=> true +is_list("hello") #=> false +elem({1,2,3}, 0) #=> 1 + +# Mehrere Funktionen können in einem Modul gruppiert werden. Innerhalb eines +# Moduls ist es möglich mit dem Schlüsselwort 'def' eine Funktion zu +# definieren. +defmodule Math do + def sum(a, b) do + a + b + end + + def square(x) do + x * x + end +end + +Math.sum(1, 2) #=> 3 +Math.square(3) #=> 9 + +# Um unser einfaches Mathe-Modul zu kompilieren muss es unter 'math.ex' +# gesichert werden. Anschließend kann es mit 'elixirc' im Terminal aufgerufen +# werden: elixirc math.ex + +# Innerhalb eines Moduls definieren wir private Funktionen mit 'defp'. Eine +# Funktion, die mit 'def' erstellt wurde, kann von anderen Modulen aufgerufen +# werden; eine private Funktion kann nur lokal angesprochen werden. +defmodule PrivateMath do + def sum(a, b) do + do_sum(a, b) + end + + defp do_sum(a, b) do + a + b + end +end + +PrivateMath.sum(1, 2) #=> 3 +# PrivateMath.do_sum(1, 2) #=> ** (UndefinedFunctionError) + +# Auch Funktionsdeklarationen unterstützen 'guards' und Mustererkennung: +defmodule Geometry do + def area({:rectangle, w, h}) do + w * h + end + + def area({:circle, r}) when is_number(r) do + 3.14 * r * r + end +end + +Geometry.area({:rectangle, 2, 3}) #=> 6 +Geometry.area({:circle, 3}) #=> 28.25999999999999801048 +# Geometry.area({:circle, "not_a_number"}) +#=> ** (FunctionClauseError) no function clause matching in Geometry.area/1 + +# Wegen der Unveränderlichkeit von Variablen ist Rekursion ein wichtiger +# Bestandteil von Elixir. +defmodule Recursion do + def sum_list([head | tail], acc) do + sum_list(tail, acc + head) + end + + def sum_list([], acc) do + acc + end +end + +Recursion.sum_list([1,2,3], 0) #=> 6 + +# Elixir-Module unterstützen Attribute. Es gibt eingebaute Attribute, ebenso +# ist es möglich eigene Attribute hinzuzufügen. +defmodule MyMod do + @moduledoc """ + Dies ist ein eingebautes Attribut in einem Beispiel-Modul + """ + + @my_data 100 # Dies ist ein selbst-definiertes Attribut. + IO.inspect(@my_data) #=> 100 +end + +## --------------------------- +## -- 'Records' und Ausnahmebehandlung +## --------------------------- + +# 'Records' sind im Grunde Strukturen, die es erlauben einem Wert einen eigenen +# Namen zuzuweisen. +defrecord Person, name: nil, age: 0, height: 0 + +joe_info = Person.new(name: "Joe", age: 30, height: 180) +#=> Person[name: "Joe", age: 30, height: 180] + +# Zugriff auf den Wert von 'name' +joe_info.name #=> "Joe" + +# Den Wert von 'age' überschreiben +joe_info = joe_info.age(31) #=> Person[name: "Joe", age: 31, height: 180] + +# Der 'try'-Block wird zusammen mit dem 'rescue'-Schlüsselwort dazu verwendet, +# um Ausnahmen beziehungsweise Fehler zu behandeln. +try do + raise "Irgendein Fehler." +rescue + RuntimeError -> "Laufzeit-Fehler gefangen." + _error -> "Und dies fängt jeden Fehler." +end + +# Alle Ausnahmen haben das Attribut 'message' +try do + raise "ein Fehler" +rescue + x in [RuntimeError] -> + x.message +end + +## --------------------------- +## -- Nebenläufigkeit +## --------------------------- + +# Elixir beruht auf dem Aktoren-Model zur Behandlung der Nebenläufigkeit. Alles +# was man braucht um in Elixir nebenläufige Programme zu schreiben sind drei +# Primitive: Prozesse erzeugen, Nachrichten senden und Nachrichten empfangen. + +# Um einen neuen Prozess zu erzeugen nutzen wir die 'spawn'-Funktion, die +# wiederum eine Funktion als Argument entgegen nimmt. +f = fn -> 2 * 2 end #=> #Function<erl_eval.20.80484245> +spawn(f) #=> #PID<0.40.0> + +# 'spawn' gibt eine pid (einen Identifikator des Prozesses) zurück. Diese kann +# nun verwendet werden, um Nachrichten an den Prozess zu senden. Um +# zu senden nutzen wir den '<-' Operator. Damit das alles Sinn macht müssen wir +# in der Lage sein Nachrichten zu empfangen. Dies wird mit dem +# 'receive'-Mechanismus sichergestellt: +defmodule Geometry do + def area_loop do + receive do + {:rectangle, w, h} -> + IO.puts("Area = #{w * h}") + area_loop() + {:circle, r} -> + IO.puts("Area = #{3.14 * r * r}") + area_loop() + end + end +end + +# Kompiliere das Modul, starte einen Prozess und gib die 'area_loop' Funktion +# in der Shell mit, etwa so: +pid = spawn(fn -> Geometry.area_loop() end) #=> #PID<0.40.0> + +# Sende eine Nachricht an die 'pid', die ein Muster im 'receive'-Ausdruck +# erfüllt: +pid <- {:rectangle, 2, 3} +#=> Area = 6 +# {:rectangle,2,3} + +pid <- {:circle, 2} +#=> Area = 12.56000000000000049738 +# {:circle,2} + +# Die Shell selbst ist ein Prozess und mit dem Schlüsselwort 'self' kann man +# die aktuelle pid herausfinden. +self() #=> #PID<0.27.0> + +``` + +## Referenzen und weitere Lektüre + +* [Getting started guide](http://elixir-lang.org/getting_started/1.html) auf der [elixir Website](http://elixir-lang.org) +* [Elixir Documentation](http://elixir-lang.org/docs/master/) +* ["Learn You Some Erlang for Great Good!"](http://learnyousomeerlang.com/) von Fred Hebert +* "Programming Erlang: Software for a Concurrent World" von Joe Armstrong |