summaryrefslogtreecommitdiffhomepage
path: root/es-es
diff options
context:
space:
mode:
authorDmitrii Kuznetsov <torgeek@gmail.com>2021-02-22 18:42:33 +0300
committerDmitrii Kuznetsov <torgeek@gmail.com>2021-02-22 18:42:33 +0300
commite09fefaa3e78c645c720c86391e3f96d257be8a9 (patch)
tree0ff8b235e3e707125e2b11d5268ad085832355cb /es-es
parentf4c740839d78f797e9cbcfa1eb0483ac0ea45501 (diff)
parentbc8bd2646f068cfb402850f7c0f9b1dbfe81e5a0 (diff)
Merge branch 'master' of https://github.com/torgeek/learnxinyminutes-docs
Diffstat (limited to 'es-es')
-rw-r--r--es-es/amd-es.html.markdown2
-rw-r--r--es-es/asciidoc-es.html.markdown134
-rw-r--r--es-es/awk-es.html.markdown363
-rw-r--r--es-es/bf-es.html.markdown1
-rw-r--r--es-es/c++-es.html.markdown133
-rw-r--r--es-es/c-es.html.markdown3
-rw-r--r--es-es/clojure-es.html.markdown236
-rw-r--r--es-es/coldfusion-es.html.markdown330
-rw-r--r--es-es/common-lisp-es.html.markdown692
-rw-r--r--es-es/csharp-es.html.markdown7
-rw-r--r--es-es/css-es.html327
-rw-r--r--es-es/dart-es.html.markdown529
-rw-r--r--es-es/dynamic-programming-es.html.markdown52
-rw-r--r--es-es/elixir-es.html.markdown457
-rw-r--r--es-es/erlang-es.html.markdown293
-rw-r--r--es-es/factor-es.html.markdown200
-rw-r--r--es-es/fsharp-es.html.markdown629
-rw-r--r--es-es/git-es.html.markdown2
-rw-r--r--es-es/go-es.html.markdown12
-rw-r--r--es-es/groovy-es.html.markdown4
-rw-r--r--es-es/haskell-es.html.markdown2
-rw-r--r--es-es/hq9+-es.html.markdown44
-rw-r--r--es-es/hy-es.html.markdown176
-rw-r--r--es-es/javascript-es.html.markdown6
-rw-r--r--es-es/kotlin-es.html.markdown76
-rw-r--r--es-es/lambda-calculus-es.html.markdown216
-rw-r--r--es-es/learnsmallbasic-es.html.markdown132
-rw-r--r--es-es/markdown-es.html.markdown2
-rw-r--r--es-es/matlab-es.html.markdown568
-rw-r--r--es-es/objective-c-es.html.markdown2
-rw-r--r--es-es/pascal-es.html.markdown205
-rw-r--r--es-es/pcre-es.html.markdown84
-rw-r--r--es-es/perl-es.html.markdown16
-rw-r--r--es-es/pyqt-es.html.markdown82
-rw-r--r--es-es/python-es.html.markdown323
-rw-r--r--es-es/pythonlegacy-es.html.markdown (renamed from es-es/python3-es.html.markdown)302
-rw-r--r--es-es/pythonstatcomp-es.html.markdown3
-rw-r--r--es-es/raku-es.html.markdown1935
-rw-r--r--es-es/ruby-es.html.markdown2
-rw-r--r--es-es/sass-es.html.markdown2
-rw-r--r--es-es/scala-es.html.markdown741
-rw-r--r--es-es/sql-es.html.markdown115
-rw-r--r--es-es/swift-es.html.markdown30
-rw-r--r--es-es/tcl-es.html.markdown600
-rw-r--r--es-es/visualbasic-es.html.markdown4
-rw-r--r--es-es/xml-es.html.markdown2
-rw-r--r--es-es/yaml-es.html.markdown2
47 files changed, 9512 insertions, 566 deletions
diff --git a/es-es/amd-es.html.markdown b/es-es/amd-es.html.markdown
index 7a59ddd6..40aa6647 100644
--- a/es-es/amd-es.html.markdown
+++ b/es-es/amd-es.html.markdown
@@ -190,7 +190,7 @@ Para usar el fichero creado en producción, simplemente intercambia `data-main`:
Un increíblemente detallado [resumen de opciones de generación](https://github.com/jrburke/r.js/blob/master/build/example.build.js) está disponible en el repositorio de GitHub.
-### Tópicos no cubiertos en este tutorial
+### Temas no cubiertos en este tutorial
* [Cargador de plugins / transformaciones](http://requirejs.org/docs/plugins.html)
* [Cargando y exportando estilos CommonJS](http://requirejs.org/docs/commonjs.html)
* [Configuración avanzada](http://requirejs.org/docs/api.html#config)
diff --git a/es-es/asciidoc-es.html.markdown b/es-es/asciidoc-es.html.markdown
new file mode 100644
index 00000000..6e357915
--- /dev/null
+++ b/es-es/asciidoc-es.html.markdown
@@ -0,0 +1,134 @@
+---
+language: asciidoc
+contributors:
+ - ["Ryan Mavilia", "http://unoriginality.rocks/"]
+translators:
+ - ["Abel Salgado Romero", "https://twitter.com/abelsromero"]
+lang: es-es
+filename: asciidoc-es.md
+---
+
+AsciiDoc es un lenguaje de marcas similar a Markdown que puede ser usado para cualquier uso, desde libros a blogs.
+Creado en 2002 por Stuart Rackham, el lenguaje es simple pero permite un gran nivel de personalización.
+
+Cabecera de documento
+
+La cabecera es opcional y no puede contener lineas vacías. Debe estar separada del contenido por al menos una línea en blanco.
+
+Solo título
+
+```
+= Título de documento
+
+Primer contenido del documento.
+```
+
+Título y autor
+
+```
+= Título del documento
+Nombre Apellido(s) <nombre.apellido@learnxinyminutes.com>
+
+Inicio de este documento.
+```
+
+Múltiples autores
+
+```
+= Título del documento
+John Doe <john@go.com>; Jane Doe<jane@yo.com>; Black Beard <beardy@pirate.com>
+
+Inicio de un documento con múltiples autores.
+```
+
+Linea de versión (requiere línea de autor)
+
+```
+= Título del documento V1
+Potato Man <chip@crunchy.com>
+v1.0, 2016-01-13
+
+Este artículo sobre patatas fritas será genial.
+```
+
+Párrafo
+
+```
+No necesitas nada especial para un párrafo.
+
+Inserta una línea vacía entre cada párrafo para separarlos.
+
+Para insertar un salto de línea, solo añade un +
+y ya lo tienes!
+```
+
+Dando formato al texto
+
+```
+_guión bajo para cursiva_
+*asteriscos para negrita*
+*_combínalos y verás_*
+`usa comillas invertidas para monospace`
+`*combina para negrita monospace*`
+```
+
+Títulos de sección
+
+```
+= Nivel 0 (úsalo solo para el título del documento)
+
+== Nivel 1 <h2>
+
+=== Nivel 2 <h3>
+
+==== Nivel 3 <h4>
+
+===== Nivel 4 <h5>
+```
+
+Listas
+
+Para crear una lista sin orden usa asteriscos.
+
+```
+* foo
+* bar
+* baz
+```
+
+Para crear una lista numerada usa puntos.
+
+```
+. item 1
+. item 2
+. item 3
+```
+
+Puedes crear hasta 5 subniveles en las listas añadiendo asteriscos o puntos.
+
+```
+* foo 1
+** foo 2
+*** foo 3
+**** foo 4
+***** foo 5
+
+. foo 1
+.. foo 2
+... foo 3
+.... foo 4
+..... foo 5
+```
+
+## Referencias
+
+Existen dos herramientas para procesar documentación en AsciiDoc:
+
+1. [AsciiDoc](http://asciidoc.org/): implementación original para Python, disponible en las principales distribuciones Linux. Versión estable actualmente en modo mantenimiento.
+2. [Asciidoctor](http://asciidoctor.org/): implementación alternativa para Ruby, usable también desde Java y JavaScript. Implementación completa en evolución, su objetivo es ampliar AsciiDoc con nuevas funcionalidades y conversores de salida.
+
+Los siguientes enlaces pertenecen a `Asciidoctor` (documentación en inglés):
+
+* [Comparación de sintaxis Markdown - AsciiDoc](http://asciidoctor.org/docs/user-manual/#comparison-by-example): comparativa de elements comunes entre Markdown y AsciiDoc.
+* [Primeros pasos](http://asciidoctor.org/docs/#get-started-with-asciidoctor): manuales de instalación e inicio para convertir documentos simples.
+* [Manual de usuario de Asciidoctor](http://asciidoctor.org/docs/user-manual/): referencia completa en un único documento, contiene ejemplos, guías de herramientas, etc.
diff --git a/es-es/awk-es.html.markdown b/es-es/awk-es.html.markdown
new file mode 100644
index 00000000..8da8f024
--- /dev/null
+++ b/es-es/awk-es.html.markdown
@@ -0,0 +1,363 @@
+---
+category: tool
+tool: awk
+filename: learnawk-es.awk
+contributors:
+ - ["Marshall Mason", "http://github.com/marshallmason"]
+translators:
+ - ["Hugo Guillén-Ramírez", "http://github.com/HugoGuillen"]
+lang: es-es
+---
+
+AWK es una herramienta estándar en cada sistema UNIX compatible con POSIX.
+Es como un Perl restringido, perfecto para tareas de procesamiento de texto y
+otras necesidades de scripting. Tiene una sintaxis similar a C, pero sin
+puntos y comas, manejo manual de memoria y tipado estático. Puedes llamarlo
+desde un script de shell o usarlo como un lenguaje stand-alone para scripting.
+
+¿Por qué elegir AWK sobre Perl? Principalmente, porque AWK es parte de UNIX.
+Siempre puedes contar con él, mientras que el futuro de Perl está en duda. AWK
+es más fácil de leer que Perl. Para scripts sencillos de procesamiento de texto,
+particularmente si es para leer archivos línea a línea y dividir por
+delimitadores, probablemente AWK es la herramienta correcta para el trabajo.
+
+```awk
+#!/usr/bin/awk -f
+
+# Los comentarios tienen este aspecto.
+
+# Los programas AWK son una colección de patrones y acciones. El patrón más
+# importante es BEGIN. Las acciones van en bloques delimitados por llaves.
+
+BEGIN {
+
+ # BEGIN correrá al inicio del programa. Es donde pones todo el código
+ # preliminar antes de procesar los archivos de texto. Si no tienes archivos
+ # de texto, piensa en BEGIN como el punto de entrada principal del script.
+
+ # Las variables son globales. Asígnalas o úsalas sin declararlas.
+ count = 0
+
+ # Los operadores son justo como en C (y amigos).
+ a = count + 1
+ b = count - 1
+ c = count * 1
+ d = count / 1
+ e = count % 1 # módulo
+ f = count ^ 1 # exponenciación
+
+ a += 1
+ b -= 1
+ c *= 1
+ d /= 1
+ e %= 1
+ f ^= 1
+
+ # Incremento y decremento en uno
+ a++
+ b--
+
+ # Como un operador prefijo, regresa el valor modificado
+ ++a
+ --b
+
+ # Nota que no hay puntación para terminar las instrucciones
+
+ # Instrucciones de control
+ if (count == 0)
+ print "Iniciando count en 0"
+ else
+ print "Eh?"
+
+ # O puedes usar el operador ternario
+ print (count == 0) ? "Iniciando count en 0" : "Eh?"
+
+ # Bloques formados por múltiples líneas usan llaves
+ while (a < 10) {
+ print "La concatenación de strings se hace " " con series "
+ print " de" " strings separados por espacios"
+ print a
+
+ a++
+ }
+
+ for (i = 0; i < 10; i++)
+ print "El viejo confiable ciclo for"
+
+ # Los operaciones de comparación son estándar...
+ a < b # Menor que
+ a <= b # Menor o igual que
+ a != b # No igual
+ a == b # Igual
+ a > b # Mayor que
+ a >= b # Mayor o igual que
+
+ # ...así como los operadores lógicos
+ a && b # AND
+ a || b # OR
+
+ # Además están las expresiones regulares
+ if ("foo" ~ "^fo+$")
+ print "Fooey!"
+ if ("boo" !~ "^fo+$")
+ print "Boo!"
+
+ # Arrays
+ arr[0] = "foo"
+ arr[1] = "bar"
+ # Desafortunadamente no hay otra manera de inicializar un array.
+ # Tienes que inicializar cada posición del array.
+
+ # También hay arrays asociativos
+ assoc["foo"] = "bar"
+ assoc["bar"] = "baz"
+
+ # Y arrays multidimensionales con limitaciones que no mencionaré aquí
+ multidim[0,0] = "foo"
+ multidim[0,1] = "bar"
+ multidim[1,0] = "baz"
+ multidim[1,1] = "boo"
+
+ # Puedes probar pertenencia a un array
+ if ("foo" in assoc)
+ print "Fooey!"
+
+ # También puedes usar el operador 'in' para iterar las claves de un array
+ for (key in assoc)
+ print assoc[key]
+
+ # La terminal es un array especial llamado ARGV
+ for (argnum in ARGV)
+ print ARGV[argnum]
+
+ # Puedes eliminar elementos de un array.
+ # Esto es útil para prevenir que AWK suponga que algunos argumentos
+ # son archivos por procesar.
+ delete ARGV[1]
+
+ # El número de argumentos de la terminal está en la variable ARGC
+ print ARGC
+
+ # AWK tiene tres categorías de funciones incluidas.
+ # Demostraré esas funciones posteriormente.
+
+ return_value = arithmetic_functions(a, b, c)
+ string_functions()
+ io_functions()
+}
+
+# Así se define una función
+function arithmetic_functions(a, b, c, localvar) {
+
+ # Probablemente la parte más molesta de AWK es que no hay variables locales
+ # Todo es global. No es problema en scripts pequeños, pero sí para
+ # scripts más grandes.
+
+ # Hay un work-around (mmm... hack). Los argumentos de las funciones son
+ # locales para la función, y AWK permite definir más argumentos de función
+ # de los que necesita, por lo que define las variables locales en la
+ # declaración como en la función de arriba. Como convención, agrega
+ # espacios en blanco para distinguir los parámetros de la función de las
+ # variables locales. En este ejemplo, a, b y c son parámetros y localvar es una
+ # variable local.
+
+ # Ahora, a demostrar las funciones aritméticas
+
+ # La mayoría de las implementaciones de AWK tienen funciones
+ # trigonométricas estándar
+ localvar = sin(a)
+ localvar = cos(a)
+ localvar = atan2(b, a) # arcotangente de b / a
+
+ # Y cosas logarítmicas
+ localvar = exp(a)
+ localvar = log(a)
+
+ # Raíz cuadrada
+ localvar = sqrt(a)
+
+ # Trucar un flotante a entero
+ localvar = int(5.34) # localvar => 5
+
+ # Números aleatorios
+ srand() # La semilla es el argumento. Por defecto usa el tiempo del sistema
+ localvar = rand() # Número aleatorio entre 0 y 1.
+
+ # Y aquí se regresa el valor
+ return localvar
+}
+
+function string_functions( localvar, arr) {
+
+ # AWK tiene algunas funciones para procesamiento de strings,
+ # y muchas dependen fuertemente en expresiones regulares.
+
+ # Buscar y remplazar, primer instancia (sub) o todas las instancias (gsub)
+ # Ambas regresan el número de matches remplazados.
+ localvar = "fooooobar"
+ sub("fo+", "Meet me at the ", localvar) # localvar => "Meet me at the bar"
+ gsub("e+", ".", localvar) # localvar => "m..t m. at th. bar"
+
+ # Buscar una cadena que haga match con una expresión regular
+ # index() hace lo mismo, pero no permite expresiones regulares
+ match(localvar, "t") # => 4, dado que 't' es el cuarto caracter
+
+ # Separar con base en un delimitador
+ split("foo-bar-baz", arr, "-") # a => ["foo", "bar", "baz"]
+
+ # Otras funciones útiles
+ sprintf("%s %d %d %d", "Testing", 1, 2, 3) # => "Testing 1 2 3"
+ substr("foobar", 2, 3) # => "oob"
+ substr("foobar", 4) # => "bar"
+ length("foo") # => 3
+ tolower("FOO") # => "foo"
+ toupper("foo") # => "FOO"
+}
+
+function io_functions( localvar) {
+
+ # Ya has visto print
+ print "Hello world"
+
+ # También hay printf
+ printf("%s %d %d %d\n", "Testing", 1, 2, 3)
+
+ # AWK no tiene handles de archivos en sí mismo. Automáticamente abrirá un
+ # handle de archivo cuando use algo que necesite uno. El string que usaste
+ # para esto puede ser tratada como un handle de archivo para propósitos de I/O.
+ # Esto lo hace similar al scripting de shell:
+
+ print "foobar" >"/tmp/foobar.txt"
+
+ # Ahora el string "/tmp/foobar.txt" es un handle. Puedes cerrarlo:
+ close("/tmp/foobar.txt")
+
+ # Aquí está como correr algo en el shell
+ system("echo foobar") # => muestra foobar
+
+ # Lee una línea de la entrada estándar (stdin) y lo guarda en localvar
+ getline localvar
+
+ # Lee una línea desde un pipe
+ "echo foobar" | getline localvar # localvar => "foobar"
+ close("echo foobar")
+
+ # Lee una línea desde un archivo y la guarda en localvar
+ getline localvar <"/tmp/foobar.txt"
+ close("/tmp/foobar.txt")
+}
+
+# Como dije al inicio, los programas en AWK son una colección de patrones y
+# acciones. Ya conociste el patrón BEGIN. otros patrones sólo se usan si estás
+# procesando líneas desde archivos o stdin.
+
+# Cuando pasas argumentos a AWK, son tratados como nombres de archivos a
+# procesar. Los va a procesar todos, en orden. Imagínalos como un ciclo for
+# implícito, iterando sobre las líneas de estos archivos. Estos patrones y
+# acciones son como instrucciones switch dentro del ciclo.
+
+/^fo+bar$/ {
+
+ # Esta acción se ejecutará por cada línea que haga match con la expresión
+ # regular /^fo+bar$/, y será saltada por cualquier línea que no haga match.
+ # Vamos a sólo mostrar la línea:
+
+ print
+
+ # ¡Wow, sin argumento! Eso es porque print tiene uno por defecto: $0.
+ # $0 es el nombre de la línea actual que se está procesando.
+ # Se crea automáticamente para ti.
+
+ # Probablemente puedas adivinar que hay otras variables $. Cada línea es
+ # separada implícitamente antes de que se llame cada acción, justo como lo
+ # hace shell. Y, como shell, cada campo puede ser accesado con $.
+
+ # Esto mostrará el segundo y cuarto campos de la línea
+ print $2, $4
+
+ # AWK automáticamente define muchas otras variables que te ayudan a
+ # inspeccionar y procesar cada línea. La más importante es NF
+
+ # Imprime el número de campos de esta línea
+ print NF
+
+ # Imprime el último campo de esta línea
+ print $NF
+}
+
+# Cada patrón es realmente un prueba de verdadero/falso. La expresión regular
+# en el último patrón también es una prueba verdadero/falso, pero parte de eso
+# estaba oculto. Si no le das un string a la prueba, supondrá $0, la línea que
+# se está procesando. La versión completa de esto es:
+
+$0 ~ /^fo+bar$/ {
+ print "Equivalente al último patrón"
+}
+
+a > 0 {
+ # Esto se ejecutará una vez por línea, mientras a sea positivo
+}
+
+# Y ya te das una idea. Procesar archivos de texto, leyendo una línea a la vez,
+# y haciendo algo con ella, particularmente separando en un deliminator, es tan
+# común en UNIX que AWK es un lenguaje de scripting que hace todo eso por ti
+# sin que tengas que pedirlo. Basta con escribir los patrones y acciones
+# basados en lo que esperas de la entrada y lo quieras quieras hacer con ella.
+
+# Aquí está un ejemplo de un script simple, para lo que AWK es perfecto.
+# El script lee un nombre de stdin y muestra el promedio de edad para todos los
+# que tengan ese nombre. Digamos que como argumento pasamos el nombre de un
+# archivo con este contenido:
+#
+# Bob Jones 32
+# Jane Doe 22
+# Steve Stevens 83
+# Bob Smith 29
+# Bob Barker 72
+#
+# Éste es el script:
+
+BEGIN {
+
+ # Primero, pedir al usuario el nombre
+ print "¿Para qué nombre quieres el promedio de edad?"
+
+ # Recuperar una línea de stdin, no de archivos en la línea de comandos
+ getline name <"/dev/stdin"
+}
+
+# Ahora, hacer match con cada línea cuyo primer campo es el nombre dado
+$1 == name {
+
+ # Aquí dentro tenemos acceso a variables útiles precargadas:
+ # $0 es toda la línea
+ # $3 es el tercer campo, la edad, que es lo que nos interesa
+ # NF es el número de campos, que debe ser 3
+ # NR es el número de registros (líneas) vistos hasta ahora
+ # FILENAME es el nombre del archivo que está siendo procesado
+ # FS es el campo separador, " " en este caso
+ # Y muchas más que puedes conocer ejecutando 'man awk' en la terminal.
+
+ # Llevar el registro de la suma y cuantas líneas han hecho match.
+ sum += $3
+ nlines++
+}
+
+# Otro patrón especial es END. Va a ejecutarse después de procesar todos los
+# archivos de texto. A diferencia de BEGIN, sólo se ejecuta si le das dado una
+# entrada a procesar. Se ejecutará después de que todos los archivos hayan sido
+# leídos y procesados según las reglas y acciones que programaste. El propósito
+# es usualmente para mostrar un reporte final, o hacer algo con el agregado de
+# los datos que has acumulado durante la ejecución del script.
+
+END {
+ if (nlines)
+ print "La edad promedio para " name " es " sum / nlines
+}
+
+```
+Más información:
+
+* [Tutorial de AWK](http://www.grymoire.com/Unix/Awk.html)
+* [Página man de AWK](https://linux.die.net/man/1/awk)
+* [La guía del usuario de GNU Awk](https://www.gnu.org/software/gawk/manual/gawk.html): GNU Awk se encuentra en la mayoría de los sistemas Linux.
diff --git a/es-es/bf-es.html.markdown b/es-es/bf-es.html.markdown
index c93b8c3a..df1ae2e7 100644
--- a/es-es/bf-es.html.markdown
+++ b/es-es/bf-es.html.markdown
@@ -1,5 +1,6 @@
---
language: bf
+filename: bf-es.bf
contributors:
- ["Prajit Ramachandran", "http://prajitr.github.io/"]
- ["Mathias Bynens", "http://mathiasbynens.be/"]
diff --git a/es-es/c++-es.html.markdown b/es-es/c++-es.html.markdown
index 07c8bc03..2c3762d5 100644
--- a/es-es/c++-es.html.markdown
+++ b/es-es/c++-es.html.markdown
@@ -20,11 +20,11 @@ fue diseñado para
- soportar programación orientada a objetos
- soportar programación genérica
-Aunque su sintaxis puede ser más difícil o compleja que los nuevos lenguajes,
-es ampliamente utilizado, ya que compila instrucciones nativas que pueden ser
-directamente ejecutadas por el procesador y ofrece un estricto control sobre
-el hardware (como C), mientras ofrece características de alto nivel como
-genericidad, excepciones, y clases. Esta combinación de velocidad y
+Aunque su sintaxis puede ser más difícil o compleja que los nuevos lenguajes,
+es ampliamente utilizado, ya que compila instrucciones nativas que pueden ser
+directamente ejecutadas por el procesador y ofrece un estricto control sobre
+el hardware (como C), mientras ofrece características de alto nivel como
+genericidad, excepciones, y clases. Esta combinación de velocidad y
funcionalidad hace de C ++ uno de los lenguajes de programación más utilizados.
```c++
@@ -32,22 +32,22 @@ funcionalidad hace de C ++ uno de los lenguajes de programación más utilizados
// Comparación con C
////////////////////
-// C ++ es _casi_ un superconjunto de C y comparte su sintaxis básica para las
+// C ++ es _casi_ un superconjunto de C y comparte su sintaxis básica para las
// declaraciones de variables, tipos primitivos y funciones.
-// Al igual que en C, el punto de entrada de tu programa es una función llamada
-// main con un retorno de tipo entero.
+// Al igual que en C, el punto de entrada de tu programa es una función llamada
+// main con un retorno de tipo entero.
// Este valor sirve como código de salida del programa.
// Mira http://en.wikipedia.org/wiki/Exit_status para mayor información.
int main(int argc, char** argv)
{
- // Los argumentos de la línea de comandos se pasan por argc y argv de la
+ // Los argumentos de la línea de comandos se pasan por argc y argv de la
// misma manera que en C.
- // argc indica el número de argumentos,
- // y argv es un arreglo de strings de estilo C (char*)
+ // argc indica el número de argumentos,
+ // y argv es un arreglo de strings de estilo C (char*)
// representando los argumentos.
// El primer argumento es el nombre con el que el programa es llamado.
- // argc y argv pueden omitirse si no te preocupan los argumentos,
+ // argc y argv pueden omitirse si no te preocupan los argumentos,
// dejando la definición de la función como int main ()
// Un estado de salida 0 indica éxito.
@@ -72,7 +72,7 @@ void func(); // función que puede aceptar cualquier número de argumentos
// Use nullptr en lugar de NULL en C++
int* ip = nullptr;
-// Las cabeceras (headers) estándar de C están disponibles en C ++,
+// Las cabeceras (headers) estándar de C están disponibles en C ++,
// pero tienen el prefijo "c" y no tienen sufijo .h.
#include <cstdio>
@@ -109,7 +109,7 @@ int main()
// Argumentos de función por defecto
////////////////////////////////////
-// Puedes proporcionar argumentos por defecto para una función si no son
+// Puedes proporcionar argumentos por defecto para una función si no son
// proporcionados por quien la llama.
void doSomethingWithInts(int a = 1, int b = 4)
@@ -134,7 +134,7 @@ void invalidDeclaration(int a = 1, int b) // Error!
// Espacios de nombre
/////////////////////
-// Espacios de nombres proporcionan ámbitos separados para variable, función y
+// Espacios de nombres proporcionan ámbitos separados para variable, función y
// otras declaraciones.
// Los espacios de nombres se pueden anidar.
@@ -162,8 +162,8 @@ void foo()
int main()
{
- // Incluye todos los símbolos del espacio de nombre Second en el ámbito
- // actual. Tenga en cuenta que simplemente foo() no funciona, ya que ahora
+ // Incluye todos los símbolos del espacio de nombre Second en el ámbito
+ // actual. Tenga en cuenta que simplemente foo() no funciona, ya que ahora
// es ambigua si estamos llamando a foo en espacio de nombres Second o en
// el nivel superior.
using namespace Second;
@@ -254,7 +254,7 @@ const string& barRef = bar; // Crea una referencia constante a bar.
// modificados.
barRef += ". Hola!"; // Error, referencia constante no puede ser modificada.
-// Sidetrack: Antes de hablar más sobre referencias, hay que introducir un
+// Sidetrack: Antes de hablar más sobre referencias, hay que introducir un
// concepto llamado objeto temporal. Supongamos que tenemos el siguiente código:
string tempObjectFun() { ... }
string retVal = tempObjectFun();
@@ -267,16 +267,16 @@ string retVal = tempObjectFun();
// El objeto devuelto se llama objeto temporal. Objetos temporales son
// creados cada vez que una función devuelve un objeto, y es destruido en el
// fin de la evaluación de la expresión que encierra (Bueno, esto es lo que la
-// norma dice, pero los compiladores están autorizados a cambiar este
-// comportamiento. Busca "return value optimization" para ver mas detalles).
+// norma dice, pero los compiladores están autorizados a cambiar este
+// comportamiento. Busca "return value optimization" para ver mas detalles).
// Así que en este código:
foo(bar(tempObjectFun()))
// Suponiendo que foo y bar existen, el objeto retornado de tempObjectFun es
// pasado al bar, y se destruye antes de llamar foo.
-// Ahora, de vuelta a las referencias. La excepción a la regla "en el extremo
-// de la expresión encerrada" es si un objeto temporal se une a una
+// Ahora, de vuelta a las referencias. La excepción a la regla "en el extremo
+// de la expresión encerrada" es si un objeto temporal se une a una
// referencia constante, en cuyo caso su vida se extiende al ámbito actual:
void constReferenceTempObjectFun() {
@@ -287,7 +287,7 @@ void constReferenceTempObjectFun() {
}
// Otro tipo de referencia introducida en C ++ 11 es específicamente para
-// objetos temporales. No se puede tener una variable de este tipo, pero tiene
+// objetos temporales. No se puede tener una variable de este tipo, pero tiene
// prioridad en resolución de sobrecarga:
void someFun(string& s) { ... } // Referencia regular
@@ -302,7 +302,7 @@ someFun(tempObjectFun()); // Llama la versión con referencia temporal
basic_string(const basic_string& other);
basic_string(basic_string&& other);
-// La idea es que si estamos construyendo una nueva cadena de un objeto temporal
+// La idea es que si estamos construyendo una nueva cadena de un objeto temporal
// (que va a ser destruido pronto de todos modos), podemos tener un constructor
// mas eficiente que "rescata" partes de esa cadena temporal. Usted verá este
// Concepto denominado "movimiento semántico".
@@ -341,13 +341,13 @@ public:
// Funciones que no modifican el estado del objeto
// Deben marcarse como const.
// Esto le permite llamarlas si se envia una referencia constante al objeto.
- // También tenga en cuenta que las funciones deben ser declaradas
- // explícitamente como _virtual_ para que sea reemplazada en las clases
+ // También tenga en cuenta que las funciones deben ser declaradas
+ // explícitamente como _virtual_ para que sea reemplazada en las clases
// derivadas.
- // Las funciones no son virtuales por defecto por razones de rendimiento.
+ // Las funciones no son virtuales por defecto por razones de rendimiento.
virtual void print() const;
- // Las funciones también se pueden definir en el interior
+ // Las funciones también se pueden definir en el interior
// del cuerpo de la clase.
// Funciones definidas como tales están entre líneas automáticamente.
void bark() const { std::cout << name << " barks!\n"; }
@@ -358,7 +358,7 @@ public:
// (mira abajo)
// El destructor debe ser virtual si una clase es dervada desde el;
// Si no es virtual, entonces la clase derivada destructor
- // No será llamada si el objeto se destruye a través de una referencia de
+ // No será llamada si el objeto se destruye a través de una referencia de
// la clase base o puntero.
virtual ~Dog();
@@ -392,7 +392,7 @@ void Dog::print() const
Dog::~Dog()
{
- cout << "Adiós " << name << "\n";
+ std::cout << "Adiós " << name << "\n";
}
int main() {
@@ -410,7 +410,7 @@ class OwnedDog : public Dog {
void setOwner(const std::string& dogsOwner);
- // Reemplaza el comportamiento de la función de impresión
+ // Reemplaza el comportamiento de la función de impresión
// de todos los OwnedDogs. Mira
// http://en.wikipedia.org/wiki/Polymorphism_(computer_science)#Subtyping
// Para una introducción más general si no está familiarizado con el
@@ -442,7 +442,7 @@ void OwnedDog::print() const
// Inicialización y sobrecarga de operadores
////////////////////////////////////////////
-// En C ++ se puede sobrecargar el comportamiento
+// En C ++ se puede sobrecargar el comportamiento
// de los operadores como +, -, *, /, etc.
// Esto se hace mediante la definición de una función que es llamada
// cada vez que se utiliza el operador.
@@ -505,14 +505,14 @@ int main () {
// Plantillas (Templates)
/////////////////////////
-// Las plantillas en C++ se utilizan sobre todo en la programación genérica,
-// a pesar de que son mucho más poderoso que los constructores genéricos
-// en otros lenguajes. Ellos también soportan especialización explícita y
-// parcial y clases de tipo estilo funcional; de hecho, son un lenguaje
+// Las plantillas en C++ se utilizan sobre todo en la programación genérica,
+// a pesar de que son mucho más poderoso que los constructores genéricos
+// en otros lenguajes. Ellos también soportan especialización explícita y
+// parcial y clases de tipo estilo funcional; de hecho, son un lenguaje
// funcional Turing-completo incrustado en C ++!
-// Empezamos con el tipo de programación genérica que podría estar
-// familiarizado.
+// Empezamos con el tipo de programación genérica que podría estar
+// familiarizado.
// Para definir una clase o función que toma un parámetro de tipo:
template<class T>
class Box {
@@ -521,9 +521,9 @@ public:
void insert(const T&) { ... }
};
-// Durante la compilación, el compilador realmente genera copias de cada
-// plantilla con parámetros sustituidos, por lo que la definición completa
-// de la clase debe estar presente en cada invocación.
+// Durante la compilación, el compilador realmente genera copias de cada
+// plantilla con parámetros sustituidos, por lo que la definición completa
+// de la clase debe estar presente en cada invocación.
// Es por esto que usted verá clases de plantilla definidas
// Enteramente en archivos de cabecera.
@@ -537,8 +537,8 @@ intBox.insert(123);
Box<Box<int> > boxOfBox;
boxOfBox.insert(intBox);
-// Hasta C++11, había que colocar un espacio entre los dos '>'s,
-// de lo contrario '>>' serían analizados como el operador de desplazamiento
+// Hasta C++11, había que colocar un espacio entre los dos '>'s,
+// de lo contrario '>>' serían analizados como el operador de desplazamiento
// a la derecha.
@@ -558,9 +558,9 @@ void barkThreeTimes(const T& input)
input.bark();
}
-// Observe que no se especifica nada acerca de los tipos de parámetros aquí.
-// El compilador generará y comprobará cada invocación de la plantilla,
-// por lo que la función anterior funciona con cualquier tipo "T"
+// Observe que no se especifica nada acerca de los tipos de parámetros aquí.
+// El compilador generará y comprobará cada invocación de la plantilla,
+// por lo que la función anterior funciona con cualquier tipo "T"
// que tenga un método 'bark' constante!
@@ -574,12 +574,12 @@ void printMessage() {
cout << "Aprende C++ en " << Y << " minutos!" << endl;
}
-// Y usted puede especializar explícitamente plantillas
-// para código más eficiente.
-// Por supuesto, la mayor parte del mundo real que utiliza una especialización
+// Y usted puede especializar explícitamente plantillas
+// para código más eficiente.
+// Por supuesto, la mayor parte del mundo real que utiliza una especialización
// no son tan triviales como esta.
-// Tenga en cuenta que usted todavía tiene que declarar la función (o clase)
-// como plantilla incluso si ha especificado de forma explícita todos
+// Tenga en cuenta que usted todavía tiene que declarar la función (o clase)
+// como plantilla incluso si ha especificado de forma explícita todos
// los parámetros.
template<>
@@ -601,7 +601,7 @@ printMessage<10>(); // Prints "Aprende C++ rapido en solo 10 minutos!"
#include <exception>
#include <stdexcept>
-//Todas las excepciones lanzadas dentro del bloque _try_ pueden ser
+//Todas las excepciones lanzadas dentro del bloque _try_ pueden ser
// capturados por los siguientes manejadores _catch_.
try {
// No asignar excepciones en el heap usando _new_.
@@ -651,7 +651,7 @@ void doSomethingWithAFile(const char* filename)
// (Excepciones son la mejor forma de manejar los fallos,
// pero algunos programadores, especialmente los que tienen un fondo C,
// estan en desacuerdo sobre la utilidad de las excepciones).
-// Ahora tenemos que comprobar cada llamado por fallos y cerrar el manejador
+// Ahora tenemos que comprobar cada llamado por fallos y cerrar el manejador
// del archivo si se ha producido un problema.
bool doSomethingWithAFile(const char* filename)
{
@@ -716,7 +716,7 @@ void doSomethingWithAFile(const char* filename)
// Compare esto con el uso de la clase de flujo de archivos de C++ (fstream)
// fstream utiliza su destructor para cerrar el archivo.
-// Los destructores son llamados automáticamente
+// Los destructores son llamados automáticamente
// cuando un objeto queda fuera del ámbito.
void doSomethingWithAFile(const std::string& filename)
{
@@ -734,7 +734,7 @@ void doSomethingWithAFile(const std::string& filename)
// 1. No importa lo que pase,
// El recurso (en este caso el manejador de archivo) será limpiado.
// Una vez que escribes el destructor correctamente,
-// Es _imposible_ olvidar cerrar el identificador y permitir
+// Es _imposible_ olvidar cerrar el identificador y permitir
// fugas del recurso.
// 2. Tenga en cuenta que el código es mucho más limpio.
// El destructor se encarga de cerrar el archivo detrás de cámaras
@@ -743,13 +743,13 @@ void doSomethingWithAFile(const std::string& filename)
// Una excepción puede ser lanzado en cualquier lugar de la función
// y la limpieza ocurrirá.
-// Todo el código idiomático C++ utiliza RAII ampliamente para todos los
+// Todo el código idiomático C++ utiliza RAII ampliamente para todos los
// recursos.
// Otros ejemplos incluyen
// - Memoria usando unique_ptr y shared_ptr
// - Contenedores (Containers) - la biblioteca estándar linked list,
// vector (es decir, array con auto-cambio de tamaño), hash maps, etc.
-// Destruimos todos sus contenidos de forma automática
+// Destruimos todos sus contenidos de forma automática
// cuando quedan fuera del ámbito.
// - Mutex utilizando lock_guard y unique_lock
@@ -758,9 +758,9 @@ void doSomethingWithAFile(const std::string& filename)
// Cosas divertidas
/////////////////////
-// Aspectos de C ++ que pueden sorprender a los recién llegados
+// Aspectos de C ++ que pueden sorprender a los recién llegados
// (e incluso algunos veteranos).
-// Esta sección es, por desgracia, salvajemente incompleta;
+// Esta sección es, por desgracia, salvajemente incompleta;
// C++ es uno de los lenguajes con los que mas facil te disparas en el pie.
// Tu puedes sobreescribir métodos privados!
@@ -788,13 +788,13 @@ pt2 = nullptr; // Establece pt2 como null.
*pt = nullptr; // Esto todavía compila, a pesar de que '*pt' es un bool!
// '=' != '=' != '='!
-// Llama Foo::Foo(const Foo&) o alguna variante (mira movimientos semanticos)
+// Llama Foo::Foo(const Foo&) o alguna variante (mira movimientos semanticos)
// copia del constructor.
Foo f2;
Foo f1 = f2;
// Llama Foo::Foo(const Foo&) o variante, pero solo copia el 'Foo' parte de
-// 'fooSub'. Cualquier miembro extra de 'fooSub' se descarta. Este
+// 'fooSub'. Cualquier miembro extra de 'fooSub' se descarta. Este
// comportamiento horrible se llama "Corte de objetos."
FooSub fooSub;
Foo f1 = fooSub;
@@ -809,13 +809,13 @@ class Foo { ... };
vector<Foo> v;
for (int i = 0; i < 10; ++i)
v.push_back(Foo());
-// La siguiente línea establece el tamaño de v en 0,
+// La siguiente línea establece el tamaño de v en 0,
// pero los destructores no son llamados y los recursos no se liberan!
v.empty();
v.push_back(Foo()); // Nuevo valor se copia en el primer Foo que insertamos
-// En verdad destruye todos los valores en v.
+// En verdad destruye todos los valores en v.
// Consulta la sección acerca de los objetos temporales para la
// explicación de por qué esto funciona.
v.swap(vector<Foo>());
@@ -823,7 +823,6 @@ v.swap(vector<Foo>());
```
Otras lecturas:
-Una referencia del lenguaje hasta a la fecha se puede encontrar en
-<http://cppreference.com/w/cpp>
-
-Recursos adicionales se pueden encontrar en <http://cplusplus.com>
+* Una referencia del lenguaje hasta a la fecha se puede encontrar en [CPP Reference](http://cppreference.com/w/cpp).
+* Recursos adicionales se pueden encontrar en [[CPlusPlus]](http://cplusplus.com).
+* Un tutorial que cubre los conceptos básicos del lenguaje y la configuración del entorno de codificación está disponible en [TheChernoProject - C ++](https://www.youtube.com/playlist?list=PLlrATfBNZ98dudnM48yfGUldqGD0S4FF).
diff --git a/es-es/c-es.html.markdown b/es-es/c-es.html.markdown
index 8bc1eabb..cae4349e 100644
--- a/es-es/c-es.html.markdown
+++ b/es-es/c-es.html.markdown
@@ -5,6 +5,7 @@ contributors:
- ["Adam Bard", "http://adambard.com/"]
translators:
- ["Francisco García", "http://flaskbreaker.tumblr.com/"]
+ - ["Heitor P. de Bittencourt", "https://github.com/heitorPB/"]
lang: es-es
---
@@ -423,7 +424,7 @@ libro de C, escrito por Dennis Ritchie, creador de C y Brian Kernighan. Aún as
se cuidadoso, es antiguo, contiene algunas inexactitudes, y algunas prácticas
han cambiado.
-Otro buen recurso es [Learn C the hard way](http://c.learncodethehardway.org/book/).
+Otro buen recurso es [Learn C the hard way](http://learncodethehardway.org/c/).
Si tienes una pregunta, lee [compl.lang.c Frequently Asked Questions](http://c-faq.com).
diff --git a/es-es/clojure-es.html.markdown b/es-es/clojure-es.html.markdown
index 150d0bb2..62935ebe 100644
--- a/es-es/clojure-es.html.markdown
+++ b/es-es/clojure-es.html.markdown
@@ -9,28 +9,30 @@ translators:
lang: es-es
---
-Clojure es un lenguaje de la familia Lisp desarrollado sobre la Máquina Virtual
-de Java. Tiene un énfasis mayor en la [programación funcional](https://es.wikipedia.org/wiki/Programación_funcional) pura
-que Common Lisp, pero incluyendo la posibilidad de usar [SMT](https://es.wikipedia.org/wiki/Memoria_transacional) para manipular
+Clojure es un lenguaje de la familia Lisp desarrollado para la Máquina Virtual
+de Java. Tiene un énfasis mayor en la
+[programación funcional](https://es.wikipedia.org/wiki/Programación_funcional)
+pura que Common Lisp, pero incluye varias utilidades de
+[SMT](https://es.wikipedia.org/wiki/Memoria_transacional) para manipular
el estado según se presente.
-Esta combinación le permite gestionar la concurrencia de manera muy sencilla
-y a menudo automáticamente.
+Esta combinación le permite gestionar el procesamiento concurrente de manera
+muy sencilla, y a menudo automáticamente.
-(Necesitas la versión de Clojure 1.2 o posterior)
+(Necesitas la versión de Clojure 1.2 o reciente)
```clojure
-; Los comentatios comienzan con punto y coma.
+; Los comentarios comienzan con punto y coma.
-; Clojure se escribe mediante "forms" (patrones), los cuales son
-; listas de objectos entre paréntesis, separados por espacios en blanco.
+; Clojure se escribe mediante patrones ("forms"), los cuales son
+; listas de cosas entre paréntesis, separados por espacios en blanco.
-; El "reader" (lector) de Clojure asume que el primer objeto es una
-; función o una macro que se va a llamar, y que el resto son argumentos.
+; El lector ("reader") de Clojure asume que la primera cosa es una
+; función o una macro a llamar, y el resto son argumentos.
-; El primer form en un archivo debe ser ns, para establecer el namespace (espacio de
-; nombres)
+; La primera llamada en un archivo debe ser ns, para establecer el espacio de
+; nombres ("namespace")
(ns learnclojure)
; Algunos ejemplos básicos:
@@ -51,69 +53,70 @@ y a menudo automáticamente.
; También es necesaria la negación para las operaciones lógicas
(not true) ; => false
-; Cuando se anidan Los patrones, estos funcionan de la manera esperada
+; Los patrones anidados funcionan como esperas
(+ 1 (- 3 2)) ; = 1 + (3 - 2) => 2
; Tipos
;;;;;;;;;;;;;
-; Clojure usa los tipos de objetos de Java para booleanos, strings (cadenas de
-; caracteres) y números.
-; Usa class para saber de qué tipo es.
-(class 1); Los enteros son java.lang.Long por defecto
-(class 1.); Los numeros en coma flotante son java.lang.Double
-(class ""); Los strings van entre comillas dobles, y son
-; son java.lang.String
-(class false); Los Booleanos son java.lang.Boolean
+; Clojure usa los tipos de objetos de Java para booleanos, cadenas de
+; caracteres ("strings") y números.
+; Usa class para inspeccionarlos.
+(class 1); Los números enteros literales son java.lang.Long por defecto
+(class 1.); Los números en coma flotante literales son java.lang.Double
+(class ""); Los strings siempre van entre comillas dobles, y son
+ ; java.lang.String
+(class false); Los booleanos son java.lang.Boolean
(class nil); El valor "null" se escribe nil
-; Si quieres crear una lista de datos, precedela con una comilla
-; simple para evitar su evaluación
+; Si quieres crear una lista literal de datos, usa ' para evitar su evaluación
'(+ 1 2) ; => (+ 1 2)
-; (que es una abreviatura de (quote (+ 1 2)) )
+; (que es una abreviatura de (quote (+ 1 2)))
-; Puedes evaluar una lista precedida por comilla con eval
+; Puedes evaluar una lista precedida por una comilla con eval
(eval '(+ 1 2)) ; => 3
; Colecciones & Secuencias
;;;;;;;;;;;;;;;;;;;
-; Las Listas están basadas en las listas enlazadas, mientras que los Vectores en
-; arrays.
+; Las Listas están basadas en listas enlazadas, mientras que los Vectores en
+; arreglos.
; ¡Los Vectores y las Listas también son clases de Java!
(class [1 2 3]); => clojure.lang.PersistentVector
(class '(1 2 3)); => clojure.lang.PersistentList
-; Una lista podría ser escrita como (1 2 3), pero debemos ponerle una
-; comilla simple delante para evitar que el reader piense que es una función.
+; Una lista podría ser escrita como (1 2 3), pero debemos precederle una
+; comilla para evitar que el lector ("reader") piense que es una función.
; Además, (list 1 2 3) es lo mismo que '(1 2 3)
-; Las "Colecciones" son solo grupos de datos
-; Tanto las listas como los vectores son colecciones:
+; Las Colecciones ("collections") son solo grupos de datos
+; Tanto las Listas como los Vectores son colecciones:
(coll? '(1 2 3)) ; => true
(coll? [1 2 3]) ; => true
-; Las "Secuencias" (seqs) son descripciones abstractas de listas de datos.
-; Solo las listas son seqs.
+; Las Secuencias ("seqs") son descripciones abstractas de listas de datos.
+; Solo las listas son secuencias ("seqs").
(seq? '(1 2 3)) ; => true
(seq? [1 2 3]) ; => false
-; Una seq solo necesita proporcionar una entrada cuando es accedida.
-; Así que, las seqs pueden ser perezosas -- pueden establecer series infinitas:
+; Una secuencia solo necesita proporcionar uno de sus elementos cuando es
+; accedido.
+; Así que, las secuencias pueden ser perezosas -- pueden definir series
+; infinitas:
(range 4) ; => (0 1 2 3)
(range) ; => (0 1 2 3 4 ...) (una serie infinita)
(take 4 (range)) ; (0 1 2 3)
-; Usa cons para agregar un elemento al inicio de una lista o vector
+; Usa cons para agregar un elemento al inicio de una Lista o Vector
(cons 4 [1 2 3]) ; => (4 1 2 3)
(cons 4 '(1 2 3)) ; => (4 1 2 3)
; conj agregará un elemento a una colección en la forma más eficiente.
-; Para listas, se añade al inicio. Para vectores, al final.
+; Para Listas, se añade al inicio. Para vectores, al final.
(conj [1 2 3] 4) ; => [1 2 3 4]
(conj '(1 2 3) 4) ; => (4 1 2 3)
-; Usa concat para concatenar listas o vectores
+; Usa concat para concatenar Listas o Vectores
(concat [1 2] '(3 4)) ; => (1 2 3 4)
; Usa filter y map para actuar sobre colecciones
@@ -125,7 +128,7 @@ y a menudo automáticamente.
; = (+ (+ (+ 1 2) 3) 4)
; => 10
-; reduce puede tener un argumento indicando su valor inicial.
+; reduce puede tomar un argumento como su valor inicial también
(reduce conj [] '(3 2 1))
; = (conj (conj (conj [] 3) 2) 1)
; => [3 2 1]
@@ -137,43 +140,42 @@ y a menudo automáticamente.
; su última expresión
(fn [] "Hello World") ; => fn
-; (Necesitas rodearlo con paréntesis para invocarla)
+; (Necesitas rodearlo con paréntesis para llamarla)
((fn [] "Hello World")) ; => "Hello World"
-; Puedes crear una var (variable) mediante def
+; Puedes definir una variable ("var") mediante def
(def x 1)
x ; => 1
-; Asigna una función a una var
+; Asignar una función a una variable ("var")
(def hello-world (fn [] "Hello World"))
(hello-world) ; => "Hello World"
-; Puedes defn como atajo para lo anterior
+; Puedes usar defn como atajo para lo anterior
(defn hello-world [] "Hello World")
-; El [] es el vector de argumentos de la función.
+; El [] es el Vector de argumentos de la función.
(defn hello [name]
(str "Hello " name))
(hello "Steve") ; => "Hello Steve"
-; Otra abreviatura para crear funciones es:
+; Puedes usar esta abreviatura para definir funciones:
(def hello2 #(str "Hello " %1))
(hello2 "Fanny") ; => "Hello Fanny"
-; Puedes tener funciones multi-variadic: funciones con un numero variable de
-; argumentos
+; Puedes tener funciones multi-variables ("multi-variadic") también
(defn hello3
([] "Hello World")
([name] (str "Hello " name)))
(hello3 "Jake") ; => "Hello Jake"
(hello3) ; => "Hello World"
-; Las funciones pueden usar argumentos extras dentro de un seq utilizable en la función
+; Las funciones pueden empaquetar argumentos extras en una secuencia para ti
(defn count-args [& args]
(str "You passed " (count args) " args: " args))
(count-args 1 2 3) ; => "You passed 3 args: (1 2 3)"
-; Y puedes mezclarlos con el resto de argumentos declarados de la función.
+; Puedes combinar los argumentos regulares y los empaquetados
(defn hello-count [name & args]
(str "Hello " name ", you passed " (count args) " extra args"))
(hello-count "Finn" 1 2 3)
@@ -183,17 +185,18 @@ x ; => 1
; Mapas
;;;;;;;;;;
-; Mapas de Hash y mapas de arrays comparten una misma interfaz. Los mapas de Hash
-; tienen búsquedas más rápidas pero no mantienen el orden de las claves.
+; Los Mapas de Hash ("HashMap") y Mapas de Arreglo ("ArrayMap") comparten una
+; interfaz. Los Mapas de Hash tienen búsquedas más rápidas pero no mantienen el
+; orden de las llaves.
(class {:a 1 :b 2 :c 3}) ; => clojure.lang.PersistentArrayMap
(class (hash-map :a 1 :b 2 :c 3)) ; => clojure.lang.PersistentHashMap
-; Los mapas de arrays se convertidos en mapas de Hash en la mayoría de
-; operaciones si crecen mucho, por lo que no debes preocuparte.
+; Los Mapas de Arreglo se convierten automáticamente en Mapas de Hash en la
+; mayoría de operaciones si crecen mucho, por lo que no debes preocuparte.
-; Los mapas pueden usar cualquier tipo para sus claves, pero generalmente las
-; keywords (palabras clave) son lo habitual.
-; Las keywords son parecidas a cadenas de caracteres con algunas ventajas de eficiencia
+; Los Mapas pueden usar cualquier tipo para sus llaves, pero generalmente las
+; Claves ("keywords") son lo habitual.
+; Las Claves son como strings con algunas ventajas de eficiencia
(class :a) ; => clojure.lang.Keyword
(def stringmap {"a" 1, "b" 2, "c" 3})
@@ -205,28 +208,28 @@ keymap ; => {:a 1, :c 3, :b 2}
; Por cierto, las comas son equivalentes a espacios en blanco y no hacen
; nada.
-; Recupera un valor de un mapa tratandolo como una función
+; Recupera un valor de un Mapa tratándola como una función
(stringmap "a") ; => 1
(keymap :a) ; => 1
-; ¡Las keywords pueden ser usadas para recuperar su valor del mapa, también!
+; ¡Las Claves pueden ser usadas para recuperar su valor del mapa, también!
(:b keymap) ; => 2
; No lo intentes con strings.
;("a" stringmap)
; => Exception: java.lang.String cannot be cast to clojure.lang.IFn
-; Si preguntamos por una clave que no existe nos devuelve nil
+; Recuperando una clave no existente nos devuelve nil
(stringmap "d") ; => nil
-; Usa assoc para añadir nuevas claves a los mapas de Hash
+; Usa assoc para añadir nuevas claves a los Mapas de Hash
(def newkeymap (assoc keymap :d 4))
newkeymap ; => {:a 1, :b 2, :c 3, :d 4}
; Pero recuerda, ¡los tipos de Clojure son inmutables!
keymap ; => {:a 1, :b 2, :c 3}
-; Usa dissoc para eliminar llaves
+; Usa dissoc para eliminar claves
(dissoc keymap :a :b) ; => {:c 3}
; Conjuntos
@@ -238,50 +241,86 @@ keymap ; => {:a 1, :b 2, :c 3}
; Añade un elemento con conj
(conj #{1 2 3} 4) ; => #{1 2 3 4}
-; Elimina elementos con disj
+; Elimina uno con disj
(disj #{1 2 3} 1) ; => #{2 3}
-; Comprueba su existencia usando el conjunto como una función:
+; Comprueba su existencia usando al Conjunto como una función:
(#{1 2 3} 1) ; => 1
(#{1 2 3} 4) ; => nil
-; Hay más funciones en el namespace clojure.sets
+; Hay más funciones en el espacio de nombres clojure.sets
; Patrones útiles
;;;;;;;;;;;;;;;;;
-; Las construcciones lógicas en clojure son macros, y presentan el mismo aspecto
-; que el resto de forms.
+; Los operadores lógicos en clojure son solo macros, y presentan el mismo
+; aspecto que el resto de patrones.
(if false "a" "b") ; => "b"
(if false "a") ; => nil
-; Usa let para crear un binding (asociación) temporal
+; Usa let para definir ("binding") una variable temporal
(let [a 1 b 2]
(> a b)) ; => false
-; Agrupa expresiones mediante do
+; Agrupa sentencias mediante do
(do
(print "Hello")
"World") ; => "World" (prints "Hello")
-; Las funciones tienen implicita la llamada a do
+; Las funciones tienen un do implícito
(defn print-and-say-hello [name]
(print "Saying hello to " name)
(str "Hello " name))
(print-and-say-hello "Jeff") ;=> "Hello Jeff" (prints "Saying hello to Jeff")
-; Y el let también
+; Y let también
(let [name "Urkel"]
(print "Saying hello to " name)
(str "Hello " name)) ; => "Hello Urkel" (prints "Saying hello to Urkel")
+; Usa las macros de tubería ("threading", "arrow", "pipeline" o "chain")
+; (-> y ->>) para expresar la transformación de datos de una manera más clara.
+
+; La macro Tubería-primero ("Thread-first") (->) inserta en cada patrón el
+; resultado de los previos, como el primer argumento (segundo elemento)
+(->
+ {:a 1 :b 2}
+ (assoc :c 3) ;=> (assoc {:a 1 :b 2} :c 3)
+ (dissoc :b)) ;=> (dissoc (assoc {:a 1 :b 2} :c 3) :b)
+
+; Esta expresión podría ser escrita como:
+; (dissoc (assoc {:a 1 :b 2} :c 3) :b)
+; y evalua a {:a 1 :c 3}
+
+; La macro Tubería-último ("Thread-last") hace lo mismo, pero inserta el
+; resultado de cada línea al *final* de cada patrón. Esto es útil para las
+; operaciones de colecciones en particular:
+(->>
+ (range 10)
+ (map inc) ;=> (map inc (range 10)
+ (filter odd?) ;=> (filter odd? (map inc (range 10))
+ (into [])) ;=> (into [] (filter odd? (map inc (range 10)))
+ ; Result: [1 3 5 7 9]
+
+; Cuando estés en una situación donde quieras tener más libertad en donde
+; poner el resultado de transformaciones previas de datos en una expresión,
+; puedes usar la macro as->. Con ella, puedes asignar un nombre especifico
+; a la salida de la transformaciones y usarlo como identificador en tus
+; expresiones encadenadas ("chain").
+
+(as-> [1 2 3] input
+ (map inc input);=> You can use last transform's output at the last position
+ (nth input 2) ;=> and at the second position, in the same expression
+ (conj [4 5 6] input [8 9 10])) ;=> or in the middle !
+
+
; Módulos
;;;;;;;;;;;;;;;
; Usa use para obtener todas las funciones del módulo
(use 'clojure.set)
-; Ahora podemos usar más operaciones de conjuntos
+; Ahora podemos usar más operaciones de Conjuntos
(intersection #{1 2 3} #{2 3 4}) ; => #{2 3}
(difference #{1 2 3} #{2 3 4}) ; => #{1}
@@ -291,19 +330,18 @@ keymap ; => {:a 1, :b 2, :c 3}
; Usa require para importar un módulo
(require 'clojure.string)
-; Usa / para llamar a las funciones de un módulo
+; Usa / para llamar las funciones de un módulo
; Aquí, el módulo es clojure.string y la función es blank?
(clojure.string/blank? "") ; => true
-; Puedes asignarle una abreviatura a un modulo al importarlo
+; Puedes asignarle una sobrenombre a un modulo al importarlo
(require '[clojure.string :as str])
(str/replace "This is a test." #"[a-o]" str/upper-case) ; => "THIs Is A tEst."
-; (#"" es una expresión regular)
+; (#"" es una expresión regular literal)
-; Puedes usar require (y use, pero no lo hagas) desde un espacio de nombre
+; Puedes usar require (y use, pero no lo hagas) desde un espacio de nombres
; usando :require,
-; No necesitas preceder con comilla simple tus módulos si lo haces de esta
-; forma.
+; No necesitas preceder con comilla tus módulos si lo haces de esta manera.
(ns test
(:require
[clojure.string :as str]
@@ -312,8 +350,8 @@ keymap ; => {:a 1, :b 2, :c 3}
; Java
;;;;;;;;;;;;;;;;;
-; Java tiene una enorme librería estándar, por lo que resulta util
-; aprender como interactuar con ella.
+; Java tiene una enorme y útil librería estándar, por lo que querrás
+; aprender como hacer uso de ella.
; Usa import para cargar un módulo de java
(import java.util.Date)
@@ -326,14 +364,15 @@ keymap ; => {:a 1, :b 2, :c 3}
; Usa el nombre de la clase con un "." al final para crear una nueva instancia
(Date.) ; <un objeto Date>
-; Usa "." para llamar a métodos o usa el atajo ".método"
+; Usa "." para llamar métodos. O, usa el atajo ".método"
(. (Date.) getTime) ; <un timestamp>
-(.getTime (Date.)) ; exactamente la misma cosa
+(.getTime (Date.)) ; exactamente lo mismo.
; Usa / para llamar métodos estáticos.
(System/currentTimeMillis) ; <un timestamp> (System siempre está presente)
-; Usa doto para hacer frente al uso de clases (mutables) más tolerable
+; Usa doto para lidiar con el uso de clases (mutables) de una manera más
+; tolerable
(import java.util.Calendar)
(doto (Calendar/getInstance)
(.set 2000 1 1 0 0 0)
@@ -342,9 +381,9 @@ keymap ; => {:a 1, :b 2, :c 3}
; STM
;;;;;;;;;;;;;;;;;
-; Software Transactional Memory es un mecanismo que usa clojure para gestionar
-; el estado persistente. Hay unas cuantas construcciones en clojure que
-; hacen uso de este mecanismo.
+; La Memoria Transaccional ("Software Transactional Memory" / "STM") es un
+; mecanismo que usa clojure para gestionar la persistecia de estado. Hay unas
+; cuantas construcciones en clojure que hacen uso de él.
; Un atom es el más sencillo. Se le da un valor inicial
(def my-atom (atom {}))
@@ -352,14 +391,16 @@ keymap ; => {:a 1, :b 2, :c 3}
; Actualiza un atom con swap!
; swap! toma una función y la llama con el valor actual del atom
; como su primer argumento, y cualquier argumento restante como el segundo
-(swap! my-atom assoc :a 1) ; Establece my-atom al resultado de (assoc {} :a 1)
-(swap! my-atom assoc :b 2) ; Establece my-atom al resultado de (assoc {:a 1} :b 2)
+(swap! my-atom assoc :a 1) ; Establece my-atom al resultado
+ ; de (assoc {} :a 1)
+(swap! my-atom assoc :b 2) ; Establece my-atom al resultado
+ ; de (assoc {:a 1} :b 2)
-; Usa '@' para no referenciar al atom sino para obtener su valor
+; Usa '@' para no referenciar al atom y obtener su valor
my-atom ;=> Atom<#...> (Regresa el objeto Atom)
@my-atom ; => {:a 1 :b 2}
-; Un sencillo contador usando un atom sería
+; Aquí está un sencillo contador usando un atom
(def counter (atom 0))
(defn inc-counter []
(swap! counter inc))
@@ -372,22 +413,25 @@ my-atom ;=> Atom<#...> (Regresa el objeto Atom)
@counter ; => 5
-; Otros forms que utilizan STM son refs y agents.
+; Otras construcciones de STM son refs y agents.
; Refs: http://clojure.org/refs
; Agents: http://clojure.org/agents
+```
+
### Lectura adicional
-Ésto queda lejos de ser exhaustivo, pero espero que sea suficiente para que puedas empezar tu camino.
+Ésto queda lejos de ser exhaustivo, pero ojalá que sea suficiente para que
+puedas empezar tu camino.
Clojure.org tiene muchos artículos:
-[http://clojure.org/](http://clojure.org/)
+[http://clojure.org](http://clojure.org)
Clojuredocs.org contiene documentación con ejemplos para la mayoría de
funciones principales (pertenecientes al core):
-[http://clojuredocs.org/quickref/Clojure%20Core](http://clojuredocs.org/quickref/Clojure%20Core)
+[http://clojuredocs.org/quickref](http://clojuredocs.org/quickref)
4Clojure es una genial forma de mejorar tus habilidades con clojure/FP:
[http://www.4clojure.com/](http://www.4clojure.com/)
-Clojure-doc.org (sí, de verdad) tiene un buen número de artículos con los que iniciarse en Clojure:
-[http://clojure-doc.org/](http://clojure-doc.org/)
+Clojure-doc.org (sí, de verdad) tiene un buen número de artículos con los que
+iniciarse en Clojure: [http://clojure-doc.org](http://clojure-doc.org)
diff --git a/es-es/coldfusion-es.html.markdown b/es-es/coldfusion-es.html.markdown
new file mode 100644
index 00000000..2e98f910
--- /dev/null
+++ b/es-es/coldfusion-es.html.markdown
@@ -0,0 +1,330 @@
+---
+language: coldfusion
+filename: learncoldfusion-es.cfm
+contributors:
+ - ["Wayne Boka", "http://wboka.github.io"]
+ - ["Kevin Morris", "https://twitter.com/kevinmorris"]
+translators:
+ - ["Ivan Alburquerque", "https://github.com/AlburIvan"]
+lang: es-es
+---
+
+ColdFusion es un lenguaje de scripting para desarrollo web.
+[Lea más aquí](Http://www.adobe.com/products/coldfusion-family.html)
+
+### CFML
+_**C**old**F**usion **M**arkup **L**anguage_
+ColdFusion comenzó como un lenguaje basado en etiquetas. Casi toda la funcionalidad está disponible usando etiquetas.
+
+```cfm
+<em>Se han proporcionado etiquetas HTML para facilitar la lectura.</em>
+
+<!--- Los comentarios comienzan con "<!---" y terminan con "--->" --->
+<!---
+ Los comentarios
+ también
+ pueden ocupar
+ multiples líneas
+--->
+
+<!--- Las etiquetas CFML tienen un formato similar a las etiquetas HTML. --->
+<h1>Variables simples</h1>
+<!--- Declaración de variables: las variables son débilmente tipadas, similar a javascript --->
+<p>Set <b>miVariable</b> to "miValor"</p>
+<cfset miVariable = "miValor" />
+<p>Set <b>miNumero</b> to 3.14</p>
+<cfset miNumero = 3.14 />
+
+<!--- Mostrando datos simples --->
+<!--- Use <cfoutput> para valores simples como cadenas, números y expresiones --->
+<p>Muestra <b>miVariable</b>: <cfoutput>#miVariable#</cfoutput></p><!--- miValor --->
+<p>Muestra <b>miNumero</b>: <cfoutput>#miNumero#</cfoutput></p><!--- 3.14 --->
+
+<hr />
+
+<h1>Variables complejas</h1>
+<!--- Declarar variables complejas. --->
+<!--- Declarar una matriz de 1 dimensión: literal o notación de corchete --->
+<p>Establecer <b>miArreglo1</b> en una matriz de 1 dimensión utilizando la notación literal o de corchete</p>
+<cfset miArreglo1 = [] />
+<!--- Declarar una matriz de 1 dimensión: notación de función --->
+<p>Establecer <b> miArreglo2 </b> en una matriz de 1 dimensión usando la notación de funciones</p>
+<cfset miArreglo2 = ArrayNew(1) />
+
+<!--- Salida de variables complejas. --->
+<p>Contenidos de <b>miArreglo1</b></p>
+<cfdump var="#miArreglo1#" /> <!--- Un objeto de matriz vacío --->
+<p>Contenidos de <b>miArreglo2</b></p>
+<cfdump var="#miArreglo2#" /> <!--- Un objeto de matriz vacío --->
+
+<!--- Los operadores --->
+<!--- Aritméticos --->
+<h1>Operadores</h1>
+<h2>Aritméticos</h2>
+<p>1 + 1 = <cfoutput>#1 + 1#</cfoutput></p>
+<p>10 - 7 = <cfoutput>#10 - 7#<br /></cfoutput></p>
+<p>15 * 10 = <cfoutput>#15 * 10#<br /></cfoutput></p>
+<p>100 / 5 = <cfoutput>#100 / 5#<br /></cfoutput></p>
+<p>120 % 5 = <cfoutput>#120 % 5#<br /></cfoutput></p>
+<p>120 mod 5 = <cfoutput>#120 mod 5#<br /></cfoutput></p>
+
+<hr />
+
+<!--- Comparación --->
+<h2>Comparación</h2>
+<h3>Notación estándar</h3>
+<p>Is 1 eq 1? <cfoutput>#1 eq 1#</cfoutput></p>
+<p>Is 15 neq 1? <cfoutput>#15 neq 1#</cfoutput></p>
+<p>Is 10 gt 8? <cfoutput>#10 gt 8#</cfoutput></p>
+<p>Is 1 lt 2? <cfoutput>#1 lt 2#</cfoutput></p>
+<p>Is 10 gte 5? <cfoutput>#10 gte 5#</cfoutput></p>
+<p>Is 1 lte 5? <cfoutput>#1 lte 5#</cfoutput></p>
+
+<h3>Notación alternativa</h3>
+<p>Is 1 == 1? <cfoutput>#1 eq 1#</cfoutput></p>
+<p>Is 15 != 1? <cfoutput>#15 neq 1#</cfoutput></p>
+<p>Is 10 > 8? <cfoutput>#10 gt 8#</cfoutput></p>
+<p>Is 1 < 2? <cfoutput>#1 lt 2#</cfoutput></p>
+<p>Is 10 >= 5? <cfoutput>#10 gte 5#</cfoutput></p>
+<p>Is 1 <= 5? <cfoutput>#1 lte 5#</cfoutput></p>
+
+<hr />
+
+<!--- Estructuras de Control --->
+<h1>Estructuras de Control</h1>
+
+<cfset miCondicion = "Prueba" />
+
+<p>Condición a probar: "<cfoutput>#miCondicion#</cfoutput>"</p>
+
+<cfif miCondicion eq "Prueba">
+ <cfoutput>#miCondicion#. Estamos probando.</cfoutput>
+<cfelseif miCondicion eq "Producción">
+ <cfoutput>#miCondicion#. Procede con cuidado!!!</cfoutput>
+<cfelse>
+ miCondicion es desconocido
+</cfif>
+
+<hr />
+
+<!--- Bucles --->
+<h1>Bucles</h1>
+<h2>Bucle For</h2>
+<cfloop from="0" to="10" index="i">
+ <p>Index equals <cfoutput>#i#</cfoutput></p>
+</cfloop>
+
+<h2>Bucle For Each (Variables complejas)</h2>
+
+<p>Establecer <b>miArreglo3</b> to [5, 15, 99, 45, 100]</p>
+
+<cfset miArreglo3 = [5, 15, 99, 45, 100] />
+
+<cfloop array="#miArreglo3#" index="i">
+ <p>Index equals <cfoutput>#i#</cfoutput></p>
+</cfloop>
+
+<p>Establecer <b>myArray4</b> to ["Alpha", "Bravo", "Charlie", "Delta", "Echo"]</p>
+
+<cfset myArray4 = ["Alpha", "Bravo", "Charlie", "Delta", "Echo"] />
+
+<cfloop array="#myArray4#" index="s">
+ <p>Index equals <cfoutput>#s#</cfoutput></p>
+</cfloop>
+
+<h2>Declaración Switch</h2>
+
+<p>Establecer <b>miArreglo5</b> to [5, 15, 99, 45, 100]</p>
+
+<cfset miArreglo5 = [5, 15, 99, 45, 100] />
+
+<cfloop array="#miArreglo5#" index="i">
+ <cfswitch expression="#i#">
+ <cfcase value="5,15,45" delimiters=",">
+ <p><cfoutput>#i#</cfoutput> es un múltiplo de 5.</p>
+ </cfcase>
+ <cfcase value="99">
+ <p><cfoutput>#i#</cfoutput> es noventa y nueve.</p>
+ </cfcase>
+ <cfdefaultcase>
+ <p><cfoutput>#i#</cfoutput> no es 5, 15, 45, or 99.</p>
+ </cfdefaultcase>
+ </cfswitch>
+</cfloop>
+
+<hr />
+
+<h1>Conversión de tipos</h1>
+
+<style>
+ table.table th, table.table td {
+ border: 1px solid #000000;
+ padding: 2px;
+ }
+
+ table.table th {
+ background-color: #CCCCCC;
+ }
+</style>
+
+<table class="table" cellspacing="0">
+ <thead>
+ <tr>
+ <th>Valor</th>
+ <th>Como booleano</th>
+ <th>Como número</th>
+ <th>Como fecha</th>
+ <th>Como cadena</th>
+ </tr>
+ </thead>
+ <tbody>
+ <tr>
+ <th>"Si"</th>
+ <td>TRUE</td>
+ <td>1</td>
+ <td>Error</td>
+ <td>"Si"</td>
+ </tr>
+ <tr>
+ <th>"No"</th>
+ <td>FALSE</td>
+ <td>0</td>
+ <td>Error</td>
+ <td>"No"</td>
+ </tr>
+ <tr>
+ <th>TRUE</th>
+ <td>TRUE</td>
+ <td>1</td>
+ <td>Error</td>
+ <td>"Yes"</td>
+ </tr>
+ <tr>
+ <th>FALSE</th>
+ <td>FALSE</td>
+ <td>0</td>
+ <td>Error</td>
+ <td>"No"</td>
+ </tr>
+ <tr>
+ <th>Número</th>
+ <td>True si el número no es 0; False de lo contrario.</td>
+ <td>Número</td>
+ <td>Consulte &#34;Date-time values&#34; anteriormente en este capítulo.</td>
+ <td>Representación de cadena del número (for example, &#34;8&#34;).</td>
+ </tr>
+ <tr>
+ <th>Cadena</th>
+ <td>Si representa una fecha y hora (ver la siguiente columna), se convierte al valor numérico del objeto de fecha y hora correspondiente. <br> Si es una fecha, hora o marca de tiempo ODBC (por ejemplo, "{ts '2001-06-14 11:30:13'}", o si se expresa en un formato de fecha u hora estándar de EE. UU., incluido al usar nombres de mes completos o abreviados, se convierte al valor de fecha y hora correspondiente. <br> Los días de la semana o la puntuación inusual dan como resultado un error. <br> Generalmente se permiten guiones, barras diagonales y espacios. </td>
+ <td>Cadena</td>
+ </tr>
+ <tr>
+ <th>Fecha</th>
+ <td>Error</td>
+ <td>El valor numérico del objeto fecha-hora.</td>
+ <td>Fecha</td>
+ <td>una marca de tiempo de ODBC.</td>
+ </tr>
+ </tbody>
+</table>
+
+<hr />
+
+<h1>Componentes</h1>
+
+<em>Código de referencia (las funciones deben devolver algo para admitir IE)</em>
+```
+```cfs
+<cfcomponent>
+ <cfset this.hola = "Hola" />
+ <cfset this.mundo = "Mundo" />
+
+ <cffunction name="sayHhola">
+ <cfreturn this.hola & ", " & this.mundo & "!" />
+ </cffunction>
+
+ <cffunction name="setHhola">
+ <cfargument name="newHola" type="string" required="true" />
+
+ <cfset this.hola = arguments.newHola />
+
+ <cfreturn true />
+ </cffunction>
+
+ <cffunction name="setMundo">
+ <cfargument name="newMundo" type="string" required="true" />
+
+ <cfset this.mundo = arguments.newMundo />
+
+ <cfreturn true />
+ </cffunction>
+
+ <cffunction name="getHola">
+ <cfreturn this.hola />
+ </cffunction>
+
+ <cffunction name="getMundo">
+ <cfreturn this.mundo />
+ </cffunction>
+</cfcomponent>
+
+<cfset this.hola = "Hola" />
+<cfset this.mundo = "Mundo" />
+
+<cffunction name="sayHola">
+ <cfreturn this.hola & ", " & this.mundo & "!" />
+</cffunction>
+
+<cffunction name="setHola">
+ <cfargument name="newHola" type="string" required="true" />
+
+ <cfset this.hola = arguments.newHola />
+
+ <cfreturn true />
+</cffunction>
+
+<cffunction name="setMundo">
+ <cfargument name="newMundo" type="string" required="true" />
+
+ <cfset this.mundo = arguments.newMundo />
+
+ <cfreturn true />
+</cffunction>
+
+<cffunction name="getHola">
+ <cfreturn this.hola />
+</cffunction>
+
+<cffunction name="getMundo">
+ <cfreturn this.mundo />
+</cffunction>
+
+
+<b>sayHola()</b>
+<cfoutput><p>#sayHola()#</p></cfoutput>
+<b>getHola()</b>
+<cfoutput><p>#getHola()#</p></cfoutput>
+<b>getMundo()</b>
+<cfoutput><p>#getMundo()#</p></cfoutput>
+<b>setHola("Hola")</b>
+<cfoutput><p>#setHola("Hola")#</p></cfoutput>
+<b>setMundo("mundo")</b>
+<cfoutput><p>#setMundo("mundo")#</p></cfoutput>
+<b>sayHola()</b>
+<cfoutput><p>#sayHola()#</p></cfoutput>
+<b>getHola()</b>
+<cfoutput><p>#getHola()#</p></cfoutput>
+<b>getMundo()</b>
+<cfoutput><p>#getMundo()#</p></cfoutput>
+```
+
+### CFScript
+_**C**old**F**usion **S**cript_
+En los últimos años, el lenguaje ColdFusion ha agregado sintaxis de script para simular la funcionalidad de etiquetas. Cuando se utiliza un servidor CF actualizado, casi todas las funciones están disponibles mediante la sintaxis de script.
+
+## Otras lecturas
+
+Los enlaces que se proporcionan a continuación son solo para comprender el tema, siéntase libre de buscar en Google y encuentrar ejemplos específicos.
+
+1. [Coldfusion Reference From Adobe](https://helpx.adobe.com/coldfusion/cfml-reference/topics.html)
+2. [Open Source Documentation](http://cfdocs.org/)
diff --git a/es-es/common-lisp-es.html.markdown b/es-es/common-lisp-es.html.markdown
new file mode 100644
index 00000000..526ea621
--- /dev/null
+++ b/es-es/common-lisp-es.html.markdown
@@ -0,0 +1,692 @@
+---
+
+language: "Common Lisp"
+filename: commonlisp-es.lisp
+contributors:
+ - ["Paul Nathan", "https://github.com/pnathan"]
+ - ["Rommel Martinez", "https://ebzzry.io"]
+translators:
+ - ["ivanchoff", "https://github.com/ivanchoff"]
+ - ["Andre Polykanine", "https://github.com/Menelion"]
+lang: es-es
+---
+
+Common Lisp es un lenguaje de proposito general y multiparadigma adecuado para una amplia variedad
+de aplicaciones en la industria. Es frecuentemente referenciado como un lenguaje de programación
+programable.
+
+EL punto de inicio clásico es [Practical Common Lisp](http://www.gigamonkeys.com/book/). Otro libro
+popular y reciente es [Land of Lisp](http://landoflisp.com/). Un nuevo libro acerca de las mejores
+prácticas, [Common Lisp Recipes](http://weitz.de/cl-recipes/), fue publicado recientemente.
+
+```lisp
+
+;;;-----------------------------------------------------------------------------
+;;; 0. Sintaxis
+;;;-----------------------------------------------------------------------------
+
+;;; Forma general
+
+;;; CL tiene dos piezas fundamentales en su sintaxis: ATOM y S-EXPRESSION.
+;;; Típicamente, S-expressions agrupadas son llamadas `forms`.
+
+10 ; un atom; se evalua a sí mismo
+:thing ; otro atom; evaluando el símbolo :thing
+t ; otro atom, denotando true
+(+ 1 2 3 4) ; una s-expression
+'(4 :foo t) ; otra s-expression
+
+
+;;; Comentarios
+
+;;; comentarios de una sola línea empiezan con punto y coma; usa cuatro para
+;;; comentarios a nivel de archivo, tres para descripciones de sesiones, dos
+;;; adentro de definiciones, y una para líneas simples. Por ejemplo,
+
+;;;; life.lisp
+
+;;; Foo bar baz, porque quu quux. Optimizado para máximo krakaboom y umph.
+;;; Requerido por la función LINULUKO.
+
+(defun sentido (vida)
+ "Retorna el sentido de la vida calculado"
+ (let ((meh "abc"))
+ ;; llama krakaboom
+ (loop :for x :across meh
+ :collect x))) ; guarda valores en x, luego lo retorna
+
+;;; Comentarios de bloques, por otro lado, permiten comentarios de forma libre. estos son
+;;; delimitados con #| y |#
+
+#| Este es un comentario de bloque el cual
+ puede abarcar multiples líneas y
+ #|
+ estos pueden ser anidados
+ |#
+|#
+
+
+;;; Entorno
+
+;;; Existe una variedad de implementaciones; La mayoría son conformes a los estándares. SBCL
+;;; es un buen punto de inicio. Bibliotecas de terceros pueden instalarse fácilmente con
+;;; Quicklisp
+
+;;; CL es usualmente desarrollado y un bucle de Lectura-Evaluación-Impresión (REPL), corriendo
+;;; al mismo tiempo. El REPL permite la exploración interactiva del programa mientras este esta
+;;; corriendo
+
+
+;;;-----------------------------------------------------------------------------
+;;; 1. Operadores y tipos de datos primitivos
+;;;-----------------------------------------------------------------------------
+
+;;; Símbolos
+
+'foo ; => FOO Note que el símbolo es pasado a mayúsculas automáticamente.
+
+;;; INTERN manualmente crea un símbolo a partir de una cadena.
+
+(intern "AAAA") ; => AAAA
+(intern "aaa") ; => |aaa|
+
+;;; Números
+
+9999999999999999999999 ; enteros
+#b111 ; binario=> 7
+#o111 ; octal => 73
+#x111 ; hexadecimal => 273
+3.14159s0 ; simple
+3.14159d0 ; double
+1/2 ; proporciones
+#C(1 2) ; números complejos
+
+;;; las funciones son escritas como (f x y z ...) donde f es una función y
+;;; x, y, z, ... son los argumentos.
+
+(+ 1 2) ; => 3
+
+;;; Si deseas crear datos literales use QUOTE para prevenir que estos sean evaluados
+
+(quote (+ 1 2)) ; => (+ 1 2)
+(quote a) ; => A
+
+;;; La notación abreviada para QUOTE es '
+
+'(+ 1 2) ; => (+ 1 2)
+'a ; => A
+
+;;; Operaciones aritméticas básicas
+
+(+ 1 1) ; => 2
+(- 8 1) ; => 7
+(* 10 2) ; => 20
+(expt 2 3) ; => 8
+(mod 5 2) ; => 1
+(/ 35 5) ; => 7
+(/ 1 3) ; => 1/3
+(+ #C(1 2) #C(6 -4)) ; => #C(7 -2)
+
+;;; Boleanos
+
+t ; true; cualquier valor non-NIL es true
+nil ; false; también, la lista vacia: ()
+(not nil) ; => T
+(and 0 t) ; => T
+(or 0 nil) ; => 0
+
+;;; Caracteres
+
+#\A ; => #\A
+#\λ ; => #\GREEK_SMALL_LETTER_LAMDA
+#\u03BB ; => #\GREEK_SMALL_LETTER_LAMDA
+
+;;; Cadenas son arreglos de caracteres de longitud fija
+
+"Hello, world!"
+"Benjamin \"Bugsy\" Siegel" ; la barra invertida es un carácter de escape
+
+;;; Las cadenas pueden ser concatenadas
+
+(concatenate 'string "Hello, " "world!") ; => "Hello, world!"
+
+;;; Una cadena puede ser tratada como una secuencia de caracteres
+
+(elt "Apple" 0) ; => #\A
+
+;;; FORMAT es usado para crear salidas formateadas, va desde simple interpolación de cadenas
+;;; hasta bucles y condicionales. El primer argumento de FORMAT determina donde irá la cadena
+;;; formateada. Si este es NIL, FORMAT simplemente retorna la cadena formateada como un valor;
+;;; si es T, FORMAT imprime a la salida estándar, usualmente la pantalla, luego este retorna NIL.
+
+(format nil "~A, ~A!" "Hello" "world") ; => "Hello, world!"
+(format t "~A, ~A!" "Hello" "world") ; => NIL
+
+
+;;;-----------------------------------------------------------------------------
+;;; 2. Variables
+;;;-----------------------------------------------------------------------------
+
+;;; Puedes crear una variable global (ámbito dinámico) usando DEFVAR y DEFPARAMETER
+;;; el nombre de la variable puede usar cualquier carácter excepto: ()",'`;#|\
+
+;;; La diferencia entre DEFVAR y DEFPARAMETER es que reevaluando una expresión
+;;; DEFVAR no cambia el valor de la variable. DEFPARAMETER, por otro lado sí lo hace.
+
+;;; Por convención, variables de ámbito dinámico tienen "orejeras" en sus nombres.
+
+(defparameter *some-var* 5)
+*some-var* ; => 5
+
+;;; Puedes usar también caracteres unicode.
+(defparameter *AΛB* nil)
+
+;;; Accediendo a una variable sin asignar tienen como resultado el error
+;;; UNBOUND-VARIABLE, sin embargo este es el comportamiento definido. no lo hagas
+
+;;; puedes crear enlaces locales con LET. en el siguiente código, `me` es asignado
+;;; con "dance with you" solo dentro de (let ...). LET siempre retorna el valor
+;;; del último `form`.
+
+(let ((me "dance with you")) me) ; => "dance with you"
+
+
+;;;-----------------------------------------------------------------------------;
+;;; 3. Estructuras y colecciones
+;;;-----------------------------------------------------------------------------;
+
+
+;;; Estructuras
+
+(defstruct dog name breed age)
+(defparameter *rover*
+ (make-dog :name "rover"
+ :breed "collie"
+ :age 5))
+*rover* ; => #S(DOG :NAME "rover" :BREED "collie" :AGE 5)
+(dog-p *rover*) ; => T
+(dog-name *rover*) ; => "rover"
+
+;;; DOG-P, MAKE-DOG, y DOG-NAME son creados automáticamente por DEFSTRUCT
+
+
+;;; Pares
+
+;;; CONS crea pares. CAR y CDR retornan la cabeza y la cola de un CONS-pair
+
+(cons 'SUBJECT 'VERB) ; => '(SUBJECT . VERB)
+(car (cons 'SUBJECT 'VERB)) ; => SUBJECT
+(cdr (cons 'SUBJECT 'VERB)) ; => VERB
+
+
+;;; Listas
+
+;;; Listas son estructuras de datos de listas enlazadas, hechas de pares CONS y terminan con un
+;;; NIL (o '()) para marcar el final de la lista
+
+(cons 1 (cons 2 (cons 3 nil))) ; => '(1 2 3)
+
+;;; LIST es una forma conveniente de crear listas
+
+(list 1 2 3) ; => '(1 2 3)
+
+;;; Cuando el primer argumento de CONS es un atom y el segundo argumento es una lista,
+;;; CONS retorna un nuevo par CONS con el primer argumento como el primer elemento y el
+;;; segundo argumento como el resto del par CONS
+
+(cons 4 '(1 2 3)) ; => '(4 1 2 3)
+
+;;; Use APPEND para unir listas
+
+(append '(1 2) '(3 4)) ; => '(1 2 3 4)
+
+;;; o CONCATENATE
+
+(concatenate 'list '(1 2) '(3 4)) ; => '(1 2 3 4)
+
+;;; las listas son un tipo de datos centrales en CL, por lo tanto hay una gran variedad
+;;; de funcionalidades para ellas, algunos ejemplos son:
+
+(mapcar #'1+ '(1 2 3)) ; => '(2 3 4)
+(mapcar #'+ '(1 2 3) '(10 20 30)) ; => '(11 22 33)
+(remove-if-not #'evenp '(1 2 3 4)) ; => '(2 4)
+(every #'evenp '(1 2 3 4)) ; => NIL
+(some #'oddp '(1 2 3 4)) ; => T
+(butlast '(subject verb object)) ; => (SUBJECT VERB)
+
+
+;;; Vectores
+
+;;; Vectores literales son arreglos de longitud fija
+
+#(1 2 3) ; => #(1 2 3)
+
+;;; Use CONCATENATE para juntar vectores
+
+(concatenate 'vector #(1 2 3) #(4 5 6)) ; => #(1 2 3 4 5 6)
+
+
+;;; Arreglos
+
+;;; Vectores y cadenas son casos especiales de arreglos.
+
+;;; Arreglos bidimensionales
+
+(make-array (list 2 2)) ; => #2A((0 0) (0 0))
+(make-array '(2 2)) ; => #2A((0 0) (0 0))
+(make-array (list 2 2 2)) ; => #3A(((0 0) (0 0)) ((0 0) (0 0)))
+
+;;; Precaución: los valores iniciales por defecto de MAKE-ARRAY son implementaciones definidas
+;;; para definirlos explícitamente:
+
+(make-array '(2) :initial-element 'unset) ; => #(UNSET UNSET)
+
+;;; Para acceder al elemento en 1, 1, 1:
+
+(aref (make-array (list 2 2 2)) 1 1 1) ; => 0
+
+;;; Este valor es definido por implementación:
+;;; NIL en ECL, 0 en SBCL and CCL.
+
+;;; vectores ajustables
+
+;;; los vectores ajustables tienen la misma representación en la impresión como los vectores literales
+;;; de longitud fija.
+
+(defparameter *adjvec* (make-array '(3) :initial-contents '(1 2 3)
+ :adjustable t :fill-pointer t))
+*adjvec* ; => #(1 2 3)
+
+;;; Agregando nuevos elementos
+
+(vector-push-extend 4 *adjvec*) ; => 3
+*adjvec* ; => #(1 2 3 4)
+
+
+;;; Conjuntos, ingenuamente son listas:
+
+(set-difference '(1 2 3 4) '(4 5 6 7)) ; => (3 2 1)
+(intersection '(1 2 3 4) '(4 5 6 7)) ; => 4
+(union '(1 2 3 4) '(4 5 6 7)) ; => (3 2 1 4 5 6 7)
+(adjoin 4 '(1 2 3 4)) ; => (1 2 3 4)
+
+;;; Sin embargo, necesitarás una mejor estructura de datos que listas enlazadas
+;;; cuando trabajes con conjuntos de datos grandes
+
+;;; Los Diccionarios son implementados como tablas hash.
+
+;;; Crear tablas hash
+
+(defparameter *m* (make-hash-table))
+
+;;; definir valor
+
+(setf (gethash 'a *m*) 1)
+
+;;; obtener valor
+
+(gethash 'a *m*) ; => 1, T
+
+;;; las expresiones en CL tienen la facultad de retornar multiples valores.
+
+(values 1 2) ; => 1, 2
+
+;;; los cuales pueden ser asignados con MULTIPLE-VALUE-BIND
+
+(multiple-value-bind (x y)
+ (values 1 2)
+ (list y x))
+
+; => '(2 1)
+
+;;; GETHASH es un ejemplo de una función que retorna multiples valores. El primer
+;;; valor es el valor de la llave en la tabla hash: si la llave no existe retorna NIL.
+
+;;; El segundo valor determina si la llave existe en la tabla hash. si la llave no existe
+;;; en la tabla hash retorna NIL. Este comportamiento permite verificar si el valor de una
+;;; llave es actualmente NIL.
+
+;;; Obteniendo un valor no existente retorna NIL
+
+(gethash 'd *m*) ;=> NIL, NIL
+
+;;; Puedes declarar un valor por defecto para las llaves inexistentes
+
+(gethash 'd *m* :not-found) ; => :NOT-FOUND
+
+;;; Vamos a manejar los multiples valores de retornno en el código.
+
+(multiple-value-bind (a b)
+ (gethash 'd *m*)
+ (list a b))
+; => (NIL NIL)
+
+(multiple-value-bind (a b)
+ (gethash 'a *m*)
+ (list a b))
+; => (1 T)
+
+
+;;;-----------------------------------------------------------------------------
+;;; 3. Funciones
+;;;-----------------------------------------------------------------------------
+
+;;; Use LAMBDA para crear funciones anónimas. las funciones siempre retornan el valor
+;;; de la última expresión. la representación imprimible de una función varia entre
+;;; implementaciones.
+
+(lambda () "Hello World") ; => #<FUNCTION (LAMBDA ()) {1004E7818B}>
+
+;;; Use FUNCALL para llamar funciones anónimas.
+
+(funcall (lambda () "Hello World")) ; => "Hello World"
+(funcall #'+ 1 2 3) ; => 6
+
+;;; Un llamado a FUNCALL es también realizado cuando la expresión lambda es el CAR de
+;;; una lista.
+
+((lambda () "Hello World")) ; => "Hello World"
+((lambda (val) val) "Hello World") ; => "Hello World"
+
+;;; FUNCALL es usado cuando los argumentos son conocidos de antemano.
+;;; de lo contrario use APPLY
+
+(apply #'+ '(1 2 3)) ; => 6
+(apply (lambda () "Hello World") nil) ; => "Hello World"
+
+;;; Para nombrar una funcion use DEFUN
+
+(defun hello-world () "Hello World")
+(hello-world) ; => "Hello World"
+
+;;; Los () en la definición anterior son la lista de argumentos
+
+(defun hello (name) (format nil "Hello, ~A" name))
+(hello "Steve") ; => "Hello, Steve"
+
+;;; las functiones pueden tener argumentos opcionales; por defecto son NIL
+
+(defun hello (name &optional from)
+ (if from
+ (format t "Hello, ~A, from ~A" name from)
+ (format t "Hello, ~A" name)))
+
+(hello "Jim" "Alpacas") ; => Hello, Jim, from Alpacas
+
+;;; Los valores por defecto pueden ser especificados
+
+
+(defun hello (name &optional (from "The world"))
+ (format nil "Hello, ~A, from ~A" name from))
+
+(hello "Steve") ; => Hello, Steve, from The world
+(hello "Steve" "the alpacas") ; => Hello, Steve, from the alpacas
+
+;;; Las funciones también tienen argumentos llaves para permitir argumentos no positionados
+
+(defun generalized-greeter (name &key (from "the world") (honorific "Mx"))
+ (format t "Hello, ~A ~A, from ~A" honorific name from))
+
+(generalized-greeter "Jim")
+; => Hello, Mx Jim, from the world
+
+(generalized-greeter "Jim" :from "the alpacas you met last summer" :honorific "Mr")
+; => Hello, Mr Jim, from the alpacas you met last summer
+
+
+;;;-----------------------------------------------------------------------------
+;;; 4. Igualdad
+;;;-----------------------------------------------------------------------------
+
+;;; CL tiene un sistema sofisticado de igualdad. Una parte es tratada aquí.
+
+;;; Para números use `=`
+(= 3 3.0) ; => T
+(= 2 1) ; => NIL
+
+;;; Para identidad de objetos (aproximadamente) use EQL
+(eql 3 3) ; => T
+(eql 3 3.0) ; => NIL
+(eql (list 3) (list 3)) ; => NIL
+
+;;; para listas, cadenas y bit vectores use EQUAL
+(equal (list 'a 'b) (list 'a 'b)) ; => T
+(equal (list 'a 'b) (list 'b 'a)) ; => NIL
+
+
+;;;-----------------------------------------------------------------------------
+;;; 5. Control de flujo
+;;;-----------------------------------------------------------------------------
+
+;;; Condicionales
+
+(if t ; testar expresión
+ "this is true" ; then expression
+ "this is false") ; else expression
+; => "this is true"
+
+;;; En condicionales, todo valor non-NIL es tratado como true
+
+(member 'Groucho '(Harpo Groucho Zeppo)) ; => '(GROUCHO ZEPPO)
+(if (member 'Groucho '(Harpo Groucho Zeppo))
+ 'yep
+ 'nope)
+; => 'YEP
+
+;;; COND en cadena una serie de pruebas para seleccionar un resultado
+(cond ((> 2 2) (error "wrong!"))
+ ((< 2 2) (error "wrong again!"))
+ (t 'ok)) ; => 'OK
+
+;;; TYPECASE evalua sobre el tipo del valor
+(typecase 1
+ (string :string)
+ (integer :int))
+; => :int
+
+
+;;; Bucles
+
+;;; Recursión
+
+(defun fact (n)
+ (if (< n 2)
+ 1
+ (* n (fact(- n 1)))))
+
+(fact 5) ; => 120
+
+;;; Iteración
+
+(defun fact (n)
+ (loop :for result = 1 :then (* result i)
+ :for i :from 2 :to n
+ :finally (return result)))
+
+(fact 5) ; => 120
+
+(loop :for x :across "abcd" :collect x)
+; => (#\a #\b #\c #\d)
+
+(dolist (i '(1 2 3 4))
+ (format t "~A" i))
+; => 1234
+
+
+;;;-----------------------------------------------------------------------------
+;;; 6. Mutación
+;;;-----------------------------------------------------------------------------
+
+;;; use SETF para asignar un valor nuevo a una variable existente. Esto fue demostrado
+;;; previamente en el ejemplo de la tabla hash.
+
+(let ((variable 10))
+ (setf variable 2))
+; => 2
+
+;;; Un estilo bueno de lisp es minimizar el uso de funciones destructivas y prevenir
+;;; la mutación cuando sea posible.
+
+
+;;;-----------------------------------------------------------------------------
+;;; 7. Clases y objetos
+;;;-----------------------------------------------------------------------------
+
+;;; No más clases de animales, tengamos transportes mecánicos impulsados por el humano
+
+(defclass human-powered-conveyance ()
+ ((velocity
+ :accessor velocity
+ :initarg :velocity)
+ (average-efficiency
+ :accessor average-efficiency
+ :initarg :average-efficiency))
+ (:documentation "A human powered conveyance"))
+
+;;; Los argumentos de DEFCLASS, en orden son:
+;;; 1. nombre de la clase
+;;; 2. lista de superclases
+;;; 3. slot list
+;;; 4. Especificadores opcionales
+
+;;; cuando no hay lista de superclase, la lista vacia indica clase de
+;;; objeto estándar, esto puede ser cambiado, pero no mientras no sepas
+;;; lo que estas haciendo. revisar el arte del protocolo de meta-objetos
+;;; para más información.
+
+(defclass bicycle (human-powered-conveyance)
+ ((wheel-size
+ :accessor wheel-size
+ :initarg :wheel-size
+ :documentation "Diameter of the wheel.")
+ (height
+ :accessor height
+ :initarg :height)))
+
+(defclass recumbent (bicycle)
+ ((chain-type
+ :accessor chain-type
+ :initarg :chain-type)))
+
+(defclass unicycle (human-powered-conveyance) nil)
+
+(defclass canoe (human-powered-conveyance)
+ ((number-of-rowers
+ :accessor number-of-rowers
+ :initarg :number-of-rowers)))
+
+;;; Invocando DESCRIBE en la clase HUMAN-POWERED-CONVEYANCE en REPL obtenemos:
+
+(describe 'human-powered-conveyance)
+
+; COMMON-LISP-USER::HUMAN-POWERED-CONVEYANCE
+; [symbol]
+;
+; HUMAN-POWERED-CONVEYANCE names the standard-class #<STANDARD-CLASS
+; HUMAN-POWERED-CONVEYANCE>:
+; Documentation:
+; A human powered conveyance
+; Direct superclasses: STANDARD-OBJECT
+; Direct subclasses: UNICYCLE, BICYCLE, CANOE
+; Not yet finalized.
+; Direct slots:
+; VELOCITY
+; Readers: VELOCITY
+; Writers: (SETF VELOCITY)
+; AVERAGE-EFFICIENCY
+; Readers: AVERAGE-EFFICIENCY
+; Writers: (SETF AVERAGE-EFFICIENCY)
+
+;;; Tenga en cuenta el comportamiento reflexivo disponible. CL fue diseñado
+;;; para ser un systema interactivo
+
+;;; para definir un método, encontremos la circunferencia de la rueda usando
+;;; la ecuación C = d * pi
+
+(defmethod circumference ((object bicycle))
+ (* pi (wheel-size object)))
+
+;;; PI es definido internamente en CL
+
+;;; Supongamos que descubrimos que el valor de eficiencia del número de remeros
+;;; en una canoa es aproximadamente logarítmico. Esto probablemente debería
+;;; establecerse en el constructor / inicializador.
+
+;;; Para inicializar su instancia después de que CL termine de construirla:
+
+(defmethod initialize-instance :after ((object canoe) &rest args)
+ (setf (average-efficiency object) (log (1+ (number-of-rowers object)))))
+
+;;; luego para construir una instancia y revisar la eficiencia promedio
+
+(average-efficiency (make-instance 'canoe :number-of-rowers 15))
+; => 2.7725887
+
+
+;;;-----------------------------------------------------------------------------
+;;; 8. Macros
+;;;-----------------------------------------------------------------------------
+
+;;; las Macros le permiten extender la sintaxis del lenguaje, CL no viene con
+;;; un bucle WHILE, por lo tanto es facil escribirlo, Si obedecemos nuestros
+;;; instintos de ensamblador, terminamos con:
+
+(defmacro while (condition &body body)
+ "While `condition` is true, `body` is executed.
+`condition` is tested prior to each execution of `body`"
+ (let ((block-name (gensym)) (done (gensym)))
+ `(tagbody
+ ,block-name
+ (unless ,condition
+ (go ,done))
+ (progn
+ ,@body)
+ (go ,block-name)
+ ,done)))
+
+;;; revisemos la versión de alto nivel para esto:
+
+(defmacro while (condition &body body)
+ "While `condition` is true, `body` is executed.
+`condition` is tested prior to each execution of `body`"
+ `(loop while ,condition
+ do
+ (progn
+ ,@body)))
+
+;;; Sin embargo, con un compilador moderno, esto no es necesario; El LOOP se
+;;; compila igualmente bien y es más fácil de leer.
+
+;;; Tenga en cuenta que se utiliza ```, así como `,` y `@`. ``` es un operador
+;;; de tipo de cita conocido como quasiquote; permite el uso de `,` . `,` permite
+;;; variables "entre comillas". @ interpola las listas.
+
+;;; GENSYM crea un símbolo único que garantiza que no existe en ninguna otra parte
+;;; del sistema. Esto se debe a que las macros se expanden en el momento de la compilación
+;;; y las variables declaradas en la macro pueden colisionar con las variables utilizadas
+;;; en un código regular.
+
+;;; Consulte Practical Common Lisp y On Lisp para obtener más información sobre macros.
+```
+
+
+## Otras Lecturas
+
+- [Practical Common Lisp](http://www.gigamonkeys.com/book/)
+- [Common Lisp: A Gentle Introduction to Symbolic Computation](https://www.cs.cmu.edu/~dst/LispBook/book.pdf)
+
+
+## Información extra
+
+- [CLiki](http://www.cliki.net/)
+- [common-lisp.net](https://common-lisp.net/)
+- [Awesome Common Lisp](https://github.com/CodyReichert/awesome-cl)
+- [Lisp Lang](http://lisp-lang.org/)
+
+
+## Creditos
+
+Muchas Gracias a la gente de Scheme por proveer un gran punto de inicio
+el cual puede ser movido fácilmente a Common Lisp
+
+- [Paul Khuong](https://github.com/pkhuong) para un buen repaso.
diff --git a/es-es/csharp-es.html.markdown b/es-es/csharp-es.html.markdown
index ef26d8ce..72a0f90c 100644
--- a/es-es/csharp-es.html.markdown
+++ b/es-es/csharp-es.html.markdown
@@ -1,12 +1,13 @@
---
-language: c#
+language: C#(C Sharp)
+filename: LearnCSharp-es.cs
contributors:
- ["Irfan Charania", "https://github.com/irfancharania"]
- ["Max Yankov", "https://github.com/golergka"]
translators:
- - ["Olfran Jiménez", "https://twitter.com/neslux"]
-filename: LearnCSharp-es.cs
+ - ["Olfran Jiménez", "https://twitter.com/neslux"]
lang: es-es
+
---
C# es un lenguaje orientado a objetos elegante y de tipado seguro que
diff --git a/es-es/css-es.html b/es-es/css-es.html
new file mode 100644
index 00000000..506a9467
--- /dev/null
+++ b/es-es/css-es.html
@@ -0,0 +1,327 @@
+---
+language: css
+contributors:
+ - ["Mohammad Valipour", "https://github.com/mvalipour"]
+ - ["Marco Scannadinari", "https://github.com/marcoms"]
+ - ["Geoffrey Liu", "https://github.com/g-liu"]
+ - ["Connor Shea", "https://github.com/connorshea"]
+ - ["Deepanshu Utkarsh", "https://github.com/duci9y"]
+ - ["Brett Taylor", "https://github.com/glutnix"]
+ - ["Tyler Mumford", "https://tylermumford.com"]
+translators:
+ - ["miky ackerman", "https://github.com/mikyackerman"]
+lang: es-es
+filename: learncss-es.css
+---
+
+Paginas web estan contruidas en HTML, lo cual especifica el contenido de una pagina
+CSS(Hoja de Estilos en Cascada) es un lenguaje separado el cual especifica
+la **apariencia** de una pagina.
+
+codigo CSS esta hecho de *reglas* estaticas. Cada regla toma uno o mas *selectores* y da *valores* especificos a un numero de *propiedades* visuales. Esas propiedades estan entonces aplicadas a los elementos indicados en una pagina por los selectores
+
+Esta guia ha sido escrita con CSS 2 en mente, la cual es extendida por una nueva caracterica de CSS 3.
+
+**NOTA:** Debido a que CSS produce resultados visuales, para aprenderlo, necesitas
+Probar todo en un patio de juegos CSS como [dabblet] (http://dabblet.com/).
+El objetivo principal de este artículo es la sintaxis y algunos consejos generales.
+
+## Sintaxis
+
+```css
+/* Los comentarios aparecen dentro de un diagonal-asterisco, justo como esta linea
+ no hay "comentarios en una linea"; este es el unico estilo de comentario.*/
+
+
+/* ####################
+ ## SELECTORS
+ #################### */
+
+/* el selector es usado para apuntar a un elemento de la pagina. */
+selector { property: value; /* more properties...*/ }
+
+/*
+Here is an example element:
+
+<div class='class1 class2' id='anID' attr='value' otherAttr='en-us foo bar' />
+*/
+
+/* You can target it using one of its CSS classes */
+.class1 { }
+
+/* or both classes! */
+.class1.class2 { }
+
+/* or its name */
+div { }
+
+/* or its id */
+#anID { }
+
+/* or using the fact that it has an attribute! */
+[attr] { font-size:smaller; }
+
+/* or that the attribute has a specific value */
+[attr='value'] { font-size:smaller; }
+
+/* starts with a value (CSS 3) */
+[attr^='val'] { font-size:smaller; }
+
+/* or ends with a value (CSS 3) */
+[attr$='ue'] { font-size:smaller; }
+
+/* or contains a value in a space-separated list */
+[otherAttr~='foo'] { }
+[otherAttr~='bar'] { }
+
+/* or contains a value in a dash-separated list, e.g., "-" (U+002D) */
+[otherAttr|='en'] { font-size:smaller; }
+
+
+/* You can combine different selectors to create a more focused selector. Don't
+ put spaces between them. */
+div.some-class[attr$='ue'] { }
+
+/* You can select an element which is a child of another element */
+div.some-parent > .class-name { }
+
+/* or a descendant of another element. Children are the direct descendants of
+ their parent element, only one level down the tree. Descendants can be any
+ level down the tree. */
+div.some-parent .class-name { }
+
+/* Warning: the same selector without a space has another meaning.
+ Can you guess what? */
+div.some-parent.class-name { }
+
+/* You may also select an element based on its adjacent sibling */
+.i-am-just-before + .this-element { }
+
+/* or any sibling preceding it */
+.i-am-any-element-before ~ .this-element { }
+
+/* There are some selectors called pseudo classes that can be used to select an
+ element only when it is in a particular state */
+
+/* for example, when the cursor hovers over an element */
+selector:hover { }
+
+/* or a link has been visited */
+selector:visited { }
+
+/* or hasn't been visited */
+selected:link { }
+
+/* or an element is in focus */
+selected:focus { }
+
+/* any element that is the first child of its parent */
+selector:first-child {}
+
+/* any element that is the last child of its parent */
+selector:last-child {}
+
+/* Just like pseudo classes, pseudo elements allow you to style certain parts of
+ a document */
+
+/* matches a virtual first child of the selected element */
+selector::before {}
+
+/* matches a virtual last child of the selected element */
+selector::after {}
+
+/* At appropriate places, an asterisk may be used as a wildcard to select every
+ element */
+* { } /* all elements */
+.parent * { } /* all descendants */
+.parent > * { } /* all children */
+
+/* ####################
+ ## PROPERTIES
+ #################### */
+
+selector {
+
+ /* Units of length can be absolute or relative. */
+
+ /* Relative units */
+ width: 50%; /* percentage of parent element width */
+ font-size: 2em; /* multiples of element's original font-size */
+ font-size: 2rem; /* or the root element's font-size */
+ font-size: 2vw; /* multiples of 1% of the viewport's width (CSS 3) */
+ font-size: 2vh; /* or its height */
+ font-size: 2vmin; /* whichever of a vh or a vw is smaller */
+ font-size: 2vmax; /* or greater */
+
+ /* Absolute units */
+ width: 200px; /* pixels */
+ font-size: 20pt; /* points */
+ width: 5cm; /* centimeters */
+ min-width: 50mm; /* millimeters */
+ max-width: 5in; /* inches */
+
+ /* Colors */
+ color: #F6E; /* short hex format */
+ color: #FF66EE; /* long hex format */
+ color: tomato; /* a named color */
+ color: rgb(255, 255, 255); /* as rgb values */
+ color: rgb(10%, 20%, 50%); /* as rgb percentages */
+ color: rgba(255, 0, 0, 0.3); /* as rgba values (CSS 3) Note: 0 <= a <= 1 */
+ color: transparent; /* equivalent to setting the alpha to 0 */
+ color: hsl(0, 100%, 50%); /* as hsl percentages (CSS 3) */
+ color: hsla(0, 100%, 50%, 0.3); /* as hsl percentages with alpha */
+
+ /* Borders */
+ border-width:5px;
+ border-style:solid;
+ border-color:red; /* similar to how background-color is set */
+ border: 5px solid red; /* this is a short hand approach for the same */
+ border-radius:20px; /* this is a CSS3 property */
+
+ /* Images as backgrounds of elements */
+ background-image: url(/img-path/img.jpg); /* quotes inside url() optional */
+
+ /* Fonts */
+ font-family: Arial;
+ /* if the font family name has a space, it must be quoted */
+ font-family: "Courier New";
+ /* if the first one is not found, the browser uses the next, and so on */
+ font-family: "Courier New", Trebuchet, Arial, sans-serif;
+}
+```
+
+## Usage
+
+Save a CSS stylesheet with the extension `.css`.
+
+```html
+<!-- You need to include the css file in your page's <head>. This is the
+ recommended method. Refer to http://stackoverflow.com/questions/8284365 -->
+<link rel='stylesheet' type='text/css' href='path/to/style.css'>
+
+<!-- You can also include some CSS inline in your markup. -->
+<style>
+ a { color: purple; }
+</style>
+
+<!-- Or directly set CSS properties on the element. -->
+<div style="border: 1px solid red;">
+</div>
+```
+
+## Precedence or Cascade
+
+An element may be targeted by multiple selectors and may have a property set on
+it in more than once. In these cases, one of the rules takes precedence over
+others. Rules with a more specific selector take precedence over a less specific
+one, and a rule occurring later in the stylesheet overwrites a previous one
+(which also means that if two different linked stylesheets contain rules for an
+element and if the rules are of the same specificity, then order of linking
+would take precedence and the sheet linked latest would govern styling) .
+
+This process is called cascading, hence the name Cascading Style Sheets.
+
+Given the following CSS:
+
+```css
+/* A */
+p.class1[attr='value']
+
+/* B */
+p.class1 { }
+
+/* C */
+p.class2 { }
+
+/* D */
+p { }
+
+/* E */
+p { property: value !important; }
+```
+
+and the following markup:
+
+```html
+<p style='/*F*/ property:value;' class='class1 class2' attr='value'>
+```
+
+The precedence of style is as follows. Remember, the precedence is for each
+**property**, not for the entire block.
+
+* `E` has the highest precedence because of the keyword `!important`. It is
+recommended that you avoid its usage.
+* `F` is next, because it is an inline style.
+* `A` is next, because it is more "specific" than anything else. It has 3
+ specifiers: The name of the element `p`, its class `class1`, an attribute
+ `attr='value'`.
+* `C` is next, even though it has the same specificity as `B`.
+ This is because it appears after `B`.
+* `B` is next.
+* `D` is the last one.
+
+## Media Queries
+
+CSS Media Queries are a feature in CSS 3 which allows you to specify when certain CSS rules should be applied, such as when printed, or when on a screen with certain dimensions or pixel density. They do not add to the selector's specificity.
+
+```css
+/* A rule that will be used on all devices */
+h1 {
+ font-size: 2em;
+ color: white;
+ background-color: black;
+}
+
+/* change the h1 to use less ink on a printer */
+@media print {
+ h1 {
+ color: black;
+ background-color: white;
+ }
+}
+
+/* make the font bigger when shown on a screen at least 480px wide */
+@media screen and (min-width: 480px) {
+ h1 {
+ font-size: 3em;
+ font-weight: normal;
+ }
+}
+```
+
+Media queries can include these features:
+`width`, `height`, `device-width`, `device-height`, `orientation`, `aspect-ratio`, `device-aspect-ratio`, `color`, `color-index`, `monochrome`, `resolution`, `scan`, `grid`. Most of these features can be prefixed with `min-` or `max-`.
+
+The `resolution` feature is not supported by older devices, instead use `device-pixel-ratio`.
+
+Many smartphones and tablets will attempt to render the page as if it were on a desktop unless you provide a `viewport` meta-tag.
+
+```html
+<head>
+ <meta name="viewport" content="width=device-width; initial-scale=1.0">
+</head>
+```
+
+## Compatibility
+
+Most of the features in CSS 2 (and many in CSS 3) are available across all
+browsers and devices. But it's always good practice to check before using
+a new feature.
+
+## Resources
+
+* [CanIUse](http://caniuse.com) (Detailed compatibility info)
+* [Dabblet](http://dabblet.com/) (CSS playground)
+* [Mozilla Developer Network's CSS documentation](https://developer.mozilla.org/en-US/docs/Web/CSS) (Tutorials and reference)
+* [Codrops' CSS Reference](http://tympanus.net/codrops/css_reference/) (Reference)
+
+## Further Reading
+
+* [Understanding Style Precedence in CSS: Specificity, Inheritance, and the Cascade](http://www.vanseodesign.com/css/css-specificity-inheritance-cascaade/)
+* [Selecting elements using attributes](https://css-tricks.com/almanac/selectors/a/attribute/)
+* [QuirksMode CSS](http://www.quirksmode.org/css/)
+* [Z-Index - The stacking context](https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Understanding_z_index/The_stacking_context)
+* [SASS](http://sass-lang.com/) and [LESS](http://lesscss.org/) for CSS pre-processing
+* [CSS-Tricks](https://css-tricks.com)
+
+
diff --git a/es-es/dart-es.html.markdown b/es-es/dart-es.html.markdown
new file mode 100644
index 00000000..d0f57b95
--- /dev/null
+++ b/es-es/dart-es.html.markdown
@@ -0,0 +1,529 @@
+---
+language: dart
+contributors:
+ - ["Joao Pedrosa", "https://github.com/jpedrosa/"]
+translators:
+ - ["Jorge Antonio Atempa", "http://www.twitter.com/atempa09"]
+filename: dart-es.md
+lang: es-es
+---
+
+Dart es un recién llegado al ámbito de los lenguajes de programación.
+Toma prestado mucho de otros lenguajes principales, con el objetivo de no desviarse demasiado de
+su hermano JavaScript. Tal como JavaScript, Dart tiene como objetivo una gran integración en el navegador.
+
+La característica más controvertida de Dart debe ser su escritura opcional.
+
+```dart
+import "dart:collection";
+import "dart:math" as DM;
+
+// Bienvenido a Aprende Dart en 15 minutos. http://www.dartlang.org/
+// Este es un tutorial ejecutable. Puedes ejecutarlo con Dart o en
+// el sitio de ¡Try Dart! solo copiando y pegando en http://try.dartlang.org/
+
+// La declaración de función y de método tienen el mismo aspecto.
+// Las funciones pueden estar anidadas.
+// La declaración toma la forma name() {} o name() => expresionEnUnaLinea;
+// La declaración de la función de flecha gorda, tiene un retorno implícito
+// para el resultado de la expresión.
+example1() {
+ nested1() {
+ nested2() => print("example1 anidado 1 anidado 2");
+ nested2();
+ }
+ nested1();
+}
+
+// Las funciones anónimas no incluyen un nombre.
+example2() {
+ nested1(fn) {
+ fn();
+ }
+ nested1(() => print("example2 anidado 1"));
+}
+
+// Cuando se declara un parámetro de función, la declaración puede incluir el
+// número de parámetros que toma la función especificando los nombres de los
+// parámetros que lleva.
+example3() {
+ planA(fn(informSomething)) {
+ fn("example3 plan A");
+ }
+ planB(fn) { // O no declarar el número de parámetros.
+ fn("example3 plan B");
+ }
+ planA((s) => print(s));
+ planB((s) => print(s));
+}
+
+// Las funciones tienen acceso de cierre a variables externas.
+var example4Something = "Example4 anidado 1";
+example4() {
+ nested1(fn(informSomething)) {
+ fn(example4Something);
+ }
+ nested1((s) => print(s));
+}
+
+// La declaración de la clase con un método sayIt, el cual también tiene acceso de cierre
+// a la variable exterior como si fuera una función como se ha visto antes.
+var example5method = "example5 sayIt";
+class Example5Class {
+ sayIt() {
+ print(example5method);
+ }
+}
+example5() {
+ // Crear una instancia anónima de Example5Class y la llamada del método sayIt
+ new Example5Class().sayIt();
+}
+
+// La declaración de clase toma la forma NombreDeClase { [cuerpoDeClase] }.
+// Donde cuerpoDeClase puede incluir métodos de instancia y variables, pero también
+// métodos y variables de clase.
+class Example6Class {
+ var instanceVariable = "Example6 variable de instancia";
+ sayIt() {
+ print(instanceVariable);
+ }
+}
+example6() {
+ new Example6Class().sayIt();
+}
+
+// Los métodos y variables de clase son declarados con términos "static".
+class Example7Class {
+ static var classVariable = "Example7 variable de clase";
+ static sayItFromClass() {
+ print(classVariable);
+ }
+ sayItFromInstance() {
+ print(classVariable);
+ }
+}
+example7() {
+ Example7Class.sayItFromClass();
+ new Example7Class().sayItFromInstance();
+}
+
+// Las literales son geniales, pero hay una restricción para lo que pueden ser las literales
+// fuera de los cuerpos de función/método. Literales en el ámbito exterior de clase
+// o fuera de clase tienen que ser constantes. Las cadenas de caracteres y los números
+// son constantes por defecto. Pero los arreglos y mapas no lo son.
+// Ellos pueden hacerse constante anteponiendo en la declaración el término "const".
+var example8Array = const ["Example8 arreglo constante"],
+ example8Map = const {"algunaKey": "Example8 mapa constante"};
+example8() {
+ print(example8Array[0]);
+ print(example8Map["algunaKey"]);
+}
+
+// Los bucles en Dart toman la forma estándar para for () {} o ciclos while () {} ,
+// ligeramente más moderno for (.. in ..) {}, o llamadas funcionales con muchas
+// características soportadas, comenzando con forEach.
+var example9Array = const ["a", "b"];
+example9() {
+ for (var i = 0; i < example9Array.length; i++) {
+ print("example9 ciclo for '${example9Array[i]}'");
+ }
+ var i = 0;
+ while (i < example9Array.length) {
+ print("example9 ciclo while '${example9Array[i]}'");
+ i++;
+ }
+ for (var e in example9Array) {
+ print("example9 ciclo for-in '${e}'");
+ }
+ example9Array.forEach((e) => print("example9 ciclo forEach '${e}'"));
+}
+
+// Para recorrer los caracteres de una cadena o para extraer una subcadena.
+var example10String = "ab";
+example10() {
+ for (var i = 0; i < example10String.length; i++) {
+ print("example10 Recorrido de caracteres en la cadena '${example10String[i]}'");
+ }
+ for (var i = 0; i < example10String.length; i++) {
+ print("example10 ciclo de subcadena '${example10String.substring(i, i + 1)}'");
+ }
+}
+
+// Formato de números Int y double son soportados.
+example11() {
+ var i = 1 + 320, d = 3.2 + 0.01;
+ print("example11 int ${i}");
+ print("example11 double ${d}");
+}
+
+// DateTime ofrece aritmética de fecha/hora.
+example12() {
+ var now = new DateTime.now();
+ print("example12 ahora '${now}'");
+ now = now.add(new Duration(days: 1));
+ print("example12 manana '${now}'");
+}
+
+// Expresiones regulares son soportadas.
+example13() {
+ var s1 = "alguna cadena", s2 = "alguna", re = new RegExp("^s.+?g\$");
+ match(s) {
+ if (re.hasMatch(s)) {
+ print("example13 regexp embona '${s}'");
+ } else {
+ print("example13 regexp no embona '${s}'");
+ }
+ }
+ match(s1);
+ match(s2);
+}
+
+// Las expresiones booleanas admiten conversiones implícitas y tipos dinámicos.
+example14() {
+ var a = true;
+ if (a) {
+ print("true, a is $a");
+ }
+ a = null;
+ if (a) {
+ print("true, a es $a");
+ } else {
+ print("false, a es $a"); // corre aquí
+ }
+
+ // el tipado dinámico null puede convertirse a bool
+ var b; // b es de tipo dinámico
+ b = "abc";
+ try {
+ if (b) {
+ print("true, b es $b");
+ } else {
+ print("false, b es $b");
+ }
+ } catch (e) {
+ print("error, b es $b"); // esto podría ser ejecutado pero consiguió error
+ }
+ b = null;
+ if (b) {
+ print("true, b es $b");
+ } else {
+ print("false, b es $b"); // corre aquí
+ }
+
+ // tipado estático null no puede ser convertido a bool
+ var c = "abc";
+ c = null;
+ // compilación fallida
+ // if (c) {
+ // print("true, c is $c");
+ // } else {
+ // print("false, c is $c");
+ // }
+}
+
+// try/catch/finally y throw son utilizados para el manejo de excepciones.
+// throw toma cualquier objeto como parámetro;
+example15() {
+ try {
+ try {
+ throw "Algun error inesperado.";
+ } catch (e) {
+ print("example15 una excepcion: '${e}'");
+ throw e; // Re-throw
+ }
+ } catch (e) {
+ print("example15 atrapa la excepcion que ha sido relanzada: '${e}'");
+ } finally {
+ print("example15 aún ejecuta finally");
+ }
+}
+
+// Para ser eficiente cuando creas una cadena larga dinámicamente, usa
+// StringBuffer. O podrías unir un arreglo de cadena de caracteres.
+example16() {
+ var sb = new StringBuffer(), a = ["a", "b", "c", "d"], e;
+ for (e in a) { sb.write(e); }
+ print("example16 cadena de caracteres dinamica creada con "
+ "StringBuffer '${sb.toString()}'");
+ print("example16 union de arreglo de cadena de caracteres '${a.join()}'");
+}
+
+// Las cadenas de caracteres pueden ser concatenadas contando solo
+// con literales una después de la otra sin algún otro operador necesario.
+example17() {
+ print("example17 "
+ "concatenar "
+ "cadenas "
+ "asi");
+}
+
+// Las cadenas de caracteres utilizan comilla simple o comillas dobles como delimitadores
+// sin ninguna diferencia entre ambas. Esto proporciona flexibilidad que puede ser efectiva
+// para evitar la necesidad de 'escapar' el contenido. Por ejemplo,
+// las dobles comillas de los atributos HTML.
+example18() {
+ print('Example18 <a href="etc">'
+ "Don't can't I'm Etc"
+ '</a>');
+}
+
+// Las cadenas de caracteres con triple comilla simple o triple comillas dobles
+// dividen múltiples lineas e incluyen como delimitador el salto de línea.
+example19() {
+ print('''Example19 <a href="etc">
+Example19 Don't can't I'm Etc
+Example19 </a>''');
+}
+
+// Las cadenas de caracteres cuentan con una extraordinaria característica
+// para la interpolación de caracteres utilizando el operador $
+// Con $ { [expresion] }, devolvemos la expresion interpolada.
+// $ seguido por el nombre de una variable interpola el contenido de dicha variable.
+// $ puede ser escapado con \$ para solo agregarlo a la cadena.
+example20() {
+ var s1 = "'\${s}'", s2 = "'\$s'";
+ print("Example20 \$ interpolation ${s1} or $s2 works.");
+}
+
+// Hasta ahora no hemos declarado ningún tipo de dato y los programas
+// han funcionado bien. De hecho, los tipos no se toman en cuenta durante
+// el tiempo de ejecución.
+// Los tipos incluso pueden estar equivocados y al programa todavía se le dará
+// el beneficio de la duda y se ejecutará como si los tipos no importaran.
+// Hay un parámetro de tiempo de ejecución que comprueba los errores de tipo que es
+// el modo de verificación, el cuál es útil durante el tiempo de desarrollo,
+// pero que también es más lento debido a la comprobación adicional y, por lo tanto
+// se evita durante el tiempo de ejecución de la implementación.
+class Example21 {
+ List<String> _names;
+ Example21() {
+ _names = ["a", "b"];
+ }
+ List<String> get names => _names;
+ set names(List<String> list) {
+ _names = list;
+ }
+ int get length => _names.length;
+ void add(String name) {
+ _names.add(name);
+ }
+}
+void example21() {
+ Example21 o = new Example21();
+ o.add("c");
+ print("example21 nombres '${o.names}' y longitud '${o.length}'");
+ o.names = ["d", "e"];
+ print("example21 nombres '${o.names}' y longitud '${o.length}'");
+}
+
+// La herencia de clases toma la forma NombreDeClase extends OtraClase {}.
+class Example22A {
+ var _name = "¡Algun Nombre!";
+ get name => _name;
+}
+class Example22B extends Example22A {}
+example22() {
+ var o = new Example22B();
+ print("example22 herencia de clase '${o.name}'");
+}
+
+// La mezcla de clases también esta disponible y toman la forma de
+// NombreDeClase extends AlgunaClase with OtraClase {}.
+// Es necesario extender de alguna clase para poder mezclar con otra.
+// La clase de plantilla de mixin no puede en este momento tener un constructor.
+// Mixin se utiliza principalmente para compartir métodos con clases distantes,
+// por lo que la herencia única no interfiere con el código reutilizable.
+// Mixins se colocan despues de la palabra "with" durante la declaración de la clase.
+class Example23A {}
+class Example23Utils {
+ addTwo(n1, n2) {
+ return n1 + n2;
+ }
+}
+class Example23B extends Example23A with Example23Utils {
+ addThree(n1, n2, n3) {
+ return addTwo(n1, n2) + n3;
+ }
+}
+example23() {
+ var o = new Example23B(), r1 = o.addThree(1, 2, 3),
+ r2 = o.addTwo(1, 2);
+ print("Example23 addThree(1, 2, 3) results in '${r1}'");
+ print("Example23 addTwo(1, 2) results in '${r2}'");
+}
+
+// El método constructor de la clase utiliza el mismo nombre de la clase
+// y toma la forma de AlgunaClase() : super() {}, donde la parte ": super()"
+// es opcional y es utilizado para delegar parametros constantes
+// al método constructor de la clase padre o super clase.
+class Example24A {
+ var _value;
+ Example24A({value: "algunValor"}) {
+ _value = value;
+ }
+ get value => _value;
+}
+class Example24B extends Example24A {
+ Example24B({value: "algunOtroValor"}) : super(value: value);
+}
+example24() {
+ var o1 = new Example24B(),
+ o2 = new Example24B(value: "aunMas");
+ print("example24 llama al método super desde el constructor '${o1.value}'");
+ print("example24 llama al método super desde el constructor '${o2.value}'");
+}
+
+// Hay un atajo para configurar los parámetros del constructor en el caso de clases más simples.
+// Simplemente use el prefijo this.nombreParametro y establecerá el parámetro
+// en una variable de instancia del mismo nombre.
+class Example25 {
+ var value, anotherValue;
+ Example25({this.value, this.anotherValue});
+}
+example25() {
+ var o = new Example25(value: "a", anotherValue: "b");
+ print("example25 atajo para el constructor '${o.value}' y "
+ "'${o.anotherValue}'");
+}
+
+// Los parámetros con nombre están disponibles cuando se declaran entre {}.
+// El orden de los parámetros puede ser opcional cuando se declara entre {}.
+// Los parámetros pueden hacerse opcionales cuando se declaran entre [].
+example26() {
+ var _name, _surname, _email;
+ setConfig1({name, surname}) {
+ _name = name;
+ _surname = surname;
+ }
+ setConfig2(name, [surname, email]) {
+ _name = name;
+ _surname = surname;
+ _email = email;
+ }
+ setConfig1(surname: "Doe", name: "John");
+ print("example26 name '${_name}', surname '${_surname}', "
+ "email '${_email}'");
+ setConfig2("Mary", "Jane");
+ print("example26 name '${_name}', surname '${_surname}', "
+ "email '${_email}'");
+}
+
+// Las variables declaradas con final solo se pueden establecer una vez.
+// En el caso de las clases, las variables de instancia final se pueden establecer
+// a través de la constante del parámetro constructor.
+class Example27 {
+ final color1, color2;
+ // Un poco de flexibilidad para establecer variables de instancia finales con la sintaxis
+ // que sigue a :
+ Example27({this.color1, color2}) : color2 = color2;
+}
+example27() {
+ final color = "orange", o = new Example27(color1: "lilac", color2: "white");
+ print("example27 color es '${color}'");
+ print("example27 color es '${o.color1}' y '${o.color2}'");
+}
+
+// Para importar una librería utiliza la palabra reservada import "rutaLibrería" o si es una biblioteca central,
+// import "dart:NombreLibrería". También está el "pub" administrador de paquetes con
+// su propia convensión import "package:NombrePaquete".
+// Ve import "dart:collection"; al inicio. Las importaciones deben venir antes
+// de la delcaración de algún otro código. IterableBase proviene de dart:collection.
+class Example28 extends IterableBase {
+ var names;
+ Example28() {
+ names = ["a", "b"];
+ }
+ get iterator => names.iterator;
+}
+example28() {
+ var o = new Example28();
+ o.forEach((name) => print("example28 '${name}'"));
+}
+
+// Para el control de flujo tenemos:
+// * estandard switch
+// * if-else if-else y el operador ternario ..?..:..
+// * closures y funciones anonimas
+// * sentencias break, continue y return
+example29() {
+ var v = true ? 30 : 60;
+ switch (v) {
+ case 30:
+ print("example29 sentencia switch");
+ break;
+ }
+ if (v < 30) {
+ } else if (v > 30) {
+ } else {
+ print("example29 sentencia if-else");
+ }
+ callItForMe(fn()) {
+ return fn();
+ }
+ rand() {
+ v = new DM.Random().nextInt(50);
+ return v;
+ }
+ while (true) {
+ print("example29 callItForMe(rand) '${callItForMe(rand)}'");
+ if (v != 30) {
+ break;
+ } else {
+ continue;
+ }
+ // Nunca llega aquí.
+ }
+}
+
+// La sentencia int.parse, convierte de tipo double a int, o simplemente mantener int cuando se dividen los números
+// utilizando ~/ como operación. Vamos a jugar un juego de adivinanzas también.
+example30() {
+ var gn, tooHigh = false,
+ n, n2 = (2.0).toInt(), top = int.parse("123") ~/ n2, bottom = 0;
+ top = top ~/ 6;
+ gn = new DM.Random().nextInt(top + 1); // +1 porque nextInt top es exclusivo
+ print("example30 Adivina un número entre 0 y ${top}");
+ guessNumber(i) {
+ if (n == gn) {
+ print("example30 ¡Adivinaste correctamente! El número es ${gn}");
+ } else {
+ tooHigh = n > gn;
+ print("example30 Número ${n} es demasiado "
+ "${tooHigh ? 'high' : 'low'}. Intenta nuevamente");
+ }
+ return n == gn;
+ }
+ n = (top - bottom) ~/ 2;
+ while (!guessNumber(n)) {
+ if (tooHigh) {
+ top = n - 1;
+ } else {
+ bottom = n + 1;
+ }
+ n = bottom + ((top - bottom) ~/ 2);
+ }
+}
+
+// Los programas tienen un solo punto de entrada en la función principal.
+// No se espera que se ejecute nada en el ámbito externo antes de que un programa
+// comience a funcionar con su función principal.
+// Esto ayuda con una carga más rápida e incluso con una carga lenta
+// de lo que necesita el programa para iniciar.
+main() {
+ print("Learn Dart in 15 minutes!");
+ [example1, example2, example3, example4, example5, example6, example7,
+ example8, example9, example10, example11, example12, example13, example14,
+ example15, example16, example17, example18, example19, example20,
+ example21, example22, example23, example24, example25, example26,
+ example27, example28, example29, example30
+ ].forEach((ef) => ef());
+}
+
+```
+
+## Lecturas adicionales
+
+Dart tiene un sitio web muy completo. Cubre referencias de API, tutoriales, artículos y más, incluyendo una
+útil sección en línea Try Dart.
+[https://www.dartlang.org](https://www.dartlang.org)
+[https://try.dartlang.org](https://try.dartlang.org)
diff --git a/es-es/dynamic-programming-es.html.markdown b/es-es/dynamic-programming-es.html.markdown
index 11930653..e613b722 100644
--- a/es-es/dynamic-programming-es.html.markdown
+++ b/es-es/dynamic-programming-es.html.markdown
@@ -8,47 +8,47 @@ translators:
lang: es-es
---
-# programación dinámica
+# Programación Dinámica
## Introducción
-La programación dinámica es una técnica poderosa usada para resolver una clase particular de problemas como veremos más adelante. La idea es muy simple, si usted ha solucionado un problema con la entrada dada, entonces , guardaremos el resultado para una futura referencia, con el fin de evitar la solución del mismo problema de nuevo.
+La programación dinámica es una técnica poderosa usada para resolver una clase particular de problemas como veremos más adelante.
+La idea es muy simple: si has solucionado un problema con la entrada dada, entonces, guardaremos el resultado para una futura referencia, con el fin de evitar la solución del mismo problema de nuevo.
-
-Recuerde siempre!!
+Recuerda siempre:
"Aquellos que no pueden recordar el pasado están condenados a repetirlo"
## Formas de resolver este tipo de problemas
-1.) De arriba hacia abajo : Empezamos resolviendo el problema dado descomponiendolo. Si ves que el problema fue resuelto, entonces retorna la respuesta guardada. si no se ha resuelto, resuélvelo y guarda la respuesta. Esto suele ser fácil pensar y muy intuitivo. Esto se conoce como memorización.
+1. *De arriba hacia abajo (Top-Down)* : Empezamos resolviendo el problema dado descomponiendolo. Si ves que el problema fue resuelto, entonces retorna la respuesta guardada. Si no se ha resuelto, resuélvelo y guarda la respuesta. Esto suele ser fácil de pensar y es muy intuitivo. A esto se le conoce como memoización.
-2.) De abajo hacia arriba : Analiza el problema y mira el orden en que los subproblemas deben ser resueltos y empieza resolviendo el subproblema más trivial, hacia el problema dado.En este proceso, se garantiza que los subproblemas se resuelven antes de resolver el problema. Esto se conoce como programación dinámica.
+2. *De abajo hacia arriba (Bottom-Up)* : Analiza el problema y ve el orden en que los subproblemas deben ser resueltos y empieza resolviendo el subproblema más trivial, hacia el problema dado. En este proceso, se garantiza que los subproblemas se resuelven antes de resolver el problema. Esto se conoce como Programación Dinámica.
## Ejemplo de Programación Dinámica
-El problema de la subsecuencia creciente máxima consiste en encontrar la subsecuencia creciente máxima en una secuencia dada . Dada la secuencia S= {a1 , a2 , a3, a4, ............., an-1, an } tenemos que encontrar un subconjunto más largo tal que para todo j y i, j <i en el subconjunto aj <ai.
-En primer lugar tenemos que encontrar el valor de las subsecuencias más largas (LSI) en cada índice con el último elemento de la secuencia que es ai. El mayor LSi sería la subsecuencia más larga de la secuencia dada. Para empezar LSI es asignado a uno ya que ai es un elemento de la secuencia(El último elemento).Entonces, para todo j tal que j <i aj <ai, nos encontramos con Lsj más grande y lo agregamos a la LSI. A continuación, el algoritmo toma un tiempo de O (n2).
-Pseudocódigo para encontrar la longitud de la más larga subsecuencia creciente:
-La complejidad de este algoritmos podría reducirse mediante el uso de una mejor estructura de datos en lugar de una array. Almacenamiento de una matriz predecesora y una variable como Secuencia_mas_Grande_hasta_ahora y su índice podría ahorrar mucho tiempo.
-concepto similar se podría aplicar en encontrar el camino más largo de grafo acíclico dirigido.
----------------------------------------------------------------------------
- for i=0 to n-1
- LS[i]=1
- for j=0 to i-1
- if (a[i] > a[j] and LS[i]<LS[j])
- LS[i] = LS[j]+1
- for i=0 to n-1
- if (largest < LS[i])
-
-### Algunos problemas famosos de Programación Dinámica (DP).
+El problema de la subsecuencia creciente máxima consiste en encontrar la subsecuencia creciente máxima en una secuencia dada. Dada la secuencia `S= {a1 , a2 , a3, a4, ............., an-1, an }`, tenemos que encontrar un subconjunto más largo tal que para todo `j` y `i`, `j<i` en el subconjunto `aj<ai`.
+En primer lugar tenemos que encontrar el valor de las subsecuencias más largas (LSi) en cada índice `i` con el último elemento de la secuencia que es `ai`. El mayor LSi sería la subsecuencia más larga de la secuencia dada. Para empezar, LSi=1 ya que `ai` es un elemento de la secuencia (el último elemento). Entonces, para todo `j` tal que `j<i` y `aj<ai`, encontramos el LSj más grande y lo agregamos al LSi, por lo que el algoritmo toma un tiempo de *O(n2)*.
+Pseudocódigo para encontrar la longitud de la subsecuencia creciente máxima:
+La complejidad de este algoritmo podría reducirse mediante el uso de una mejor estructura de datos que los arreglos. Guardar un arreglo de predecesores y una variable como `secuencia_mas_grande_hasta_ahora` y su índice podría ahorrar mucho tiempo.
+
+Un concepto similar se podría aplicar para encontrar la trayectoria más larga en un grafo acíclico dirigido (DAG).
+
+```python
+for i=0 to n-1
+ LS[i]=1
+ for j=0 to i-1
+ if (a[i] > a[j] and LS[i]<LS[j])
+ LS[i] = LS[j]+1
+for i=0 to n-1
+ if (largest < LS[i])
```
-Algoritmo Floyd Warshall(EN) - Tutorial y código fuente del programa en C:http://www.thelearningpoint.net/computer-science/algorithms-all-to-all-shortest-paths-in-graphs---floyd-warshall-algorithm-with-c-program-source-code
-
-Problema de la Mochila(EN) - Tutorial y código fuente del programa en C: http://www.thelearningpoint.net/computer-science/algorithms-dynamic-programming---the-integer-knapsack-problem
+### Algunos problemas famosos de Programación Dinámica (DP).
-Problema de Subsecuencia Común mas Larga(EN) - Tutorial y código fuente del programa en C : http://www.thelearningpoint.net/computer-science/algorithms-dynamic-programming---longest-common-subsequence
+- Algoritmo Floyd Warshall(EN) - [Tutorial y código fuente del programa en C](http://www.thelearningpoint.net/computer-science/algorithms-all-to-all-shortest-paths-in-graphs---floyd-warshall-algorithm-with-c-program-source-code)
+- Problema de la Mochila(EN) - [Tutorial y código fuente del programa en C](http://www.thelearningpoint.net/computer-science/algorithms-dynamic-programming---the-integer-knapsack-problem)
+- Problema de Subsecuencia Común mas Larga(EN) - [Tutorial y código fuente del programa en C](http://www.thelearningpoint.net/computer-science/algorithms-dynamic-programming---longest-common-subsequence)
## Recursos en línea
-* [codechef EN](https://www.codechef.com/wiki/tutorial-dynamic-programming) \ No newline at end of file
+* [codechef EN](https://www.codechef.com/wiki/tutorial-dynamic-programming)
diff --git a/es-es/elixir-es.html.markdown b/es-es/elixir-es.html.markdown
new file mode 100644
index 00000000..885165a6
--- /dev/null
+++ b/es-es/elixir-es.html.markdown
@@ -0,0 +1,457 @@
+---
+language: elixir
+contributors:
+ - ["Joao Marques", "http://github.com/mrshankly"]
+ - ["Dzianis Dashkevich", "https://github.com/dskecse"]
+ - ["Ryan Plant", "https://github.com/ryanplant-au"]
+translator:
+ - ["Adrian Carrascal", "https://github.com/acarrascalgarcia"]
+filename: learnelixir-es.ex
+lang: es-es
+
+---
+
+Elixir es un lenguaje funcional moderno construido sobre la máquina virtual de Erlang.
+Es completamente compatibe con Erlang, sin embargo, ofrece una sintaxis más estandar
+y otras características más.
+
+```elixir
+
+# Los comentarios de única línea
+# comienzan con un símbolo numérico.
+
+# No hay comentarios multilinea,
+# pero se pueden apilar varios comentarios.
+
+# Para usar el shell de elixir se usa el comando `iex`.
+# Los módulos se compilan con el comando `elixirc`.
+
+# Ambos deberían estar en la ruta si elixir se instaló correctamente.
+
+## ---------------------------
+## -- Tipos básicos
+## ---------------------------
+
+# Hay números
+3 # integer
+0x1F # integer
+3.0 # float
+
+# Átomos, que son literales, una constante con nombre. Comienzan con `:`.
+:hello # atom
+
+# Tuples that are stored contiguously in memory.
+# Tuplas que se almacenan contiguamente en memoria.
+{1,2,3} # tuple
+
+# Se puede acceder a un elemento de una tupla con la función `elem`:
+elem({1, 2, 3}, 0) #=> 1
+
+# Listas que se implementan como listas enlazadas.
+[1,2,3] # list
+
+# Se puede acceder al primer y último elemento de la lista como:
+[head | tail] = [1,2,3]
+head #=> 1
+tail #=> [2,3]
+
+# En elixir, solo como Erlang, el `=` denota la coincidencia de patrones y
+# no una asignación.
+#
+# This is how the above example of accessing the head and tail of a list works.
+# Así es como el ejemplo anterior de acceder al
+# primer y último elemento de una lista trabaja.
+
+# Una coincidencia de patrón errará cuando los lados no coincidan, en este ejemplo
+# las tuplas tienen diferentes tamaños.
+# {a, b, c} = {1, 2} #=> ** (MatchError) no match of right hand side value: {1,2}
+
+# También hay binarios
+<<1,2,3>> # binary
+
+# Cadenas y listas de caracteres
+"hello" # string
+'hello' # char list
+
+# Cadenas de varias lineas
+"""
+I'm a multi-line
+string.
+"""
+#=> "I'm a multi-line\nstring.\n"
+
+# Todas las cadenas se codifican en UTF-8:
+"héllò" #=> "héllò"
+
+# Las cadenas son solo binarios realmente, y la lista de caracteres solo listas.
+<<?a, ?b, ?c>> #=> "abc"
+[?a, ?b, ?c] #=> 'abc'
+
+# `?a` en elixir devuelve el valor ASCII para el caracter `a`
+?a #=> 97
+
+# Para concatenar listas se usa `++`, para binarios `<>`
+[1,2,3] ++ [4,5] #=> [1,2,3,4,5]
+'hello ' ++ 'world' #=> 'hello world'
+
+<<1,2,3>> <> <<4,5>> #=> <<1,2,3,4,5>>
+"hello " <> "world" #=> "hello world"
+
+# Los rangos se representan como `start..end` (Es inclusivo)
+1..10 #=> 1..10
+lower..upper = 1..10 # Se puede usar la coincidencia de patrones en los rangos también
+[lower, upper] #=> [1, 10]
+
+# Los mapas son pares de llave-valor
+genders = %{"david" => "male", "gillian" => "female"}
+genders["david"] #=> "male"
+
+# Los mapas con llaves de tipo átomo se pueden usar como esto
+genders = %{david: "male", gillian: "female"}
+genders.gillian #=> "female"
+
+## ---------------------------
+## -- Opetadores
+## ---------------------------
+
+# Aritméticos
+1 + 1 #=> 2
+10 - 5 #=> 5
+5 * 2 #=> 10
+10 / 2 #=> 5.0
+
+# En elixir el operador `/` siempre devuelve un número flotante
+
+# Para hacer la división de número entero se debe usar `div`
+div(10, 2) #=> 5
+
+# Para obtener el residuo de la división se debe usar `rem`
+rem(10, 3) #=> 1
+
+# También hay operadores lógicos: `or`, `and` y `not`.
+# Estos operadores esperan un boolean como su primer argumento.
+true and true #=> true
+false or true #=> true
+# 1 and true #=> ** (ArgumentError) argument error
+
+# Elixir también provee `||`, `&&` y `!` donde acepta argumentos de cualquier tipo.
+# Todos los valores excepto `false` y `nil` se evaluarán como verdadero.
+1 || true #=> 1
+false && 1 #=> false
+nil && 20 #=> nil
+!true #=> false
+
+# Para comparaciones se tiene: `==`, `!=`, `===`, `!==`, `<=`, `>=`, `<` y `>`
+1 == 1 #=> true
+1 != 1 #=> false
+1 < 2 #=> true
+
+# `===` y `!==` son más estrictos cuando comparan números:
+1 == 1.0 #=> true
+1 === 1.0 #=> false
+
+# También se puede comparar dos tipos de datos diferentes:
+1 < :hello #=> true
+
+# No se necesita memorizar el orden pero es importante tenerlo en cuenta:
+# number < atom < reference < functions < port < pid < tuple < list < bit string
+
+## ---------------------------
+## -- Control de flujo
+## ---------------------------
+
+# Expresión `if`
+if false do
+ "This will never be seen"
+else
+ "This will"
+end
+
+# También está la expresión `unless`
+unless true do
+ "This will never be seen"
+else
+ "This will"
+end
+
+# Se acuerda de la coincidencia de patrones?
+# Muchas estructuras de control de flujo en elixir confían en ella.
+
+# `case` permite comparar un valor con muchos patrones:
+case {:one, :two} do
+ {:four, :five} ->
+ "This won't match"
+ {:one, x} ->
+ "This will match and bind `x` to `:two` in this clause"
+ _ ->
+ "This will match any value"
+end
+
+# Es común vincular el valor a `_` si no se necesita.
+# Por ejemplo, si unicamente el primer elemento de la lista es importante:
+[head | _] = [1,2,3]
+head #=> 1
+
+# Para una mejor lectura se puede hace lo siguiente:
+[head | _tail] = [:a, :b, :c]
+head #=> :a
+
+# `cond` permite comprobar muchas condiciones al mismo tiempo.
+# Usar `cond` en vez de muchas expresiones `if` anidadas.
+cond do
+ 1 + 1 == 3 ->
+ "I will never be seen"
+ 2 * 5 == 12 ->
+ "Me neither"
+ 1 + 2 == 3 ->
+ "But I will"
+end
+
+# Es común estabecer la última condición como `true`, donde siempre va a coincidir.
+cond do
+ 1 + 1 == 3 ->
+ "I will never be seen"
+ 2 * 5 == 12 ->
+ "Me neither"
+ true ->
+ "But I will (this is essentially an else)"
+end
+
+# `try/catch` se usa para atrapar valores que se lanzan, también soporta una
+# clausula `after` que se invoca sin importar si un valor se atrapó o no.
+try do
+ throw(:hello)
+catch
+ message -> "Got #{message}."
+after
+ IO.puts("I'm the after clause.")
+end
+#=> I'm the after clause
+# "Got :hello"
+
+## ---------------------------
+## -- Módulos y Funciones
+## ---------------------------
+
+# Anonymous functions (notice the dot)
+# Funciones anónimas (Ver el punto `.`)
+square = fn(x) -> x * x end
+square.(5) #=> 25
+
+# También aceptan muchas cláusulas y guards.
+# Los guards permiten afinar las coincidencias de patrones,
+# se indican por la palabra reservada `when`:
+f = fn
+ x, y when x > 0 -> x + y
+ x, y -> x * y
+end
+
+f.(1, 3) #=> 4
+f.(-1, 3) #=> -3
+
+# Elixir también provee muchas funciones incorporadas.
+# Esas están disponibles en el ámbito actual.
+is_number(10) #=> true
+is_list("hello") #=> false
+elem({1,2,3}, 0) #=> 1
+
+# Se pueden agrupar varias funciones en un módulo. Dentro de un módulo
+# se usa `def` para definir las funciones.
+defmodule Math do
+ def sum(a, b) do
+ a + b
+ end
+
+ def square(x) do
+ x * x
+ end
+end
+
+Math.sum(1, 2) #=> 3
+Math.square(3) #=> 9
+
+# Para compilar el módulo simple de Math se guarda como `math.ex` y se usa `elixirc`
+# en la terminal: elixirc math.ex
+
+# Dentro de un módulo se puede definir funciones con `def` y funciones privadas con `defp`.
+# Una función definida con `def` está disponible para ser invocada desde otros módulos,
+# una función privada se puede solo invocar localmente.
+defmodule PrivateMath do
+ def sum(a, b) do
+ do_sum(a, b)
+ end
+
+ defp do_sum(a, b) do
+ a + b
+ end
+end
+
+PrivateMath.sum(1, 2) #=> 3
+# PrivateMath.do_sum(1, 2) #=> ** (UndefinedFunctionError)
+
+# La declaración de funciones también soportan guards y múltiples cláusulas:
+defmodule Geometry do
+ def area({:rectangle, w, h}) do
+ w * h
+ end
+
+ def area({:circle, r}) when is_number(r) do
+ 3.14 * r * r
+ end
+end
+
+Geometry.area({:rectangle, 2, 3}) #=> 6
+Geometry.area({:circle, 3}) #=> 28.25999999999999801048
+# Geometry.area({:circle, "not_a_number"})
+#=> ** (FunctionClauseError) no function clause matching in Geometry.area/1
+
+# Debido a la inmutabilidad, la recursión es una gran parte de elixir
+defmodule Recursion do
+ def sum_list([head | tail], acc) do
+ sum_list(tail, acc + head)
+ end
+
+ def sum_list([], acc) do
+ acc
+ end
+end
+
+Recursion.sum_list([1,2,3], 0) #=> 6
+
+# Los módulos de Elixir soportan atributos, hay atributos incorporados y
+# se pueden agregar otros personalizados.
+defmodule MyMod do
+ @moduledoc """
+ This is a built-in attribute on a example module.
+ """
+
+ @my_data 100 # This is a custom attribute.
+ IO.inspect(@my_data) #=> 100
+end
+
+# El operador pipe |> permite que se pase la salida de una expresión
+# como el primer parámetro en una función.
+
+Range.new(1,10)
+|> Enum.map(fn x -> x * x end)
+|> Enum.filter(fn x -> rem(x, 2) == 0 end)
+#=> [4, 16, 36, 64, 100]
+
+## ---------------------------
+## -- Structs and Excepciones
+## ---------------------------
+
+# Los Structs son extensiones de los mapas que traen valores por defecto,
+# garantes en tiempo de compilación y polimorfismo en Elixir.
+defmodule Person do
+ defstruct name: nil, age: 0, height: 0
+end
+
+joe_info = %Person{ name: "Joe", age: 30, height: 180 }
+#=> %Person{age: 30, height: 180, name: "Joe"}
+
+# Acceder al valor de name
+joe_info.name #=> "Joe"
+
+# Actualizar el valor de age
+older_joe_info = %{ joe_info | age: 31 }
+#=> %Person{age: 31, height: 180, name: "Joe"}
+
+# El bloque `try` con la palabra reservada `rescue` se usa para manejar excepciones
+try do
+ raise "some error"
+rescue
+ RuntimeError -> "rescued a runtime error"
+ _error -> "this will rescue any error"
+end
+#=> "rescued a runtime error"
+
+# Todas las excepciones tienen un mensaje
+try do
+ raise "some error"
+rescue
+ x in [RuntimeError] ->
+ x.message
+end
+#=> "some error"
+
+## ---------------------------
+## -- Concurrencia
+## ---------------------------
+
+# Elixir confía en el modelo actor para la concurrencia. Todo lo que se necesita para escribir
+# programas concurrentes en elixir son tres primitivas: procesos de desove,
+# envío de mensajes y recepción de mensajes.
+
+# Para empezar un nuevo proceso se usa la función `spawn`,
+# donde toma una función como argumento.
+f = fn -> 2 * 2 end #=> #Function<erl_eval.20.80484245>
+spawn(f) #=> #PID<0.40.0>
+
+# `spawn` devuelve un pid (identificador de proceso), se puede usar este pid para enviar
+# mensajes para el proceso. Para hacer que un mensaje pase se usa el operador `send`.
+# Para que todo esto se útil se necesita estar disponibles para recibir mensajes. Esto se
+# alcanza con el mecanismo `receive`:
+
+# El bloque `receive do` se usa para escuchar los mensajes y procesarlos
+# cuando se reciben. Un bloque `receive do` solo procesará
+# un mensaje recibido. Para procesar múltiples mensajes,
+# una función con un bloque `receive do` tiene que llamarse recursivamente
+# para entrar en el bloque `receive do` otra vez.
+
+defmodule Geometry do
+ def area_loop do
+ receive do
+ {:rectangle, w, h} ->
+ IO.puts("Area = #{w * h}")
+ area_loop()
+ {:circle, r} ->
+ IO.puts("Area = #{3.14 * r * r}")
+ area_loop()
+ end
+ end
+end
+
+# Compilar el módulo y crear un proceso que evalue `area_loop` en el shell
+pid = spawn(fn -> Geometry.area_loop() end) #=> #PID<0.40.0>
+# Como alternativa
+pid = spawn(Geometry, :area_loop, [])
+
+# Enviar un mensaje al `pid` que coincidirá con un patrón en el que recibe una sentencia
+send pid, {:rectangle, 2, 3}
+#=> Area = 6
+# {:rectangle,2,3}
+
+send pid, {:circle, 2}
+#=> Area = 12.56000000000000049738
+# {:circle,2}
+
+# El shell también es un proceso, se puede usar `self` para obtener el pid actual
+self() #=> #PID<0.27.0>
+
+## ---------------------------
+## -- Agentes
+## ---------------------------
+
+# Un agente es un proceso que mantiene el seguimiento de algún valor cambiante
+
+# Un agente se crea con `Agent.start_link`, introducuendole una función
+# El estado inicial del agente será lo que sea que la función devuelva
+{ok, my_agent} = Agent.start_link(fn -> ["red, green"] end)
+
+# `Agent.get` toma un nombre de agente y un `fn` que se pasa como el estado actual
+# Lo que sea que este `fn` devuelva es lo que se obtendrá de vuelta
+Agent.get(my_agent, fn colors -> colors end) #=> ["red, "green"]
+
+# El estado del agente se actualiza de la misma manera
+Agent.update(my_agent, fn colors -> ["blue" | colors] end)
+```
+
+## Referencias
+
+* [Getting started guide](http://elixir-lang.org/getting-started/introduction.html) from the [Elixir website](http://elixir-lang.org)
+* [Elixir Documentation](http://elixir-lang.org/docs/master/)
+* ["Programming Elixir"](https://pragprog.com/book/elixir/programming-elixir) by Dave Thomas
+* [Elixir Cheat Sheet](http://media.pragprog.com/titles/elixir/ElixirCheat.pdf)
+* ["Learn You Some Erlang for Great Good!"](http://learnyousomeerlang.com/) by Fred Hebert
+* ["Programming Erlang: Software for a Concurrent World"](https://pragprog.com/book/jaerlang2/programming-erlang) by Joe Armstrong
diff --git a/es-es/erlang-es.html.markdown b/es-es/erlang-es.html.markdown
new file mode 100644
index 00000000..bc6317a5
--- /dev/null
+++ b/es-es/erlang-es.html.markdown
@@ -0,0 +1,293 @@
+---
+language: erlang
+lang: es-es
+contributors:
+ - ["Giovanni Cappellotto", "http://www.focustheweb.com/"]
+translators:
+ - ["Ernesto Pelayo", "http://github.com/ErnestoPelayo"]
+filename: learnerlang-es.erl
+---
+
+# Erlang
+% Signo de porcentaje inicia un comentario de una línea.
+
+%% Se usarán dos por ciento de caracteres para comentar funciones.
+
+%%% Se usarán tres por ciento de caracteres para comentar los módulos.
+
+### Utilizamos tres tipos de puntuación en Erlang.
+
++ **Comas (`,`)** argumentos separados en llamadas a funciones, constructores de
+datos y patrones.
+
++ **Periodos (`.`)** (seguido de espacios en blanco) separa funciones completas y
+expresiones en el shell.
+
++ **Semicolons (`;`)** cláusulas separadas. Encontramos cláusulas en varios contextos: de definiciones de funciones y en **`case`**,**` if`**, **`try..catch`**, y **` receive`** de expresiones.
+
+ ## 1.-Variables y coincidencia de patrones.
+
+
+- En Erlang, las nuevas variables están vinculadas con una instrucción **`=`**.
+>**Num = 42.**
+
+- Todos los nombres de variables deben comenzar con una letra mayúscula.
+
+- Erlang tiene variables de asignación única; si intentas asignar un diferente de valor a la variable **`Num`**, obtendrá un error.
+Num = 43. **error de excepción**: no coincide con el valor del lado derecho 43
+
+- En la mayoría de los idiomas, **`=`** denota una declaración de asignación. En Erlang, sin embargo,**`=`** denota una operación de coincidencia de patrones.
+
+- Cuando se usa una variable vacía en el del lado izquierdo del operador `=` to está vinculado (asignado), pero cuando está atado variable se usa en el lado izquierdo, se observa el siguiente comportamiento.
+>**`Lhs = Rhs`** realmente significa esto: evaluar el lado derecho (**` Rhs`**), y luego coincide con el resultado contra el patrón en el lado izquierdo (**`Lhs`**).
+>**Num = 7 * 6.**
+
+- Número de punto flotante.
+Pi = 3.14159.
+
+- Los átomos se usan para representar diferentes valores constantes no numéricos.
+
+- Átomos comienza con letras minúsculas, seguido de una secuencia de caracteres
+
+- alfanuméricos de caracteres o el signo de subrayado (**`_`**) o en (**` @ `**).
+>**Hola = hola.**
+ **OtherNode = ejemplo @ nodo.**
+
+- Los átomos con valores no alfanuméricos se pueden escribir al encerrar los átomos con apóstrofes.
+>**AtomWithSpace = 'algún átomo con espacio'.**
+
++ Tuples son similares a las estructuras en C.
+>**Point = {point, 10, 45}.**
+
+- Si queremos extraer algunos valores de una tupla, usamos el patrón de coincidencia
+ operador **`=`**.
+> **{punto, X, Y} = Punto. % X = 10, Y = 45**
+
+- Podemos usar **`_`** como marcador de posición para variables que no nos interesan.
+
+- El símbolo **`_`** se llama una variable anónima. A diferencia de las variables regulares,varias apariciones de `_` en el mismo patrón no tienen que vincularse a mismo valor.
+>**Person = {person, {name, {first, joe}, {last, armstrong}}, {footsize, 42}}.**
+**{_, {_, {_, who }, _}, _} = Persona. % Who = joe**
+
++ Creamos una lista al encerrar los elementos de la lista entre corchetes y separándolos con comas.
+
++ Los elementos individuales de una lista pueden ser de cualquier tipo.
+
+- El primer elemento de una lista es el encabezado de la lista. Si te imaginas eliminar del encabezado de la lista, lo que queda se llama cola de la lista.
+>**ThingsToBuy = [{manzanas, 10}, {peras, 6}, {leche, 3}].**
+
+- Si `T` es una lista, entonces **` [H | T] `** también es una lista, con la cabeza **` H`** y la cola **`T`**.
+
++ La barra vertical (**`|`**) separa el encabezado de una lista de su cola.
+ **`[]`** es la lista vacía.
+
++ Podemos extraer elementos de una lista con una operación de coincidencia de
+ patrones. Si nosotros tiene una lista no vacía **`L`**, luego la expresión **` [X | Y] = L`**, donde **`X`** y **` Y`** son variables independientes, extraerán el encabezado de la lista en **`X`** y la cola de la lista en **`Y`**.
+>**[FirstThing | OtherThingsToBuy] = ThingsToBuy.**
+**FirstThing = {manzanas, 10}**
+**OtherThingsToBuy = [{peras, 6}, {leche, 3}]**
+
++ No hay cadenas en Erlang. Las cadenas son realmente solo listas de enteros.
+
++ Las cadenas están entre comillas dobles (**`" `**).
+>**Nombre = "Hola".
+[72, 101, 108, 108, 111] = "Hola".**
+
+## 2. Programación secuencial.
+
+
+- Los módulos son la unidad básica de código en Erlang. Todas las funciones que escribimos son almacenado en módulos.
+
+- Los módulos se almacenan en archivos con extensiones **`.erl`**.
+- Los módulos deben compilarse antes de poder ejecutar el código. Un módulo compilado tiene el extensión **`.beam`**.
+>**-módulo (geometría).
+-export ([area / 1]). de la lista de funciones exportadas desde el módulo.**
+
++ La función **`área`** consta de dos cláusulas. Las cláusulas están separadas por un punto y coma, y ​​la cláusula final termina con punto-espacio en blanco. Cada cláusula tiene una cabeza y un cuerpo; la cabeza consiste en un nombre de función seguido de un patrón (entre paréntesis), y el cuerpo consiste en una secuencia de expresiones, que se evalúan si el patrón en la cabeza es exitoso coincide con los argumentos de llamada. Los patrones se combinan en el orden aparecen en la definición de la función.
+>**área ({rectángulo, ancho, Ht}) -> ancho * Ht;
+área ({círculo, R}) -> 3.14159 * R * R** .
+
+ ### Compila el código en el archivo geometry.erl.
+c (geometría). {ok, geometría}
+
++ Necesitamos incluir el nombre del módulo junto con el nombre de la función para identifica exactamente qué función queremos llamar.
+>**geometría: área ({rectángulo, 10, 5}). % 50**
+**geometría: área ({círculo, 1.4}). % 6.15752**
+
++ En Erlang, dos funciones con el mismo nombre y arity diferente (número de argumentos) en el mismo módulo representan funciones completamente diferentes.
+>-**module (lib_misc)**.
+-**export ([sum / 1])**.
+
+- función de exportación **`suma`** de arity 1 acepta un argumento:
+>**lista de enteros.
+suma (L) -> suma (L, 0).
+suma ([], N) -> N;
+suma ([H | T], N) -> suma (T, H + N).**
++ Funs son funciones **"anónimas"**. Se llaman así porque tienen sin nombre. Sin embargo, pueden asignarse a variables.
+Doble = diversión (X) -> 2 * X final. **`Doble`** apunta a una función anónima con el controlador: **#Fun <erl_eval.6.17052888>
+Doble (2). % 4**
+
+- Functions acepta funs como sus argumentos y puede devolver funs.
+>**Mult = diversión (Times) -> (fun (X) -> X * Times end) end.
+Triple = Mult (3).
+Triple (5). % 15**
+
+- Las listas de comprensión son expresiones que crean listas sin tener que usar
+ funs, mapas o filtros.
+ - La notación **`[F (X) || X <- L] `** significa" la lista de **`F (X)`** donde se toma **`X`**% de la lista **`L`."**
+>**L = [1,2,3,4,5].
+[2 * X || X <- L]. % [2,4,6,8,10]**
+
+- Una lista de comprensión puede tener generadores y filtros, que seleccionan un subconjunto de los valores generados
+>**EvenNumbers = [N || N <- [1, 2, 3, 4], N rem 2 == 0]. % [2, 4]**
+
+- Los protectores son construcciones que podemos usar para aumentar el poder del patrón coincidencia. Usando guardias, podemos realizar pruebas simples y comparaciones en el de variables en un patrón.
+Puede usar guardias en la cabeza de las definiciones de funciones donde están introducido por la palabra clave **`when`**, o puede usarlos en cualquier lugar del lenguaje donde se permite una expresión.
+>**max (X, Y) cuando X> Y -> X;
+max (X, Y) -> Y.**
+
+- Un guardia es una serie de expresiones de guardia, separadas por comas (**`,`**).
+- La guardia **`GuardExpr1, GuardExpr2, ..., GuardExprN`** es verdadera si todos los guardias expresiones **`GuardExpr1`,` GuardExpr2`, ..., `GuardExprN`** evalúan **`true`**.
+>**is_cat (A) cuando is_atom (A), A =: = cat -> true;
+is_cat (A) -> false.
+is_dog (A) cuando is_atom (A), A =: = dog -> true;
+is_dog (A) -> false.**
+
+No nos detendremos en el operador **`=: =`** aquí; Solo tenga en cuenta que está acostumbrado a comprueba si dos expresiones de Erlang tienen el mismo valor * y * del mismo tipo. Contrasta este comportamiento con el del operador **`==`**:
+
+>**1 + 2 =: = 3.% true
+1 + 2 =: = 3.0. % false
+1 + 2 == 3.0. % true**
+
+ Una secuencia de guardia es una guardia individual o una serie de guardias, separadas por punto y coma (**`;`**). La secuencia de guardia **`G1; G2; ...; Gn`** es verdadero si en menos uno de los guardias **`G1`,` G2`, ..., `Gn`** se evalúa como **` true`**.
+>**is_pet (A) cuando is_atom (A), (A =: = dog); (A =: = cat) -> true;
+is_pet (A) -> false.**
+
+- **Advertencia**: no todas las expresiones de Erlang válidas se pueden usar como expresiones de guarda; en particular, nuestras funciones **`is_cat`** y **`is_dog`** no se pueden usar dentro del secuencia de protección en la definición de **`is_pet`**. Para una descripción de expresiones permitidas en secuencias de guarda, consulte la sección específica en el manual de referencia de Erlang:
+### http://erlang.org/doc/reference_manual/expressions.html#guards
+
+- Los registros proporcionan un método para asociar un nombre con un elemento particular en un de tupla De las definiciones de registros se pueden incluir en los archivos de código fuente de Erlang o poner en archivos con la extensión **`.hrl`**, que luego están incluidos en el código fuente de Erlang de archivos.
+
+>**-record (todo, {
+ status = recordatorio,% valor predeterminado
+ quien = joe,
+ texto
+}).**
+
+- Tenemos que leer las definiciones de registro en el shell antes de que podamos definir un
+ de registro. Usamos la función shell **`rr`** (abreviatura de los registros de lectura) para hacer esto.
+
+>**rr ("records.hrl").** % [que hacer]
+
+- **Creando y actualizando registros:**
+>**X = #todo {}.
+% #todo {status = recordatorio, who = joe, text = undefined}
+X1 = #todo {estado = urgente, texto = "Corregir errata en el libro"}.
+% #todo {status = urgent, who = joe, text = "Corregir errata en el libro"}
+X2 = X1 # todo {estado = hecho}.
+% #todo {status = done, who = joe, text = "Corregir errata en el libro"}
+expresiones `case`**.
+
+**`filter`** devuelve una lista de todos los elementos **` X`** en una lista **`L`** para la cual **` P (X) `** es true.
+>**filter(P, [H|T]) ->
+ case P(H) of
+ true -> [H|filter(P, T)];
+ false -> filter(P, T)
+ end;
+filter(P, []) -> [].
+filter(fun(X) -> X rem 2 == 0 end, [1, 2, 3, 4]). % [2, 4]**
+
+expresiones **`if`**.
+>**max(X, Y) ->
+ if
+ X > Y -> X;
+ X < Y -> Y;
+ true -> nil
+ end.**
+
+**Advertencia:** al menos uno de los guardias en la expresión **`if`** debe evaluar a **`true`**; de lo contrario, se generará una excepción.
+
+## 3. Excepciones.
+
+
+- El sistema genera excepciones cuando se encuentran errores internos o explícitamente en el código llamando **`throw (Exception)`**, **`exit (Exception)`**, o **`erlang: error (Exception)`**.
+>**generate_exception (1) -> a;
+generate_exception (2) -> throw (a);
+generate_exception (3) -> exit (a);
+generate_exception (4) -> {'EXIT', a};
+generate_exception (5) -> erlang: error (a).**
+
+- Erlang tiene dos métodos para atrapar una excepción. Una es encerrar la llamada a de la función que genera la excepción dentro de una expresión **`try ... catch`**.
+>**receptor (N) ->
+ prueba generar_excepción (N) de
+ Val -> {N, normal, Val}
+ captura
+ throw: X -> {N, atrapado, arrojado, X};
+ exit: X -> {N, atrapado, salido, X};
+ error: X -> {N, atrapado, error, X}
+ end.**
+
+- El otro es encerrar la llamada en una expresión **`catch`**. Cuando atrapas un de excepción, se convierte en una tupla que describe el error.
+>**catcher (N) -> catch generate_exception (N).**
+
+## 4. Concurrencia
+
+- Erlang se basa en el modelo de actor para concurrencia. Todo lo que necesitamos para escribir de programas simultáneos en Erlang son tres primitivos: procesos de desove, de envío de mensajes y recepción de mensajes.
+
+- Para comenzar un nuevo proceso, usamos la función **`spawn`**, que toma una función como argumento.
+
+>**F = diversión () -> 2 + 2 final. % #Fun <erl_eval.20.67289768>
+spawn (F). % <0.44.0>**
+
+- **`spawn`** devuelve un pid (identificador de proceso); puedes usar este pid para enviar de mensajes al proceso. Para pasar mensajes, usamos el operador **`!`**.
+
+- Para que todo esto sea útil, debemos poder recibir mensajes. Esto es logrado con el mecanismo **`receive`**:
+
+>**-module (calcular Geometría).
+-compile (export_all).
+calculateArea () ->
+ recibir
+ {rectángulo, W, H} ->
+ W * H;
+ {circle, R} ->
+ 3.14 * R * R;
+ _ ->
+ io: format ("Solo podemos calcular el área de rectángulos o círculos")
+ end.**
+
+- Compile el módulo y cree un proceso que evalúe **`calculateArea`** en cáscara.
+>**c (calcular Geometría).
+CalculateArea = spawn (calcular Geometría, calcular Área, []).
+CalculateArea! {círculo, 2}. % 12.56000000000000049738**
+
+- El shell también es un proceso; puedes usar **`self`** para obtener el pid actual.
+**self(). % <0.41.0>**
+
+## 5. Prueba con EUnit
+
+- Las pruebas unitarias se pueden escribir utilizando los generadores de prueba de EUnits y afirmar macros
+>**-módulo (fib).
+-export ([fib / 1]).
+-include_lib ("eunit / include / eunit.hrl").**
+
+>**fib (0) -> 1;
+fib (1) -> 1;
+fib (N) when N> 1 -> fib (N-1) + fib (N-2).**
+
+>**fib_test_ () ->
+ [? _assert (fib (0) =: = 1),
+ ? _assert (fib (1) =: = 1),
+ ? _assert (fib (2) =: = 2),
+ ? _assert (fib (3) =: = 3),
+ ? _assert (fib (4) =: = 5),
+ ? _assert (fib (5) =: = 8),
+ ? _assertException (error, function_clause, fib (-1)),
+ ? _assert (fib (31) =: = 2178309)
+ ]**
+
+- EUnit exportará automáticamente a una función de prueba () para permitir la ejecución de las pruebas en el shell Erlang
+fib: test ()
+
+- La popular barra de herramientas de construcción de Erlang también es compatible con EUnit
+**`` ` de la unidad de barras de refuerzo
+ ``**
diff --git a/es-es/factor-es.html.markdown b/es-es/factor-es.html.markdown
new file mode 100644
index 00000000..67c60de7
--- /dev/null
+++ b/es-es/factor-es.html.markdown
@@ -0,0 +1,200 @@
+---
+language: factor
+contributors:
+ - ["hyphz", "http://github.com/hyphz/"]
+translators:
+ - ["Roberto R", "https://github.com/rrodriguze"]
+filename: learnfactor-es.factor
+
+lang: es-es
+---
+Factor es un lenguaje moderno basado en la pila, basado en Forth, creado por
+Slava Pestov.
+
+El código de este archivo puede escribirse en Factor, pero no importa
+directamente porque el encabezado del vocabulario de importación haria que el
+comienzo fuera totalmente confuso.
+
+```factor
+! Esto es un comentario
+
+! Como Forth, toda la programación se realiza mediante la manipulación de la
+! pila.
+! La intruducción de un valor literal lo coloca en la pila
+5 2 3 56 76 23 65 ! No hay salida pero la pila se imprime en modo interactivo
+
+! Esos números se agregan a la pila de izquierda a derecha
+! .s imprime la pila de forma no destructiva.
+.s ! 5 2 3 56 76 23 65
+
+! La aritmética funciona manipulando datos en la pila.
+5 4 + ! Sem saída
+
+! `.` muestra el resultado superior de la pila y lo imprime.
+. ! 9
+
+! Más ejemplos de aritmética:
+6 7 * . ! 42
+1360 23 - . ! 1337
+12 12 / . ! 1
+13 2 mod . ! 1
+
+99 neg . ! -99
+-99 abs . ! 99
+52 23 max . ! 52
+52 23 min . ! 23
+
+! Se proporcionan varias palabras para manipular la pila, conocidas
+colectivamente como palabras codificadas.
+
+3 dup - ! duplica el primer item (1st ahora igual a 2nd): 3 - 3
+2 5 swap / ! intercambia el primero con el segundo elemento: 5 / 2
+4 0 drop 2 / ! elimina el primer item (no imprime en pantalla): 4 / 2
+1 2 3 nip .s ! elimina el segundo item (semejante a drop): 1 3
+1 2 clear .s ! acaba con toda la pila
+1 2 3 4 over .s ! duplica el segundo item superior: 1 2 3 4 3
+1 2 3 4 2 pick .s ! duplica el tercer item superior: 1 2 3 4 2 3
+
+! Creando Palabras
+! La palabra `:` factoriza los conjuntos en modo de compilación hasta que vea
+la palabra`;`.
+: square ( n -- n ) dup * ; ! Sin salida
+5 square . ! 25
+
+! Podemos ver lo que las palabra hacen también.
+! \ suprime la evaluación de una palabra y coloca su identificador en la pila.
+\ square see ! : square ( n -- n ) dup * ;
+
+! Después del nombre de la palabra para crear, la declaración entre paréntesis
+da efecto a la pila.
+! Podemos usar los nombres que queramos dentro de la declaración:
+: weirdsquare ( camel -- llama ) dup * ;
+
+! Mientras su recuento coincida con el efecto de pila de palabras:
+: doubledup ( a -- b ) dup dup ; ! Error: Stack effect declaration is wrong
+: doubledup ( a -- a a a ) dup dup ; ! Ok
+: weirddoubledup ( i -- am a fish ) dup dup ; ! Além disso Ok
+
+! Donde Factor difiere de Forth es en el uso de las citaciones.
+! Una citacion es un bloque de código que se coloca en la pila como un valor.
+! [ inicia el modo de citación; ] termina.
+[ 2 + ] ! La cita que suma dos queda en la pila
+4 swap call . ! 6
+
+! Y así, palabras de orden superior. TONOS de palabras de orden superior
+2 3 [ 2 + ] dip .s ! Tomar valor de la parte superior de la pilar, cotizar, retroceder: 4 3
+3 4 [ + ] keep .s ! Copiar el valor desde la parte superior de la pila, cotizar, enviar copia: 7 4
+1 [ 2 + ] [ 3 + ] bi .s ! Ejecute cada cotización en el valor superior, empuje amabos resultados: 3 4
+4 3 1 [ + ] [ + ] bi .s ! Las citas en un bi pueden extraer valores más profundos de la pila: 4 5 ( 1+3 1+4 )
+1 2 [ 2 + ] bi@ .s ! Citar en primer y segundo valor
+2 [ + ] curry ! Inyecta el valor dado al comienzo de la pila: [ 2 + ] se deja en la pila
+
+! Condicionales
+! Cualquier valor es verdadero, excepto el valor interno f.
+! no existe un valor interno, pero su uso no es esencial.
+! Los condicionales son palabras de orden superior, como con los combinadores
+! anteriores
+
+5 [ "Five is true" . ] when ! Cinco es verdadero
+0 [ "Zero is true" . ] when ! Cero es verdadero
+f [ "F is true" . ] when ! Sin salida
+f [ "F is false" . ] unless ! F es falso
+2 [ "Two is true" . ] [ "Two is false" . ] if ! Two es verdadero
+
+! Por defecto, los condicionales consumen el valor bajo prueba, pero las
+! variantes con un
+! asterisco se dejan solo si es verdad:
+
+5 [ . ] when* ! 5
+f [ . ] when* ! Sin salida, pila vacía, se consume porque f es falso
+
+
+! Lazos
+! Lo has adivinado... estas son palabras de orden superior también.
+
+5 [ . ] each-integer ! 0 1 2 3 4
+4 3 2 1 0 5 [ + . ] each-integer ! 0 2 4 6 8
+5 [ "Hello" . ] times ! Hello Hello Hello Hello Hello
+
+! Here's a list:
+{ 2 4 6 8 } ! Goes on the stack as one item
+
+! Aqui está uma lista:
+{ 2 4 6 8 } [ 1 + . ] each ! Exibe 3 5 7 9
+{ 2 4 6 8 } [ 1 + ] map ! Salida { 3 5 7 9 } de la pila
+
+! Reduzir laços ou criar listas:
+{ 1 2 3 4 5 } [ 2 mod 0 = ] filter ! Solo mantenga miembros de la lista para los cuales la cita es verdadera: { 2 4 }
+{ 2 4 6 8 } 0 [ + ] reduce . ! Como "fold" en lenguajes funcinales: exibe 20 (0+2+4+6+8)
+{ 2 4 6 8 } 0 [ + ] accumulate . . ! Como reducir, pero mantiene los valores intermedios en una lista: { 0 2 6 12 } así que 20
+1 5 [ 2 * dup ] replicate . ! Repite la cita 5 veces y recoge los resultados en una lista: { 2 4 8 16 32 }
+1 [ dup 100 < ] [ 2 * dup ] produce ! Repite la segunda cita hasta que la primera devuelva falso y recopile los resultados: { 2 4 8 16 32 64 128 }
+
+! Si todo lo demás falla, un propósito general a repetir.
+1 [ dup 10 < ] [ "Hello" . 1 + ] while ! Escribe "Hello" 10 veces
+ ! Sí, es dificil de leer
+ ! Para eso están los bucles variantes
+
+! Variables
+! Normalmente, se espera que los programas de Factor mantengan todos los datos
+! en la pila.
+! El uso de variables con nombre hace que la refactorización sea más difícil
+! (y se llama Factor por una razón)
+! Variables globales, si las necesitas:
+
+SYMBOL: name ! Crea un nombre como palabra de identificación
+"Bob" name set-global ! Sin salída
+name get-global . ! "Bob"
+
+! Las variables locales nombradas se consideran una extensión, pero están
+! disponibles
+! En una cita ..
+[| m n ! La cita captura los dos valores principales de la pila en m y n
+ | m n + ] ! Leerlos
+
+! Ou em uma palavra..
+:: lword ( -- ) ! Tenga en cuenta los dos puntos dobles para invocar la extensión de variable léxica
+ 2 :> c ! Declara la variable inmutable c para contener 2
+ c . ; ! Imprimirlo
+
+! En una palabra declarada de esta manera, el lado de entrada de la declaración
+! de la pila
+! se vuelve significativo y proporciona los valores de las variables en las que
+! se capturan los valores de pila
+:: double ( a -- result ) a 2 * ;
+
+! Las variables se declaran mutables al terminar su nombre con su signo de
+! exclamación
+:: mword2 ( a! -- x y ) ! Capture la parte superior de la pila en la variable mutable a
+ a ! Empujar a
+ a 2 * a! ! Multiplique por 2 y almacenar el resultado en a
+ a ; ! Empujar el nuevo valor de a
+5 mword2 ! Pila: 5 10
+
+! Listas y Secuencias
+! Vimos arriba cómo empujar una lista a la pila
+
+0 { 1 2 3 4 } nth ! Acceder a un miembro específico de una lista: 1
+10 { 1 2 3 4 } nth ! Error: índice de secuencia fuera de los límites
+1 { 1 2 3 4 } ?nth ! Lo mismo que nth si el índice está dentro de los límites: 2
+10 { 1 2 3 4 } ?nth ! Sin errores si está fuera de los límites: f
+
+{ "at" "the" "beginning" } "Append" prefix ! { "Append" "at" "the" "beginning" }
+{ "Append" "at" "the" } "end" suffix ! { "Append" "at" "the" "end" }
+"in" 1 { "Insert" "the" "middle" } insert-nth ! { "Insert" "in" "the" "middle" }
+"Concat" "enate" append ! "Concatenate" - strings are sequences too
+"Concatenate" "Reverse " prepend ! "Reverse Concatenate"
+{ "Concatenate " "seq " "of " "seqs" } concat ! "Concatenate seq of seqs"
+{ "Connect" "subseqs" "with" "separators" } " " join ! "Connect subseqs with separators"
+
+! Y si desea obtener meta, las citas son secuencias y se pueden desmontar
+0 [ 2 + ] nth ! 2
+1 [ 2 + ] nth ! +
+[ 2 + ] \ - suffix ! Quotation [ 2 + - ]
+
+
+```
+
+##Listo para más?
+
+* [Documentación de Factor](http://docs.factorcode.org/content/article-help.home.html)
diff --git a/es-es/fsharp-es.html.markdown b/es-es/fsharp-es.html.markdown
new file mode 100644
index 00000000..b7f80c44
--- /dev/null
+++ b/es-es/fsharp-es.html.markdown
@@ -0,0 +1,629 @@
+---
+language: F#
+lang: es-es
+contributors:
+ - ['Scott Wlaschin', 'http://fsharpforfunandprofit.com/']
+translators:
+ - ['Angel Arciniega', 'https://github.com/AngelsProjects']
+filename: learnfsharp-es.fs
+---
+
+F# es un lenguaje de programación funcional y orientado a objetos. Es gratis y su código fuente está abierto. Se ejecuta en Linux, Mac, Windows y más.
+
+Tiene un poderoso sistema de tipado que atrapa muchos errores de tiempo de compilación, pero usa inferencias de tipados que le permiten ser leídos como un lenguaje dinámico.
+
+La sintaxis de F# es diferente de los lenguajes que heredan de C.
+
+- Las llaves no se usan para delimitar bloques de código. En cambio, se usa sangría (como en Python).
+- Los espacios se usan para separar parámetros en lugar de comas.
+
+Si quiere probar el siguiente código, puede ir a [tryfsharp.org](http://www.tryfsharp.org/Create) y pegarlo en [REPL](https://es.wikipedia.org/wiki/REPL).
+
+```fsharp
+// Los comentarios de una línea se escibren con una doble diagonal
+(* Los comentarios multilínea usan parentesis (* . . . *)
+
+-final del comentario multilínea- *)
+
+// ================================================
+// Syntaxis básica
+// ================================================
+
+// ------ "Variables" (pero no realmente) ------
+// La palabra reservada "let" define un valor (inmutable)
+let miEntero = 5
+let miFlotante = 3.14
+let miCadena = "hola" // Tenga en cuenta que no es necesario ningún tipado
+
+// ------ Listas ------
+let dosACinco = [2;3;4;5] // Los corchetes crean una lista con
+ // punto y coma para delimitadores.
+let unoACinco = 1 :: dosACinco // :: Crea una lista con un nuevo elemento
+// El resultado es [1;2;3;4;5]
+let ceroACinco = [0;1] @ dosACinco // @ Concatena dos listas
+
+// IMPORTANTE: las comas no se usan para delimitar,
+// solo punto y coma !
+
+// ------ Funciones ------
+// La palabra reservada "let" también define el nombre de una función.
+let cuadrado x = x * x // Tenga en cuenta que no se usa paréntesis.
+cuadrado 3 // Ahora, ejecutemos la función.
+ // De nuevo, sin paréntesis.
+
+let agregar x y = x + y // ¡No use add (x, y)! Eso significa
+ // algo completamente diferente.
+agregar 2 3 // Ahora, ejecutemos la función.
+
+// Para definir una función en varias líneas, usemos la sangría.
+// Los puntos y coma no son necesarios.
+let pares lista =
+ let esPar x = x%2 = 0 // Establece "esPar" como una función anidada
+ List.filter esPar lista // List.filter es una función de la biblioteca
+ // dos parámetros: una función que devuelve un
+ // booleano y una lista en la que trabajar
+
+pares unoACinco // Ahora, ejecutemos la función.
+
+// Puedes usar paréntesis para aclarar.
+// En este ejemplo, "map" se ejecuta primero, con dos argumentos,
+// entonces "sum" se ejecuta en el resultado.
+// Sin los paréntesis, "List.map" se pasará como argumento a List.sum.
+let sumaDeCuadradosHasta100 =
+ List.sum ( List.map cuadrado [1..100] )
+
+// Puedes redirigir la salida de una función a otra con "|>"
+// Redirigir datos es muy común en F#, como con los pipes de UNIX.
+
+// Aquí está la misma función sumOfSquares escrita usando pipes
+let sumaDeCuadradosHasta100piped =
+ [1..100] |> List.map cuadrado |> List.sum // "cuadrado" se declara antes
+
+// Puede definir lambdas (funciones anónimas) gracias a la palabra clave "fun"
+let sumaDeCuadradosHasta100ConFuncion =
+ [1..100] |> List.map (fun x -> x*x) |> List.sum
+
+// En F#, no hay palabra clave "return". Una función siempre regresa
+// el valor de la última expresión utilizada.
+
+// ------ Coincidencia de patrones ------
+// Match..with .. es una sobrecarga de la condición de case/ switch.
+let coincidenciaDePatronSimple =
+ let x = "a"
+ match x with
+ | "a" -> printfn "x es a"
+ | "b" -> printfn "x es b"
+ | _ -> printfn "x es algo mas" // guion bajo corresponde con todos los demás
+
+// F# no permite valores nulos por defecto - debe usar el tipado de Option
+// y luego coincide con el patrón.
+// Some(..) y None son aproximadamente análogos a los envoltorios Nullable
+let valorValido = Some(99)
+let valorInvalido = None
+
+// En este ejemplo, match..with encuentra una coincidencia con "Some" y "None",
+// y muestra el valor de "Some" al mismo tiempo.
+let coincidenciaDePatronDeOpciones entrada =
+ match entrada with
+ | Some i -> printfn "la entrada es un int=%d" i
+ | None -> printfn "entrada faltante"
+
+coincidenciaDePatronDeOpciones validValue
+coincidenciaDePatronDeOpciones invalidValue
+
+// ------ Viendo ------
+// Las funciones printf/printfn son similares a las funciones
+// Console.Write/WriteLine de C#.
+printfn "Imprimiendo un int %i, a float %f, a bool %b" 1 2.0 true
+printfn "Un string %s, y algo generico %A" "hola" [1;2;3;4]
+
+// También hay funciones printf/sprintfn para formatear datos
+// en cadena. Es similar al String.Format de C#.
+
+// ================================================
+// Mas sobre funciones
+// ================================================
+
+// F# es un verdadero lenguaje funcional - las funciones son
+// entidades de primer nivel y se pueden combinar fácilmente
+// para crear construcciones poderosas
+
+// Los módulos se utilizan para agrupar funciones juntas.
+// Se requiere sangría para cada módulo anidado.
+module EjemploDeFuncion =
+
+ // define una función de suma simple
+ let agregar x y = x + y
+
+ // uso básico de una función
+ let a = agregar 1 2
+ printfn "1+2 = %i" a
+
+ // aplicación parcial para "hornear en" los parámetros (?)
+ let agregar42 = agregar 42
+ let b = agregar42 1
+ printfn "42+1 = %i" b
+
+ // composición para combinar funciones
+ let agregar1 = agregar 1
+ let agregar2 = agregar 2
+ let agregar3 = agregar1 >> agregar2
+ let c = agregar3 7
+ printfn "3+7 = %i" c
+
+ // funciones de primer nivel
+ [1..10] |> List.map agregar3 |> printfn "la nueva lista es %A"
+
+ // listas de funciones y más
+ let agregar6 = [agregar1; agregar2; agregar3] |> List.reduce (>>)
+ let d = agregar6 7
+ printfn "1+2+3+7 = %i" d
+
+// ================================================
+// Lista de colecciones
+// ================================================
+
+// Il y a trois types de collection ordonnée :
+// * Les listes sont les collections immutables les plus basiques
+// * Les tableaux sont mutables et plus efficients
+// * Les séquences sont lazy et infinies (e.g. un enumerator)
+//
+// Des autres collections incluent des maps immutables et des sets
+// plus toutes les collections de .NET
+
+module EjemplosDeLista =
+
+ // las listas utilizan corchetes
+ let lista1 = ["a";"b"]
+ let lista2 = "c" :: lista1 // :: para una adición al principio
+ let lista3 = lista1 @ lista2 // @ para la concatenación
+
+ // Lista de comprensión (alias generadores)
+ let cuadrados = [for i in 1..10 do yield i*i]
+
+ // Generador de números primos
+ let rec tamiz = function
+ | (p::xs) -> p :: tamiz [ for x in xs do if x % p > 0 then yield x ]
+ | [] -> []
+ let primos = tamiz [2..50]
+ printfn "%A" primos
+
+ // coincidencia de patrones para listas
+ let listaDeCoincidencias unaLista =
+ match unaLista with
+ | [] -> printfn "la lista esta vacia"
+ | [primero] -> printfn "la lista tiene un elemento %A " primero
+ | [primero; segundo] -> printfn "la lista es %A y %A" primero segundo
+ | _ -> printfn "la lista tiene mas de dos elementos"
+
+ listaDeCoincidencias [1;2;3;4]
+ listaDeCoincidencias [1;2]
+ listaDeCoincidencias [1]
+ listaDeCoincidencias []
+
+ // Récursion en utilisant les listes
+ let rec suma unaLista =
+ match unaLista with
+ | [] -> 0
+ | x::xs -> x + suma xs
+ suma [1..10]
+
+ // -----------------------------------------
+ // Funciones de la biblioteca estándar
+ // -----------------------------------------
+
+ // mapeo
+ let agregar3 x = x + 3
+ [1..10] |> List.map agregar3
+
+ // filtrado
+ let par x = x % 2 = 0
+ [1..10] |> List.filter par
+
+ // mucho más - consulte la documentación
+
+module EjemploDeArreglo =
+
+ // los arreglos usan corchetes con barras.
+ let arreglo1 = [| "a";"b" |]
+ let primero = arreglo1.[0] // se accede al índice usando un punto
+
+ // la coincidencia de patrones de los arreglos es la misma que la de las listas
+ let coincidenciaDeArreglos una Lista =
+ match unaLista with
+ | [| |] -> printfn "la matriz esta vacia"
+ | [| primero |] -> printfn "el arreglo tiene un elemento %A " primero
+ | [| primero; second |] -> printfn "el arreglo es %A y %A" primero segundo
+ | _ -> printfn "el arreglo tiene mas de dos elementos"
+
+ coincidenciaDeArreglos [| 1;2;3;4 |]
+
+ // La biblioteca estándar funciona como listas
+ [| 1..10 |]
+ |> Array.map (fun i -> i+3)
+ |> Array.filter (fun i -> i%2 = 0)
+ |> Array.iter (printfn "el valor es %i. ")
+
+module EjemploDeSecuencia =
+
+ // Las secuencias usan llaves
+ let secuencia1 = seq { yield "a"; yield "b" }
+
+ // Las secuencias pueden usar yield y
+    // puede contener subsecuencias
+ let extranio = seq {
+ // "yield" agrega un elemento
+ yield 1; yield 2;
+
+ // "yield!" agrega una subsecuencia completa
+ yield! [5..10]
+ yield! seq {
+ for i in 1..10 do
+ if i%2 = 0 then yield i }}
+ // prueba
+ extranio |> Seq.toList
+
+ // Las secuencias se pueden crear usando "unfold"
+    // Esta es la secuencia de fibonacci
+ let fib = Seq.unfold (fun (fst,snd) ->
+ Some(fst + snd, (snd, fst + snd))) (0,1)
+
+ // prueba
+ let fib10 = fib |> Seq.take 10 |> Seq.toList
+ printf "Los primeros 10 fib son %A" fib10
+
+// ================================================
+// Tipos de datos
+// ================================================
+
+module EejemploDeTipoDeDatos =
+
+ // Todos los datos son inmutables por defecto
+
+     // las tuplas son tipos anónimos simples y rápidos
+     // - Usamos una coma para crear una tupla
+ let dosTuplas = 1,2
+ let tresTuplas = "a",2,true
+
+ // Combinación de patrones para desempaquetar
+ let x,y = dosTuplas // asignado x=1 y=2
+
+ // ------------------------------------
+ // Los tipos de registro tienen campos con nombre
+ // ------------------------------------
+
+ // Usamos "type" con llaves para definir un tipo de registro
+ type Persona = {Nombre:string; Apellido:string}
+
+ // Usamos "let" con llaves para crear un registro
+ let persona1 = {Nombre="John"; Apellido="Doe"}
+
+ // Combinación de patrones para desempaquetar
+ let {Nombre=nombre} = persona1 // asignado nombre="john"
+
+ // ------------------------------------
+ // Los tipos de unión (o variantes) tienen un conjunto de elección
+     // Solo un caso puede ser válido a la vez.
+ // ------------------------------------
+
+ // Usamos "type" con barra/pipe para definir una unión estándar
+ type Temp =
+ | GradosC of float
+ | GradosF of float
+
+ // Una de estas opciones se usa para crear una
+ let temp1 = GradosF 98.6
+ let temp2 = GradosC 37.0
+
+ // Coincidencia de patrón en todos los casos para desempaquetar (?)
+ let imprimirTemp = function
+ | GradosC t -> printfn "%f gradC" t
+ | GradosF t -> printfn "%f gradF" t
+
+ imprimirTemp temp1
+ imprimirTemp temp2
+
+ // ------------------------------------
+ // Tipos recursivos
+ // ------------------------------------
+
+ // Los tipos se pueden combinar recursivamente de formas complejas
+    // sin tener que crear subclases
+ type Empleado =
+ | Trabajador of Persona
+ | Gerente of Empleado lista
+
+ let jdoe = {Nombre="John";Apellido="Doe"}
+ let trabajador = Trabajador jdoe
+
+ // ------------------------------------
+ // Modelado con tipados (?)
+ // ------------------------------------
+
+ // Los tipos de unión son excelentes para modelar el estado sin usar banderas (?)
+ type DireccionDeCorreo =
+ | DireccionDeCorreoValido of string
+ | DireccionDeCorreoInvalido of string
+
+ let intentarEnviarCorreo correoElectronico =
+ match correoElectronico with // uso de patrones de coincidencia
+ | DireccionDeCorreoValido direccion -> () // enviar
+ | DireccionDeCorreoInvalido direccion -> () // no enviar
+
+ // Combinar juntos, los tipos de unión y tipos de registro
+     // ofrece una base excelente para el diseño impulsado por el dominio.
+     // Puedes crear cientos de pequeños tipos que reflejarán fielmente
+     // el dominio.
+
+ type ArticuloDelCarrito = { CodigoDelProducto: string; Cantidad: int }
+ type Pago = Pago of float
+ type DatosActivosDelCarrito = { ArticulosSinPagar: ArticuloDelCarrito lista }
+ type DatosPagadosDelCarrito = { ArticulosPagados: ArticuloDelCarrito lista; Pago: Pago}
+
+ type CarritoDeCompras =
+ | CarritoVacio // sin datos
+ | CarritoActivo of DatosActivosDelCarrito
+ | CarritoPagado of DatosPagadosDelCarrito
+
+ // ------------------------------------
+ // Comportamiento nativo de los tipos
+ // ------------------------------------
+
+ // Los tipos nativos tienen el comportamiento más útil "listo para usar", sin ningún código para agregar.
+     // * Inmutabilidad
+     // * Bonita depuración de impresión
+     // * Igualdad y comparación
+     // * Serialización
+
+     // La impresión bonita se usa con %A
+ printfn "dosTuplas=%A,\nPersona=%A,\nTemp=%A,\nEmpleado=%A"
+ dosTuplas persona1 temp1 trabajador
+
+ // La igualdad y la comparación son innatas
+     // Aquí hay un ejemplo con tarjetas.
+ type JuegoDeCartas = Trebol | Diamante | Espada | Corazon
+ type Rango = Dos | Tres | Cuatro | Cinco | Seis | Siete | Ocho
+ | Nueve | Diez | Jack | Reina | Rey | As
+
+ let mano = [ Trebol,As; Corazon,Tres; Corazon,As;
+ Espada,Jack; Diamante,Dos; Diamante,As ]
+
+ // orden
+ List.sort mano |> printfn "la mano ordenada es (de menos a mayor) %A"
+ List.max mano |> printfn "la carta más alta es%A"
+ List.min mano |> printfn "la carta más baja es %A"
+
+// ================================================
+// Patrones activos
+// ================================================
+
+module EjemplosDePatronesActivos =
+
+ // F# tiene un tipo particular de coincidencia de patrón llamado "patrones activos"
+    // donde el patrón puede ser analizado o detectado dinámicamente.
+
+    // "clips de banana" es la sintaxis de los patrones activos
+
+    // por ejemplo, definimos un patrón "activo" para que coincida con los tipos de "caracteres" ...
+ let (|Digito|Latra|EspacioEnBlanco|Otros|) ch =
+ if System.Char.IsDigit(ch) then Digito
+ else if System.Char.IsLetter(ch) then Letra
+ else if System.Char.IsWhiteSpace(ch) then EspacioEnBlanco
+ else Otros
+
+ // ... y luego lo usamos para hacer que la lógica de análisis sea más clara
+ let ImprimirCaracter ch =
+ match ch with
+ | Digito -> printfn "%c es un Digito" ch
+ | Letra -> printfn "%c es una Letra" ch
+ | Whitespace -> printfn "%c es un Espacio en blanco" ch
+ | _ -> printfn "%c es algo mas" ch
+
+ // ver una lista
+ ['a';'b';'1';' ';'-';'c'] |> List.iter ImprimirCaracter
+
+ // -----------------------------------------
+ // FizzBuzz usando patrones activos
+ // -----------------------------------------
+
+ // Puede crear un patrón de coincidencia parcial también
+    // Solo usamos un guión bajo en la definición y devolvemos Some si coincide.
+ let (|MultDe3|_|) i = if i % 3 = 0 then Some MultDe3 else None
+ let (|MultDe5|_|) i = if i % 5 = 0 then Some MultDe5 else None
+
+ // la función principal
+ let fizzBuzz i =
+ match i with
+ | MultDe3 & MultDe5 -> printf "FizzBuzz, "
+ | MultDe3 -> printf "Fizz, "
+ | MultDe5 -> printf "Buzz, "
+ | _ -> printf "%i, " i
+
+ // prueba
+ [1..20] |> List.iter fizzBuzz
+
+// ================================================
+// concisión
+// ================================================
+
+module EjemploDeAlgoritmo =
+
+ // F# tiene una alta relación señal / ruido, lo que permite leer el código
+    // casi como un algoritmo real
+
+ // ------ Ejemplo: definir una función sumaDeCuadrados ------
+ let sumaDeCuadrados n =
+ [1..n] // 1) Tome todos los números del 1 al n
+ |> List.map cuadrado // 2) Elevar cada uno de ellos al cuadrado
+ |> List.sum // 3) Realiza su suma
+
+ // prueba
+ sumaDeCuadrados 100 |> printfn "Suma de cuadrados = %A"
+
+ // ------ Ejemplo: definir una función de ordenación ------
+ let rec ordenar lista =
+ match lista with
+ // Si la lista está vacía
+ | [] ->
+ [] // devolvemos una lista vacía
+       // si la lista no está vacía
+ | primerElemento::otrosElementos -> // tomamos el primer elemento
+ let elementosMasPequenios = // extraemos los elementos más pequeños
+ otrosElementos // tomamos el resto
+ |> List.filter (fun e -> e < primerElemento)
+ |> ordenar // y los ordenamos
+ let elementosMasGrandes = // extraemos el mas grande
+ otrosElementos // de los que permanecen
+ |> List.filter (fun e -> e >= primerElemento)
+ |> ordenar // y los ordenamos
+ // Combinamos las 3 piezas en una nueva lista que devolvemos
+ List.concat [elementosMasPequenios; [primerElemento]; elementosMasGrandes]
+
+ // prueba
+ ordenar [1;5;23;18;9;1;3] |> printfn "Ordenado = %A"
+
+// ================================================
+// Código asíncrono
+// ================================================
+
+module AsyncExample =
+
+ // F# incluye características para ayudar con el código asíncrono
+    // sin conocer la "pirámide del destino"
+    //
+    // El siguiente ejemplo descarga una secuencia de página web en paralelo.
+
+ open System.Net
+ open System
+ open System.IO
+ open Microsoft.FSharp.Control.CommonExtensions
+
+ // Recuperar el contenido de una URL de forma asincrónica
+ let extraerUrlAsync url =
+ async { // La palabra clave "async" y llaves
+ // crear un objeto "asincrónico"
+ let solicitud = WebRequest.Create(Uri(url))
+ use! respuesta = solicitud.AsyncGetResponse()
+ // use! es una tarea asincrónica
+ use flujoDeDatos = resp.GetResponseStream()
+ // "use" dispara automáticamente la funcion close()
+ // en los recursos al final de las llaves
+ use lector = new IO.StreamReader(flujoDeDatos)
+ let html = lector.ReadToEnd()
+ printfn "terminó la descarga %s" url
+ }
+
+ // una lista de sitios para informar
+ let sitios = ["http://www.bing.com";
+ "http://www.google.com";
+ "http://www.microsoft.com";
+ "http://www.amazon.com";
+ "http://www.yahoo.com"]
+
+ // ¡Aqui vamos!
+ sitios
+ |> List.map extraerUrlAsync // crear una lista de tareas asíncrona
+ |> Async.Parallel // decirle a las tareas que se desarrollan en paralelo
+ |> Async.RunSynchronously // ¡Empieza!
+
+// ================================================
+// Compatibilidad .NET
+// ================================================
+
+module EjemploCompatibilidadNet =
+
+ // F# puede hacer casi cualquier cosa que C# pueda hacer, y se ajusta
+    // perfectamente con bibliotecas .NET o Mono.
+
+  // ------- Trabaja con las funciones de las bibliotecas existentes -------
+
+ let (i1success,i1) = System.Int32.TryParse("123");
+ if i1success then printfn "convertido como %i" i1 else printfn "conversion fallida"
+
+ // ------- Implementar interfaces sobre la marcha! -------
+
+ // Crea un nuevo objeto que implemente IDisposable
+ let crearRecurso name =
+ { new System.IDisposable
+ with member this.Dispose() = printfn "%s creado" name }
+
+ let utilizarYDisponerDeRecursos =
+ use r1 = crearRecurso "primer recurso"
+ printfn "usando primer recurso"
+ for i in [1..3] do
+ let nombreDelRecurso = sprintf "\tinner resource %d" i
+ use temp = crearRecurso nombreDelRecurso
+ printfn "\thacer algo con %s" nombreDelRecurso
+ use r2 = crearRecurso "segundo recurso"
+ printfn "usando segundo recurso"
+ printfn "hecho."
+
+ // ------- Código orientado a objetos -------
+
+ // F# es también un verdadero lenguaje OO.
+    // Admite clases, herencia, métodos virtuales, etc.
+
+ // interfaz de tipo genérico
+ type IEnumerator<'a> =
+ abstract member Actual : 'a
+ abstract MoverSiguiente : unit -> bool
+
+ // Clase base abstracta con métodos virtuales
+ [<AbstractClass>]
+ type Figura() =
+ // propiedades de solo lectura
+ abstract member Ancho : int with get
+ abstract member Alto : int with get
+ // método no virtual
+ member this.AreaDelimitadora = this.Alto * this.Ancho
+ // método virtual con implementación de la clase base
+ abstract member Imprimir : unit -> unit
+ default this.Imprimir () = printfn "Soy una Figura"
+
+ // clase concreta que hereda de su clase base y sobrecarga
+ type Rectangulo(x:int, y:int) =
+ inherit Figura()
+ override this.Ancho = x
+ override this.Alto = y
+ override this.Imprimir () = printfn "Soy un Rectangulo"
+
+ // prueba
+ let r = Rectangulo(2,3)
+ printfn "La anchura es %i" r.Ancho
+ printfn "El area es %i" r.AreaDelimitadora
+ r.Imprimir()
+
+ // ------- extensión de método -------
+
+ // Al igual que en C#, F# puede extender las clases existentes con extensiones de método.
+ type System.String with
+ member this.EmpiezaConA = this.EmpiezaCon "A"
+
+ // prueba
+ let s = "Alice"
+ printfn "'%s' empieza con una 'A' = %A" s s.EmpiezaConA
+
+ // ------- eventos -------
+
+ type MiBoton() =
+ let eventoClick = new Event<_>()
+
+ [<CLIEvent>]
+ member this.AlHacerClick = eventoClick.Publish
+
+ member this.PruebaEvento(arg) =
+ eventoClick.Trigger(this, arg)
+
+ // prueba
+ let miBoton = new MiBoton()
+ miBoton.AlHacerClick.Add(fun (sender, arg) ->
+ printfn "Haga clic en el evento con arg=%O" arg)
+
+ miBoton.PruebaEvento("Hola Mundo!")
+```
+
+## Más información
+
+Para más demostraciones de F#, visite el sitio [Try F#](http://www.tryfsharp.org/Learn), o sigue la serie [why use F#](http://fsharpforfunandprofit.com/why-use-fsharp/).
+
+Aprenda más sobre F# en [fsharp.org](http://fsharp.org/).
diff --git a/es-es/git-es.html.markdown b/es-es/git-es.html.markdown
index 1a8e275a..749365d1 100644
--- a/es-es/git-es.html.markdown
+++ b/es-es/git-es.html.markdown
@@ -1,11 +1,11 @@
---
category: tool
tool: git
+filename: LearnGit-es.txt
contributors:
- ["Jake Prather", "http://github.com/JakeHP"]
translator:
- ["Raúl Ascencio", "http://rscnt.github.io"]
-filename: LearnGit.txt
lang: es-es
---
diff --git a/es-es/go-es.html.markdown b/es-es/go-es.html.markdown
index c41d693d..78267695 100644
--- a/es-es/go-es.html.markdown
+++ b/es-es/go-es.html.markdown
@@ -26,7 +26,7 @@ Es rápido compilando y rápido al ejecutar, añade una concurrencia fácil de
entender para las CPUs de varios núcleos de hoy día, y tiene
características que ayudan con la programación a gran escala.
-Go viene con una biblioteca estándar muy buena y una entusiasta comunidad.
+Go viene con una biblioteca estándar muy buena y una comunidad entusiasta.
```go
// Comentario de una sola línea
@@ -52,7 +52,7 @@ import (
// para el ejecutable. Te guste o no, Go utiliza llaves.
func main() {
// Println imprime una línea a stdout.
- // Cualificalo con el nombre del paquete, fmt.
+ // Llámalo con el nombre del paquete, fmt.
fmt.Println("¡Hola mundo!")
// Llama a otra función de este paquete.
@@ -90,12 +90,12 @@ saltos de línea.` // mismo tipo cadena
g := 'Σ' // Tipo rune, un alias de int32, alberga un carácter unicode.
f := 3.14195 // float64, el estándar IEEE-754 de coma flotante 64-bit.
c := 3 + 4i // complex128, representado internamente por dos float64.
- // Sintaxis Var con iniciadores.
+ // Sintaxis var con iniciadores.
var u uint = 7 // Sin signo, pero la implementación depende del tamaño
// como en int.
var pi float32 = 22. / 7
- // Sintáxis de conversión con una declaración corta.
+ // Sintaxis de conversión con una declaración corta.
n := byte('\n') // byte es un alias para uint8.
// Los Arreglos tienen un tamaño fijo a la hora de compilar.
@@ -377,8 +377,8 @@ func aprendeConcurrencia() {
go func() { c <- 84 }() // Inicia una nueva rutinago solo para
// enviar un valor.
go func() { cs <- "verboso" }() // Otra vez, para cs en esta ocasión.
- // Select tiene una sintáxis parecida a la instrucción switch pero cada
- // caso involucra una operacion con un canal. Selecciona un caso de
+ // Select tiene una sintaxis parecida a la instrucción switch pero cada
+ // caso involucra una operación con un canal. Selecciona un caso de
// forma aleatoria de los casos que están listos para comunicarse.
select {
case i := <-c: // El valor recibido se puede asignar a una variable,
diff --git a/es-es/groovy-es.html.markdown b/es-es/groovy-es.html.markdown
index 799fc609..262d5e6a 100644
--- a/es-es/groovy-es.html.markdown
+++ b/es-es/groovy-es.html.markdown
@@ -232,10 +232,12 @@ for (i in array) {
// Iterando sobre un mapa
def map = ['name':'Roberto', 'framework':'Grails', 'language':'Groovy']
-x = 0
+x = ""
for ( e in map ) {
x += e.value
+ x += " "
}
+assert x.equals("Roberto Grails Groovy ")
/*
Operadores
diff --git a/es-es/haskell-es.html.markdown b/es-es/haskell-es.html.markdown
index babb1060..66ce109d 100644
--- a/es-es/haskell-es.html.markdown
+++ b/es-es/haskell-es.html.markdown
@@ -66,7 +66,7 @@ not False -- True
----------------------------------------------------
--- Listas y Tuplas
+-- 2. Listas y Tuplas
----------------------------------------------------
-- Cada elemento en una lista debe ser del mismo tipo.
diff --git a/es-es/hq9+-es.html.markdown b/es-es/hq9+-es.html.markdown
new file mode 100644
index 00000000..0e1a36e1
--- /dev/null
+++ b/es-es/hq9+-es.html.markdown
@@ -0,0 +1,44 @@
+---
+language: HQ9+
+filename: hq9+-es.html
+contributors:
+ - ["Alexey Nazaroff", "https://github.com/rogaven"]
+translators:
+ - ["Roberto R", "https://github.com/rrodriguze"]
+lang: es-es
+---
+
+HQ9+ es una parodia de los lenguajes de programación esotéricos y fue creado
+por Cliff Biffle.
+El lenguaje tiene solo cuatro comandos y no está completo de Turing.
+
+```
+Solo hay cuatro comandos, representados por los siguientes cuatro caracteres
+H: imprime "Hello, world!"
+Q: imprime el código fuente del programa (ein Quine)
+9: imprime la letra de "99 Bottles of Beer"
++: aumenta el acumulador en uno (el valod del acumulador no se puede leer)
+Cualquier otro caracter es ignorado.
+
+Ok. Escribamos el programa:
+ HQ
+
+Resultado:
+ Hello world!
+ HQ
+
+HQ9+ es muy simple, pero te permite hacer cosas en él. Otros lenguajes son muy
+difíciles.Por ejemplo, el siguiente programa imprime tres copias de sí mismo en
+la pantalla:
+ QQQ
+Esto imprime:
+ QQQ
+ QQQ
+ QQQ
+```
+
+Y esto es todo. Hay muchos intérpretes para HQ9+.
+A continuación encontrarás uno de ellos.
+
++ [One of online interpreters](https://almnet.de/esolang/hq9plus.php)
++ [HQ9+ official website](http://cliffle.com/esoterica/hq9plus.html)
diff --git a/es-es/hy-es.html.markdown b/es-es/hy-es.html.markdown
new file mode 100644
index 00000000..bfad3b6e
--- /dev/null
+++ b/es-es/hy-es.html.markdown
@@ -0,0 +1,176 @@
+---
+language: hy
+filename: learnhy-es.hy
+contributors:
+ - ["Abhishek L", "http://twitter.com/abhishekl"]
+translators:
+ - ["Roberto R", "https://github.com/rrodriguze"]
+lang: es-es
+---
+
+Hy es un lenguaje de Lisp escrito sobre Python. Esto es posible convirtiendo
+código Hy en un árbol abstracto de Python (ast). Por lo que, esto permite a
+Hy llamar a código Pyhton nativo y viceversa.
+
+Este tutorial funciona para hy >= 0.9.12
+
+```clojure
+;; Esto es una intrucción muy básica a Hy, como la del siguiente enlace
+;; http://try-hy.appspot.com
+;;
+; Comentarios usando punto y coma, como en otros LISPS
+
+;; Nociones básicas de expresiones
+; Los programas List están hechos de expresiones simbólicas como la siguiente
+(some-function args)
+; ahora el esencial "Hola Mundo"
+(print "hello world")
+
+;; Tipos de datos simples
+; Todos los tipos de datos simples son exactamente semejantes a sus homólogos
+; en python
+42 ; => 42
+3.14 ; => 3.14
+True ; => True
+4+10j ; => (4+10j) un número complejo
+
+; Vamos a comenzar con un poco de arimética simple
+(+ 4 1) ;=> 5
+; el operador es aplicado a todos los argumentos, como en otros lisps
+(+ 4 1 2 3) ;=> 10
+(- 2 1) ;=> 1
+(* 4 2) ;=> 8
+(/ 4 1) ;=> 4
+(% 4 2) ;=> 0 o operador módulo
+; la exponenciación es representada por el operador ** como python
+(** 3 2) ;=> 9
+; las funciones anidadas funcionan como lo esperado
+(+ 2 (* 4 2)) ;=> 10
+; también los operadores lógicos igual o no igual se comportan como se espera
+(= 5 4) ;=> False
+(not (= 5 4)) ;=> True
+
+;; variables
+; las variables se configuran usando SETV, los nombres de las variables pueden
+; usar utf-8, excepto for ()[]{}",'`;#|
+(setv a 42)
+(setv π 3.14159)
+(def *foo* 42)
+;; otros tipos de datos de almacenamiento
+; strings, lists, tuples & dicts
+; estos son exactamente los mismos tipos de almacenamiento en python
+"hello world" ;=> "hello world"
+; las operaciones de cadena funcionan de manera similar en python
+(+ "hello " "world") ;=> "hello world"
+; Las listas se crean usando [], la indexación comienza en 0
+(setv mylist [1 2 3 4])
+; las tuplas son estructuras de datos inmutables
+(setv mytuple (, 1 2))
+; los diccionarios son pares de valor-clave
+(setv dict1 {"key1" 42 "key2" 21})
+; :nombre se puede usar para definir palabras clave en Hy que se pueden usar para claves
+(setv dict2 {:key1 41 :key2 20})
+; usar 'get' para obtener un elemento en un índice/key
+(get mylist 1) ;=> 2
+(get dict1 "key1") ;=> 42
+; Alternativamente, si se usan palabras clave que podrían llamarse directamente
+(:key1 dict2) ;=> 41
+
+;; funciones y otras estructuras de programa
+; las funciones son definidas usando defn, o el último sexp se devuelve por defecto
+(defn greet [name]
+  "A simple greeting" ; un docstring opcional
+  (print "hello " name))
+
+(greet "bilbo") ;=> "hello bilbo"
+
+; las funciones pueden tener argumentos opcionales, así como argumentos-clave
+(defn foolists [arg1 &optional [arg2 2]]
+  [arg1 arg2])
+
+(foolists 3) ;=> [3 2]
+(foolists 10 3) ;=> [10 3]
+
+; las funciones anonimas son creadas usando constructores 'fn' y 'lambda'
+; que son similares a 'defn'
+(map (fn [x] (* x x)) [1 2 3 4]) ;=> [1 4 9 16]
+
+;; operaciones de secuencia
+; hy tiene algunas utilidades incluidas para operaciones de secuencia, etc.
+; recuperar el primer elemento usando 'first' o 'car'
+(setv mylist [1 2 3 4])
+(setv mydict {"a" 1 "b" 2})
+(first mylist) ;=> 1
+
+; corte listas usando 'slice'
+(slice mylist 1 3) ;=> [2 3]
+
+; obtener elementos de una lista o dict usando 'get'
+(get mylist 1) ;=> 2
+(get mydict "b") ;=> 2
+; la lista de indexación comienza a partir de 0, igual que en python
+; assoc puede definir elementos clave/índice
+(assoc mylist 2 10) ; crear mylist [1 2 10 4]
+(assoc mydict "c" 3) ; crear mydict {"a" 1 "b" 2 "c" 3}
+; hay muchas otras funciones que hacen que trabajar con secuencias sea 
+; entretenido
+
+;; Python interop
+;; los import funcionan exactamente como en python
+(import datetime)
+(import [functools [partial reduce]]) ; importa fun1 e fun2 del module1
+(import [matplotlib.pyplot :as plt]) ; haciendo una importación en foo como en bar
+; todos los métodos de python incluídos etc. son accesibles desde hy
+; a.foo(arg) is called as (.foo a arg)
+(.split (.strip "hello world  ")) ;=> ["hello" "world"]
+
+;; Condicionales
+; (if condition (body-if-true) (body-if-false)
+(if (= passcode "moria")
+  (print "welcome")
+  (print "Speak friend, and Enter!"))
+
+; anidar múltiples cláusulas 'if else if' con condiciones
+(cond
+ [(= someval 42)
+  (print "Life, universe and everything else!")]
+ [(> someval 42)
+  (print "val too large")]
+ [(< someval 42)
+  (print "val too small")])
+
+; declaraciones de grupo con 'do', son ejecutadas secuencialmente
+; formas como defn tienen un 'do' implícito
+(do
+ (setv someval 10)
+ (print "someval is set to " someval)) ;=> 10
+
+; crear enlaces léxicos con 'let', todas las variables definidas de esta manera
+; tienen alcance local
+(let [[nemesis {"superman" "lex luther"
+                "sherlock" "moriarty"
+                "seinfeld" "newman"}]]
+  (for [(, h v) (.items nemesis)]
+    (print (.format "{0}'s nemesis was {1}" h v))))
+
+;; clases
+; las clases son definidas de la siguiente manera
+(defclass Wizard [object]
+  [[--init-- (fn [self spell]
+             (setv self.spell spell) ; init the attr magic
+             None)]
+   [get-spell (fn [self]
+              self.spell)]])
+
+;; acesse hylang.org
+```
+
+### Otras lecturas
+
+Este tutorial apenas es una introducción básica para hy/lisp/python.
+
+Docs Hy: [http://hy.readthedocs.org](http://hy.readthedocs.org)
+
+Repo Hy en GitHub: [http://github.com/hylang/hy](http://github.com/hylang/hy)
+
+Acceso a freenode irc con #hy, hashtag en twitter: #hylang
diff --git a/es-es/javascript-es.html.markdown b/es-es/javascript-es.html.markdown
index 31512dc4..050154c7 100644
--- a/es-es/javascript-es.html.markdown
+++ b/es-es/javascript-es.html.markdown
@@ -1,7 +1,7 @@
---
language: javascript
contributors:
- - ["Adam Brenecki", "http://adam.brenecki.id.au"]
+ - ["Leigh Brenecki", "https://leigh.net.au"]
- ["Ariel Krakowski", "http://www.learneroo.com"]
translators:
- ["Daniel Zendejas","https://github.com/DanielZendejas"]
@@ -19,8 +19,8 @@ para front-end que Java.
Sin embargo, JavaScript no sólo se limita a los navegadores web: Node.js, un proyecto que proporciona un entorno de ejecución independiente para el motor V8 de Google Chrome, se está volviendo más y más popular.
¡La retroalimentación es bienvenida! Puedes encontrarme en:
-[@adambrenecki](https://twitter.com/adambrenecki), o
-[adam@brenecki.id.au](mailto:adam@brenecki.id.au).
+[@ExcitedLeigh](https://twitter.com/ExcitedLeigh), o
+[l@leigh.net.au](mailto:l@leigh.net.au).
```js
// Los comentarios en JavaScript son los mismos como comentarios en C.
diff --git a/es-es/kotlin-es.html.markdown b/es-es/kotlin-es.html.markdown
index 5d2f165a..80d7a4bb 100644
--- a/es-es/kotlin-es.html.markdown
+++ b/es-es/kotlin-es.html.markdown
@@ -2,6 +2,7 @@
language: kotlin
contributors:
- ["S Webber", "https://github.com/s-webber"]
+- ["Aitor Escolar", "https://github.com/aiescola"]
translators:
- ["Ivan Alburquerque", "https://github.com/AlburIvan"]
lang: es-es
@@ -39,7 +40,13 @@ fun main(args: Array<String>) {
de tal manera que no tenemos que especificarlo explícitamente cada vez.
    Podemos declarar explícitamente el tipo de una variable así:
*/
- val foo : Int = 7
+ val foo: Int = 7
+
+ /*
+ A diferencia de JavaScript, aunque el tipo se infiera, es tipado, por lo que no se puede cambiar el tipo a posteriori
+ */
+ var fooInt = 14 // Se infiere tipo Int
+ fooInt = "Cadena" // ERROR en tiempo de compilación: Type mismatch
/*
Las cadenas pueden ser representadas de la misma manera que Java.
@@ -84,7 +91,6 @@ fun main(args: Array<String>) {
println(fooNullable?.length) // => null
println(fooNullable?.length ?: -1) // => -1
-
/*
Las funciones pueden ser declaras usando la palabra clave "fun".
Los argumentos de las funciones son especificados entre corchetes despues del nombre de la función.
@@ -122,6 +128,40 @@ fun main(args: Array<String>) {
fun even(x: Int) = x % 2 == 0
println(even(6)) // => true
println(even(7)) // => false
+
+ /*
+ Kotlin permite el uso de lambdas, o funciones anónimas
+ */
+
+ // Sin lambda:
+ interface MyListener {
+ fun onClick(foo: Foo)
+ }
+
+ fun listenSomething(listener: MyListener) {
+ listener.onClick(Foo())
+ }
+
+ listenSomething(object: MyListener {
+ override fun onClick(foo: Foo) {
+ //...
+ }
+ })
+
+ // Con lambda:
+ fun listenSomethingLambda(listener: (Foo) -> Unit) {
+ listener(Foo())
+ }
+
+ listenSomethingLambda {
+ //Se recibe foo
+ }
+
+ // el operador typealias permite, entre otras cosas, simplificar las expresiones con lambdas
+ typealias MyLambdaListener = (Foo) -> Unit
+ fun listenSomethingLambda(listener: MyLambdaListener) {
+ listener(Foo())
+ }
// Las funciones pueden tomar funciones como argumentos y
// retornar funciones.
@@ -185,13 +225,13 @@ fun main(args: Array<String>) {
// La función "with" es similar a la expresión de JavaScript "with".
data class MutableDataClassExample (var x: Int, var y: Int, var z: Int)
- val fooMutableDate = MutableDataClassExample(7, 4, 9)
- with (fooMutableDate) {
+ val fooMutableData = MutableDataClassExample(7, 4, 9)
+ with (fooMutableData) {
x -= 2
y += 2
z--
}
- println(fooMutableDate) // => MutableDataClassExample(x=5, y=6, z=8)
+ println(fooMutableData) // => MutableDataClassExample(x=5, y=6, z=8)
/*
Podemos crear una lista utilizando la función "listOf".
@@ -219,6 +259,11 @@ fun main(args: Array<String>) {
val fooMap = mapOf("a" to 8, "b" to 7, "c" to 9)
// Se puede acceder a los valores del mapa por su llave.
println(fooMap["a"]) // => 8
+
+ // Tanto Map como cualquier colección iterable, tienen la función de extensión forEach
+ fooMap.forEach {
+ println("${it.key} ${it.value}")
+ }
/*
Las secuencias representan colecciones evaluadas diferidamente.
@@ -245,7 +290,7 @@ fun main(args: Array<String>) {
val y = fibonacciSequence().take(10).toList()
println(y) // => [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
- // Kotlin provee funciones de Orden-Mayor para trabajar con colecciones.
+ // Kotlin provee funciones de orden superior para trabajar con colecciones.
val z = (1..9).map {it * 3}
.filter {it < 20}
.groupBy {it % 2 == 0}
@@ -305,17 +350,11 @@ fun main(args: Array<String>) {
ese tipo sin convertido de forma explícita.
*/
fun smartCastExample(x: Any) : Boolean {
- if (x is Boolean) {
- // x es automaticamente convertido a Boolean
- return x
- } else if (x is Int) {
- // x es automaticamente convertido a Int
- return x > 0
- } else if (x is String) {
- // x es automaticamente convertido a String
- return x.isNotEmpty()
- } else {
- return false
+ return when (x) {
+ is Boolean -> x // x es automaticamente convertido a Boolean
+ is Int -> x > 0 // x es automaticamente convertido a Int
+ is String -> x.isNotEmpty() // x es automaticamente convertido a String
+ else -> false
}
}
println(smartCastExample("Hola, mundo!")) // => true
@@ -345,7 +384,8 @@ enum class EnumExample {
/*
La palabra clave "object" se puede utilizar para crear objetos únicos.
No podemos asignarlo a una variable, pero podemos hacer referencia a ella por su nombre.
-Esto es similar a los objetos únicos de Scala
+Esto es similar a los objetos únicos de Scala.
+En la mayoría de ocasiones, los objetos únicos se usan como alternativa a los Singleton.
*/
object ObjectExample {
fun hello() : String {
diff --git a/es-es/lambda-calculus-es.html.markdown b/es-es/lambda-calculus-es.html.markdown
new file mode 100644
index 00000000..d49545c2
--- /dev/null
+++ b/es-es/lambda-calculus-es.html.markdown
@@ -0,0 +1,216 @@
+---
+category: Algorithms & Data Structures
+name: Lambda Calculus
+contributors:
+ - ["Max Sun", "http://github.com/maxsun"]
+ - ["Yan Hui Hang", "http://github.com/yanhh0"]
+translators:
+ - ["Ivan Alburquerque", "https://github.com/AlburIvan"]
+lang: es-es
+---
+
+# Cálculo Lambda
+
+Cálculo Lambda (Cálculo-λ), originalmente creado por
+[Alonzo Church](https://es.wikipedia.org/wiki/Alonzo_Church),
+es el lenguaje de programación más pequeño del mundo.
+A pesar de no tener números, cadenas, valores booleanos o cualquier
+tipo de datos no funcional, el cálculo lambda se puede utilizar para
+representar cualquier máquina de Turing.
+
+El cálculo lambda se compone de 3 elementos: **variables**, **funciones** y
+**aplicaciones**.
+
+| Nombre | Sintaxis | Ejemplo | Explicación |
+|-------------|------------------------------------|-----------|-----------------------------------------------|
+| Variable | `<nombre>` | `x` | una variable llamada "x" |
+| Función | `λ<parámetro>.<cuerpo>` | `λx.x` | una función con parámetro "x" y cuerpo "x" |
+| Aplicación | `<función><variable o función>` | `(λx.x)a` | llamando a la función "λx.x" con el argumento "a" |
+
+La función más básica es la función de identidad: `λx.x` que es equivalente a
+`f(x) = x`. La primera "x" es el argumento de la función y la segunda es el
+cuerpo de la función.
+
+## Variables Libres vs. Enlazadas:
+
+- En la función `λx.x`, "x" se llama una variable enlazada porque está tanto en
+ el cuerpo de la función como en el parámetro.
+- En `λx.y`, "y" se llama variable libre porque nunca se declara de antemano.
+
+## Evaluación:
+
+Evaluación se realiza a través de
+[β-Reduction](https://es.wikipedia.org/wiki/C%C3%A1lculo_lambda#%CE%B2-reducci%C3%B3n),
+que es, esencialmente, sustitución de ámbito léxico.
+
+Al evaluar la expresión `(λx.x)a`, reemplazamos todas las ocurrencias de "x"
+en el cuerpo de la función con "a".
+
+- `(λx.x)a` evalúa a: `a`
+- `(λx.y)a` evalúa a: `y`
+
+Incluso puedes crear funciones de orden superior:
+
+- `(λx.(λy.x))a` evalúa a: `λy.a`
+
+Aunque el cálculo lambda tradicionalmente solo admite funciones
+de un solo parámetro, podemos crear funciones multiparamétricas usando
+una técnica llamada [Currificación](https://es.wikipedia.org/wiki/Currificación).
+
+- `(λx.λy.λz.xyz)` es equivalente a `f(x, y, z) = ((x y) z)`
+
+Algunas veces `λxy.<cuerpo>` es usado indistintamente con: `λx.λy.<cuerpo>`
+
+----
+
+Es importante reconocer que el cálculo lambda tradicional **no tiene números,
+caracteres ni ningún tipo de datos que no sea de función.**
+
+## Lógica Booleana:
+
+No hay "Verdadero" o "Falso" en el cálculo lambda. Ni siquiera hay un 1 o un 0.
+
+En vez:
+
+`T` es representado por: `λx.λy.x`
+
+`F` es representado por: `λx.λy.y`
+
+Primero, podemos definir una función "if" `λbtf` que devuelve
+`t` si `b` es Verdadero y `f` si `b` es Falso
+
+`IF` es equivalente a: `λb.λt.λf.b t f`
+
+Usando `IF` podemos definir los operadores lógicos booleanos básicos:
+
+`a AND b` es equivalente a: `λab.IF a b F`
+
+`a OR b` es equivalente a: `λab.IF a T b`
+
+`a NOT b` es equivalente a: `λa.IF a F T`
+
+*Note: `IF a b c` es esencialmente diciendo: `IF((a b) c)`*
+
+## Números:
+
+Aunque no hay números en el cálculo lambda, podemos codificar números usando
+[Númeral de Church](https://en.wikipedia.org/wiki/Church_encoding).
+
+Para cualquier número n: <code>n = λf.f <sup> n </sup></code> así:
+
+`0 = λf.λx.x`
+
+`1 = λf.λx.f x`
+
+`2 = λf.λx.f(f x)`
+
+`3 = λf.λx.f(f(f x))`
+
+Para incrementar un númeral de Church, usamos la función sucesora
+`S(n) = n + 1` que es:
+
+`S = λn.λf.λx.f((n f) x)`
+
+Usando el sucesor, podemos definir AGREGAR:
+
+`AGREGAR = λab.(a S)n`
+
+**Desafío:** intenta definir tu propia función de multiplicación!
+
+## Vamos más pequeño: SKI, SK y Iota
+
+### Combinador de SKI
+
+Sean S, K, I las siguientes funciones:
+
+`I x = x`
+
+`K x y = x`
+
+`S x y z = x z (y z)`
+
+Podemos convertir una expresión en el cálculo lambda en una expresión
+en el cálculo del combinador de SKI:
+
+1. `λx.x = I`
+2. `λx.c = Kc`
+3. `λx.(y z) = S (λx.y) (λx.z)`
+
+Tome el número 2 de Church por ejemplo:
+
+`2 = λf.λx.f(f x)`
+
+Para la parte interior `λx.f(f x)`:
+```
+ λx.f(f x)
+= S (λx.f) (λx.(f x)) (case 3)
+= S (K f) (S (λx.f) (λx.x)) (case 2, 3)
+= S (K f) (S (K f) I) (case 2, 1)
+```
+
+Así que:
+```
+ 2
+= λf.λx.f(f x)
+= λf.(S (K f) (S (K f) I))
+= λf.((S (K f)) (S (K f) I))
+= S (λf.(S (K f))) (λf.(S (K f) I)) (case 3)
+```
+
+Para el primer argumento `λf.(S (K f))`:
+```
+ λf.(S (K f))
+= S (λf.S) (λf.(K f)) (case 3)
+= S (K S) (S (λf.K) (λf.f)) (case 2, 3)
+= S (K S) (S (K K) I) (case 2, 3)
+```
+
+Para el segundo argumento `λf.(S (K f) I)`:
+```
+ λf.(S (K f) I)
+= λf.((S (K f)) I)
+= S (λf.(S (K f))) (λf.I) (case 3)
+= S (S (λf.S) (λf.(K f))) (K I) (case 2, 3)
+= S (S (K S) (S (λf.K) (λf.f))) (K I) (case 1, 3)
+= S (S (K S) (S (K K) I)) (K I) (case 1, 2)
+```
+
+Uniéndolos:
+```
+ 2
+= S (λf.(S (K f))) (λf.(S (K f) I))
+= S (S (K S) (S (K K) I)) (S (S (K S) (S (K K) I)) (K I))
+```
+
+Al expandir esto, terminaríamos con la misma expresión para el número 2 de Church nuevamente.
+
+### Cálculo del combinador SKI
+
+El cálculo del combinador SKI puede reducirse aún más. Podemos eliminar
+el combinador I observando que `I = SKK`. Podemos sustituir
+todos los 'I' con `SKK`.
+
+### Combinador Iota
+
+El cálculo del combinador SK todavía no se encuentra en su expresión mínima.
+Definiendo:
+
+```
+ι = λf.((f S) K)
+```
+
+Tenemos que:
+
+```
+I = ιι
+K = ι(ιI) = ι(ι(ιι))
+S = ι(K) = ι(ι(ι(ιι)))
+```
+
+## Para una lectura más avanzada:
+
+1. [A Tutorial Introduction to the Lambda Calculus](http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf)
+2. [Cornell CS 312 Recitation 26: The Lambda Calculus](http://www.cs.cornell.edu/courses/cs3110/2008fa/recitations/rec26.html)
+3. [Wikipedia - Lambda Calculus](https://es.wikipedia.org/wiki/Cálculo_lambda)
+4. [Wikipedia - SKI combinator calculus](https://en.wikipedia.org/wiki/SKI_combinator_calculus)
+5. [Wikipedia - Iota and Jot](https://en.wikipedia.org/wiki/Iota_and_Jot)
diff --git a/es-es/learnsmallbasic-es.html.markdown b/es-es/learnsmallbasic-es.html.markdown
new file mode 100644
index 00000000..ff320afb
--- /dev/null
+++ b/es-es/learnsmallbasic-es.html.markdown
@@ -0,0 +1,132 @@
+---
+language: SmallBASIC
+filename: learnsmallbasic-es.bas
+contributors:
+ - ["Chris Warren-Smith", "http://smallbasic.sourceforge.net"]
+translators:
+ - ["José Juan Hernández García", "http://jjuanhdez.es"]
+lang: es-es
+---
+
+## Acerca de
+
+SmallBASIC es un intérprete del lenguaje BASIC rápido y fácil de aprender, ideal para cálculos cotidianos, scripts y prototipos. SmallBASIC incluye funciones trigonométricas, matrices y álgebra, un IDE integrado, una potente librería de cadenas de texto, comandos de sistema, sonido y gráficos, junto con una sintaxis de programación estructurada.
+
+## Desarrollo
+
+SmallBASIC fue desarrollado originalmente por Nicholas Christopoulos a finales de 1999 para el Palm Pilot. El desarrollo del proyecto ha sido continuado por Chris Warren-Smith desde el año 2005.
+Versiones de SmallBASIC se han hecho para una serie dispositivos de mano antiguos, incluyendo Franklin eBookman y el Nokia 770. También se han publicado varias versiones de escritorio basadas en una variedad de kits de herramientas GUI, algunas de las cuales han desaparecido. Las plataformas actualmente soportadas son Linux y Windows basadas en SDL2 y Android basadas en NDK. También está disponible una versión de línea de comandos de escritorio, aunque no suele publicarse en formato binario.
+Alrededor de 2008 una gran corporación lanzó un entorno de programación BASIC con un nombre de similar. SmallBASIC no está relacionado con este otro proyecto.
+
+```
+REM Esto es un comentario
+' y esto tambien es un comentario
+
+REM Imprimir texto
+PRINT "hola"
+? "? es la abreviatura de PRINT"
+
+REM Estructuras de control
+FOR index = 0 TO 10 STEP 2
+ ? "Este es el numero de linea "; index
+NEXT
+J = 0
+REPEAT
+ J++
+UNTIL J = 10
+WHILE J > 0
+ J--
+WEND
+
+REM Estructura Select Case
+SELECT CASE "Cool"
+ CASE "null", 1, 2, 3, 4, 5, 6, 7, 8, "Cool", "blah"
+ CASE "No Cool"
+ PRINT "Fallo epico"
+ CASE ELSE
+ PRINT "Fallo"
+END SELECT
+
+REM Captura de errores con TRY/CATCH
+TRY
+ fn = Freefile
+ OPEN filename FOR INPUT As #fn
+CATCH err
+ PRINT "No se pudo abrir"
+END TRY
+
+REM Procedimientos y funciones definidas por el usuario
+FUNC add2(x, y)
+ ' variables pueden declararse como locales en el ambito de una SUB o FUNC
+ LOCAL k
+ k = "k dejara de existir cuando retorne FUNC"
+ add2 = x + y
+END
+PRINT add2(5, 5)
+
+SUB print_it(it)
+ PRINT it
+END
+print_it "IT...."
+
+REM Visualizacion de lineas y pixeles
+At 0, ymax / 2 + txth ("Q")
+COLOR 1: ? "sin(x)":
+COLOR 8: ? "cos(x)":
+COLOR 12: ? "tan(x)"
+LINE 0, ymax / 2, xmax, ymax / 2
+FOR i = 0 TO xmax
+ PSET i, ymax / 2 - SIN(i * 2 * pi / ymax) * ymax / 4 COLOR 1
+ PSET i, ymax / 2 - COS(i * 2 * pi / ymax) * ymax / 4 COLOR 8
+ PSET i, ymax / 2 - TAN(i * 2 * pi / ymax) * ymax / 4 COLOR 12
+NEXT
+SHOWPAGE
+
+REM SmallBASIC es ideal para experimentar con fractales y otros efectos interesantes
+DELAY 3000
+RANDOMIZE
+ff = 440.03
+FOR j = 0 TO 20
+ r = RND * 1000 % 255
+ b = RND * 1000 % 255
+ g = RND * 1000 % 255
+ c = RGB(r, b, g)
+ ff += 9.444
+ FOR i = 0 TO 25000
+ ff += ff
+ x = MIN(xmax, -x + COS(f * i))
+ y = MIN(ymax, -y + SIN(f * i))
+ PSET x, y COLOR c
+ IF (i % 1000 == 0) THEN
+ SHOWPAGE
+ fi
+ NEXT
+NEXT j
+
+REM Para historiadores de computadoras, SmallBASIC puede ejecutar programas
+REM encontrados en los primeros libros de computacion y revistas, por ejemplo:
+10 LET A = 9
+20 LET B = 7
+30 PRINT A * B
+40 PRINT A / B
+
+REM SmallBASIC también tiene soporte para algunos conceptos modernos como JSON
+aa = ARRAY("{\"cat\":{\"name\":\"harry\"},\"pet\":\"true\"}")
+IF (ismap(aa) == false) THEN
+ THROW "no es un mapa"
+END IF
+PRINT aa
+
+PAUSE
+
+```
+## Artículos
+
+* [Primeros pasos](http://smallbasic.sourceforge.net/?q=node/1573)
+* [Bienvenido a SmallBASIC](http://smallbasic.sourceforge.net/?q=node/838)
+
+## GitHub
+
+* [Código fuente](https://github.com/smallbasic/SmallBASIC)
+* [Reference snapshot](http://smallbasic.github.io/)
+
diff --git a/es-es/markdown-es.html.markdown b/es-es/markdown-es.html.markdown
index 0505b4cb..e23a94ea 100644
--- a/es-es/markdown-es.html.markdown
+++ b/es-es/markdown-es.html.markdown
@@ -14,7 +14,7 @@ fácilmente a HTML (y, actualmente, otros formatos también).
¡Denme toda la retroalimentación que quieran! / ¡Sientanse en la libertad de hacer forks o pull requests!
-```markdown
+```md
<!-- Markdown está basado en HTML, así que cualquier archivo HTML es Markdown
válido, eso significa que podemos usar elementos HTML en Markdown como, por
ejemplo, el comentario y no serán afectados por un parseador Markdown. Aún
diff --git a/es-es/matlab-es.html.markdown b/es-es/matlab-es.html.markdown
new file mode 100644
index 00000000..9f1656bb
--- /dev/null
+++ b/es-es/matlab-es.html.markdown
@@ -0,0 +1,568 @@
+---
+language: Matlab
+filename: learnmatlab-es.mat
+contributors:
+ - ["mendozao", "http://github.com/mendozao"]
+ - ["jamesscottbrown", "http://jamesscottbrown.com"]
+ - ["Colton Kohnke", "http://github.com/voltnor"]
+ - ["Claudson Martins", "http://github.com/claudsonm"]
+translators:
+ - ["Ivan Alburquerque", "https://github.com/AlburIvan"]
+lang: es-es
+---
+
+MATLAB significa 'MATrix LABoratory'. Es un poderoso lenguaje de computación numérica comúnmente usado en ingeniería y matemáticas.
+
+Si tiene algún comentario, no dude en ponerse en contacto el autor en
+[@the_ozzinator](https://twitter.com/the_ozzinator), o
+[osvaldo.t.mendoza@gmail.com](mailto:osvaldo.t.mendoza@gmail.com).
+
+```matlab
+%% Una sección de código comienza con dos símbolos de porcentaje. Los títulos de la sección van en la misma líneas.
+% Los comentarios comienzan con un símbolo de porcentaje.
+
+%{
+Los Comentarios de multiples líneas se
+ven
+como
+esto
+%}
+
+% Dos símbolos de porcentaje denotan el comienzo de una nueva sección de código.
+% Secciones de código individuales pueden ser ejecutadas moviendo el cursor hacia la sección,
+% seguida por un clic en el botón de “Ejecutar Sección”
+% o usando Ctrl+Shift+Enter (Windows) o Cmd+Shift+Return (OS X)
+
+%% Este es el comienzo de una sección de código
+% Una forma de usar las secciones es separar un código de inicio costoso que no cambia, como cargar datos
+load learnmatlab.mat y
+
+%% Esta es otra sección de código
+% Esta sección puede ser editada y ejecutada de manera repetida por sí misma,
+% y es útil para la programación exploratoria y demostraciones.
+A = A * 2;
+plot(A);
+
+%% Las secciones de código también son conocidas como celdas de código o modo celda (no ha de ser confundido con arreglo de celdas)
+
+
+% Los comandos pueden abarcar varias líneas, usando '...'
+ a = 1 + 2 + ...
+ + 4
+
+% Los comandos se pueden pasar al sistema operativo
+!ping google.com
+
+who % Muestra todas las variables en la memoria
+whos % Muestra todas las variables en la memoria con sus tipos
+clear % Borra todas tus variables de la memoria
+clear('A') % Borra una variable en particular
+openvar('A') % Variable abierta en editor de variables
+
+clc % Borra la escritura en la ventana de Comando
+diary % Alterna la escritura del texto de la ventana de comandos al archivo
+ctrl-c % Aborta el cálculo actual
+
+edit('myfunction.m') % Abrir función/script en el editor
+type('myfunction.m') % Imprime la fuente de la función/script en la ventana de comandos
+
+profile on % Enciende el generador de perfilador de código
+profile off % Apaga el generador de perfilador de código
+profile viewer % Abre el perfilador de código
+
+help command % Muestra la documentación del comando en la ventana de comandos
+doc command % Muestra la documentación del comando en la ventana de Ayuda
+lookfor command % Busca el comando en la primera línea comentada de todas las funciones
+lookfor command -all % busca el comando en todas las funciones
+
+
+% Formato de salida
+format short % 4 decimales en un número flotante
+format long % 15 decimales
+format bank % solo dos dígitos después del punto decimal - para cálculos financieros
+fprintf('texto') % imprime "texto" en la pantalla
+disp('texto') % imprime "texto" en la pantalla
+
+% Variables y expresiones
+myVariable = 4 % Espacio de trabajo de aviso muestra la variable recién creada
+myVariable = 4; % Punto y coma suprime la salida a la Ventana de Comando
+4 + 6 % ans = 10
+8 * myVariable % ans = 32
+2 ^ 3 % ans = 8
+a = 2; b = 3;
+c = exp(a)*sin(pi/2) % c = 7.3891
+
+% Llamar funciones se pueden realizar de dos maneras:
+% Sintaxis de función estándar:
+load('myFile.mat', 'y') % argumentos entre paréntesis, separados por comas
+% Sintaxis del comando:
+load myFile.mat y % sin paréntesis, y espacios en lugar de comas
+% Tenga en cuenta la falta de comillas en el formulario de comandos:
+% las entradas siempre se pasan como texto literal; no pueden pasar valores de variables.
+% Además, no puede recibir salida:
+[V,D] = eig(A); % esto no tiene equivalente en forma de comando
+[~,D] = eig(A); % si solo se quiere D y no V
+
+
+
+% Operadores lógicos
+1 > 5 % ans = 0
+10 >= 10 % ans = 1
+3 ~= 4 % No es igual a -> ans = 1
+3 == 3 % Es igual a -> ans = 1
+3 > 1 && 4 > 1 % AND -> ans = 1
+3 > 1 || 4 > 1 % OR -> ans = 1
+~1 % NOT -> ans = 0
+
+% Los operadores lógicos se pueden aplicar a matrices:
+A > 5
+% para cada elemento, si la condición es verdadera, ese elemento es 1 en la matriz devuelta
+A( A > 5 )
+% devuelve un vector que contiene los elementos en A para los que la condición es verdadera
+
+% Cadenas
+a = 'MiCadena'
+length(a) % ans = 8
+a(2) % ans = y
+[a,a] % ans = MiCadenaMiCadena
+
+
+% Celdas
+a = {'uno', 'dos', 'tres'}
+a(1) % ans = 'uno' - retorna una celda
+char(a(1)) % ans = uno - retorna una cadena
+
+% Estructuras
+A.b = {'uno','dos'};
+A.c = [1 2];
+A.d.e = false;
+
+% Vectores
+x = [4 32 53 7 1]
+x(2) % ans = 32, los índices en Matlab comienzan 1, no 0
+x(2:3) % ans = 32 53
+x(2:end) % ans = 32 53 7 1
+
+x = [4; 32; 53; 7; 1] % Vector de columna
+
+x = [1:10] % x = 1 2 3 4 5 6 7 8 9 10
+x = [1:2:10] % Incrementa por 2, i.e. x = 1 3 5 7 9
+
+% Matrices
+A = [1 2 3; 4 5 6; 7 8 9]
+% Las filas están separadas por un punto y coma; los elementos se separan con espacio o coma
+% A =
+
+% 1 2 3
+% 4 5 6
+% 7 8 9
+
+A(2,3) % ans = 6, A(fila, columna)
+A(6) % ans = 8
+% (concatena implícitamente columnas en el vector, luego indexa en base a esto)
+
+
+A(2,3) = 42 % Actualiza la fila 2 col 3 con 42
+% A =
+
+% 1 2 3
+% 4 5 42
+% 7 8 9
+
+A(2:3,2:3) % Crea una nueva matriz a partir de la anterior
+%ans =
+
+% 5 42
+% 8 9
+
+A(:,1) % Todas las filas en la columna 1
+%ans =
+
+% 1
+% 4
+% 7
+
+A(1,:) % Todas las columnas en la fila 1
+%ans =
+
+% 1 2 3
+
+[A ; A] % Concatenación de matrices (verticalmente)
+%ans =
+
+% 1 2 3
+% 4 5 42
+% 7 8 9
+% 1 2 3
+% 4 5 42
+% 7 8 9
+
+% esto es lo mismo que
+vertcat(A,A);
+
+
+[A , A] % Concatenación de matrices (horizontalmente)
+
+%ans =
+
+% 1 2 3 1 2 3
+% 4 5 42 4 5 42
+% 7 8 9 7 8 9
+
+% esto es lo mismo que
+horzcat(A,A);
+
+
+A(:, [3 1 2]) % Reorganiza las columnas de la matriz original
+%ans =
+
+% 3 1 2
+% 42 4 5
+% 9 7 8
+
+size(A) % ans = 3 3
+
+A(1, :) =[] % Elimina la primera fila de la matriz
+A(:, 1) =[] % Elimina la primera columna de la matriz
+
+transpose(A) % Transponer la matriz, que es lo mismo que:
+A one
+ctranspose(A) % Hermitian transpone la matriz
+% (la transposición, seguida de la toma del conjugado complejo de cada elemento)
+A' % Versión concisa de transposición compleja
+A.' % Versión concisa de transposición (sin tomar complejo conjugado)
+
+
+
+
+% Elemento por elemento Aritmética vs. Matriz Aritmética
+% Por sí solos, los operadores aritméticos actúan sobre matrices completas. Cuando preceden
+% por un punto, actúan en cada elemento en su lugar. Por ejemplo:
+A * B % Multiplicación de matrices
+A .* B % Multiplica cada elemento en A por su elemento correspondiente en B
+
+% Hay varios pares de funciones, donde una actúa sobre cada elemento y
+% la otra (cuyo nombre termina en m) actúa sobre la matriz completa.
+exp(A) % exponencializar cada elemento
+expm(A) % calcular la matriz exponencial
+sqrt(A) % tomar la raíz cuadrada de cada elemento
+sqrtm(A) % encuentra la matriz cuyo cuadrado es A
+
+
+% Trazando
+x = 0:.10:2*pi; % Crea un vector que comienza en 0 y termina en 2 * pi con incrementos de .1
+y = sin(x);
+plot(x,y)
+xlabel('x axis')
+ylabel('y axis')
+title('Plot of y = sin(x)')
+axis([0 2*pi -1 1]) % x rango de 0 a 2 * pi, y rango de -1 a 1
+
+plot(x,y1,'-',x,y2,'--',x,y3,':') % Para múltiples funciones en una parcela.
+legend('Line 1 label', 'Line 2 label') % Etiquetar curvas con una leyenda.
+
+% Método alternativo para trazar múltiples funciones en una parcela.
+% mientras 'hold' está activado, los comandos se agregan al gráfico existente en lugar de reemplazarlo.
+plot(x, y)
+hold on
+plot(x, z)
+hold off
+
+loglog(x, y) % Un diagrama de log-log.
+semilogx(x, y) % Un diagrama con el eje x logarítmico.
+semilogy(x, y) % Un diagrama con el eje y logarítmico.
+
+fplot (@(x) x^2, [2,5]) % Un diagrama con el eje y logarítmico...
+
+grid on % Muestra la cuadrícula; apague con 'grid off'.
+axis square % Hace que la región actual de los ejes sea cuadrada.
+axis equal % Establece la relación de aspecto para que las unidades de datos sean las mismas en todas las direcciones.
+
+scatter(x, y); % Gráfico de dispersión
+hist(x); % Histograma
+stem(x); % Traza los valores como tallos, útiles para mostrar datos discretos.
+bar(x); % Diagrama de barras
+
+z = sin(x);
+plot3(x,y,z); % Trazado de línea 3D.
+
+pcolor(A) % Trazado de línea 3D...
+contour(A) % Diagrama de contorno de la matriz.
+mesh(A) % Traza una superficie de malla.
+
+h = figure % Crea nuevo objeto figura, con el mango h.
+figure(h) % Hace que la figura correspondiente al mango h la figura actual.
+close(h) % Cierra la figura con mango h.
+close all % Cierra todas las ventanas con figura abierta.
+close % Cierra ventana de figura actual.
+
+shg % Trae una ventana gráfica existente hacia adelante, o crea una nueva si es necesario.
+clf clear % Borra la ventana de la figura actual y restablece la mayoría de las propiedades de la figura.
+
+% Las propiedades se pueden establecer y cambiar a través de un identificador de figura.
+% Puede guardar un identificador de una figura cuando la crea.
+% La función get devuelve un handle a la figura actual
+h = plot(x, y); % Puedes guardar un control de una figura cuando la creas
+set(h, 'Color', 'r')
+% 'y' yellow; 'm' magenta, 'c' cyan, 'r' red, 'g' green, 'b' blue, 'w' white, 'k' black
+set(h, 'LineStyle', '--')
+% '--' es línea continua, '---' discontinua, ':' punteada, '-.' dash-dot, 'none' es sin línea
+get (h, 'LineStyle')
+
+
+% La función gca devuelve un mango a los ejes para la figura actual
+set(gca, 'XDir', 'reverse'); % invierte la dirección del eje x
+
+% Para crear una figura que contenga varios ejes en posiciones de mosaico, use 'subplot'
+subplot(2,3,1); % seleccione la primera posición en una grilla de subtramas de 2 por 3
+plot(x1); title('First Plot') % traza algo en esta posición
+subplot(2,3,2); % selecciona la segunda posición en la grilla
+plot(x2); title('Second Plot') % trazar algo allí
+
+
+% Para usar funciones o scripts, deben estar en su ruta o directorio actual
+path % muestra la ruta actual
+addpath /path/to/dir % agrega a la ruta
+rmpath /path/to/dir % elimina de la ruta
+cd /path/to/move/into % cambia de directorio
+
+
+% Las variables se pueden guardar en archivos .mat
+save('myFileName.mat') % Guarda las variables en su espacio de trabajo
+load('myFileName.mat') % Carga las variables guardadas en espacio de trabajo
+
+% M-file Scripts
+% Un archivo de script es un archivo externo que contiene una secuencia de instrucciones.
+% Permiten evitar escribir repetidamente el mismo código en la ventana de comandos
+% Tienen extensiones .m
+
+% M-file Functions
+% Al igual que los scripts, y tienen la misma extensión .m
+% Pero pueden aceptar argumentos de entrada y devolver una salida
+% Además, tienen su propio espacio de trabajo (es decir, diferente alcance variable).
+% El nombre de la función debe coincidir con el nombre del archivo (por lo tanto, guarde este ejemplo como double_input.m).
+% 'help double_input.m' devuelve los comentarios en la línea que comienza la función
+function output = double_input(x)
+ % double_input(x) devuelve el doble del valor de x
+ output = 2*x;
+end
+double_input(6) % ans = 12
+
+
+% También puede tener subfunciones y funciones anidadas.
+% Las subfunciones están en el mismo archivo que la función primaria, y solo pueden ser
+% llamadas por funciones en el archivo. Las funciones anidadas se definen dentro de otra
+% otras funciones y tienen acceso tanto a su área de trabajo como a su propio espacio de trabajo.
+
+% Si desea crear una función sin crear un nuevo archivo, puede usar una
+% función anónima. Útil cuando se define rápidamente una función para pasar a
+% otra función (por ejemplo, trazar con fplot, evaluar una integral indefinida
+% con quad, encuentra roots con fzero, o encuentra mínimo con fminsearch).
+% Ejemplo que devuelve el cuadrado de su entrada, asignado al identificador sqr:
+sqr = @(x) x.^2;
+sqr(10) % ans = 100
+doc function_handle % averiguar más
+
+% User input
+a = input('Ingrese el valor:')
+
+% Detiene la ejecución del archivo y le da control al teclado: el usuario puede examinar
+% o cambiar las variables. Escriba 'return' para continuar la ejecución, o 'dbquit' para salir del teclado
+
+% Lectura de datos (también xlsread / importdata / imread para archivos de excel / CSV / image)
+fopen(filename)
+
+% Salida
+disp(a) % Imprime el valor de la variable a
+disp('Hola Mundo') % Imprime una cadena
+fprintf % Imprime en la ventana de comandos con más control
+
+% Declaraciones condicionales (los paréntesis son opcionales, pero buen estilo)
+if (a > 15)
+ disp('Mayor que 15')
+elseif (a == 23)
+ disp('a es 23')
+else
+ disp('Ninguna condicion se ha cumplido')
+end
+
+% Bucles
+% NB. haciendo un bucle sobre los elementos de un vector / matriz es lento!
+% Siempre que sea posible, use funciones que actúen en todo el vector / matriz a la vez
+for k = 1:5
+ disp(k)
+end
+
+k = 0;
+while (k < 5)
+ k = k + 1;
+end
+
+% Ejecución del código de tiempo: 'toc' imprime el tiempo desde que se llamó 'tic'
+tic
+A = rand(1000);
+A*A*A*A*A*A*A;
+toc
+
+% Conectarse a una base de datos MySQL
+dbname = 'database_name';
+username = 'root';
+password = 'root';
+driver = 'com.mysql.jdbc.Driver';
+dburl = ['jdbc:mysql://localhost:8889/' dbname];
+javaclasspath('mysql-connector-java-5.1.xx-bin.jar'); %xx depende de la versión, descarga disponible en http://dev.mysql.com/downloads/connector/j/
+conn = database(dbname, username, password, driver, dburl);
+sql = ['SELECT * from table_name where id = 22'] % Ejemplo de instrucción sql
+a = fetch(conn, sql) %a contendrá sus datos
+
+
+% Funciones matemáticas comunes
+sin(x)
+cos(x)
+tan(x)
+asin(x)
+acos(x)
+atan(x)
+exp(x)
+sqrt(x)
+log(x)
+log10(x)
+abs(x) % Si x es complejo, devuelve la magnitud
+min(x)
+max(x)
+ceil(x)
+floor(x)
+round(x)
+rem(x)
+rand % Números pseudoaleatorios distribuidos uniformemente
+randi % Enteros pseudoaleatorios distribuidos uniformemente
+randn % Números pseudoaleatorios distribuidos normalmente
+
+% Operaciones matemáticas complejas
+abs(x) % Magnitud de la variable compleja x
+phase(x) % Fase (o ángulo) de la variable compleja x
+real(x) % Retorna la parte real de x (es decir, devuelve a si x = a + jb)
+imag(x) % Retorna la parte imaginaria de x (es decir, devuelve b si x = a + jb)
+conj(x) % Retorna el complejo conjugado
+
+
+% Constantes comunes
+pi
+NaN
+inf
+
+% Resolviendo ecuaciones matriciales (si no hay solución, devuelve una solución de mínimos cuadrados)
+%Los operadores \ y / son equivalentes a las funciones mldivide y mrdivide
+x=A\b % Resuelve Ax = b. Más rápido y más numéricamente preciso que usar inv (A) * b.
+x=b/A % Resuelve xA = b
+
+inv(A) % calcular la matriz inversa
+pinv(A) % calcular el pseudo-inverso
+
+% Funciones de matriz comunes
+zeros(m,n) % m x n matriz de 0
+ones(m,n) % m x n matriz de 1
+diag(A) % Extrae los elementos diagonales de una matriz A
+diag(x) % Construya una matriz con elementos diagonales enumerados en x, y ceros en otra parte
+eye(m,n) % Matriz de identidad
+linspace(x1, x2, n) % Devuelve n puntos equiespaciados, con min x1 y max x2
+inv(A) % Inverso de la matriz A
+det(A) % Determinante de A
+eig(A) % Valores propios y vectores propios de A
+trace(A) % Traza de la matriz: equivalente a sum(diag(A))
+isempty(A) % Determina si la matriz está vacía
+all(A) % Determina si todos los elementos son distintos de cero o verdaderos
+any(A) % Determina si alguno de los elementos es distinto de cero o verdadero
+isequal(A, B) % Determina la igualdad de dos matrices
+numel(A) % Cantidad de elementos en matriz
+triu(x) % Devuelve la parte triangular superior de x
+tril(x) % Devuelve la parte triangular inferior de x
+cross(A,B) % Devuelve el producto cruzado de los vectores A y B
+dot(A,B) % Devuelve un producto escalar de dos vectores (debe tener la misma longitud)
+transpose(A) % Devuelve la transposición de A
+fliplr(A) % Voltea la matriz de izquierda a derecha
+flipud(A) % Voltea la matriz de arriba hacia abajo
+
+% Factorizaciones de matrices
+[L, U, P] = lu(A) % Descomposición LU: PA = LU, L es triangular inferior, U es triangular superior, P es matriz de permutación
+[P, D] = eig(A) % eigen-decomposition: AP = PD, las columnas de P son autovectores y las diagonales de D'son valores propios
+[U,S,V] = svd(X) % SVD: XV = US, U y V son matrices unitarias, S tiene elementos diagonales no negativos en orden decreciente
+
+% Funciones comunes de vectores
+max % componente más grande
+min % componente más pequeño
+length % longitud de un vector
+sort % ordenar en orden ascendente
+sum % suma de elementos
+prod % producto de elementos
+mode % valor modal
+median % valor mediano
+mean % valor medio
+std % desviación estándar
+perms(x) % enumera todas las permutaciones de elementos de x
+find(x) % Encuentra todos los elementos distintos de cero de x y devuelve sus índices, puede usar operadores de comparación,
+ % i.e. find( x == 3 ) devuelve índices de elementos que son iguales a 3
+ % i.e. find( x >= 3 ) devuelve índices de elementos mayores o iguales a 3
+
+
+% Clases
+% Matlab puede soportar programación orientada a objetos.
+% Las clases deben colocarse en un archivo del nombre de la clase con la extensión .m.
+% Para comenzar, creamos una clase simple para almacenar puntos de referencia de GPS.
+% Comience WaypointClass.m
+classdef WaypointClass % El nombre de la clase.
+ properties % Las propiedades de la clase se comportan como Estructuras
+ latitude
+ longitude
+ end
+ methods
+ % Este método que tiene el mismo nombre de la clase es el constructor.
+ function obj = WaypointClass(lat, lon)
+ obj.latitude = lat;
+ obj.longitude = lon;
+ end
+
+ % Otras funciones que usan el objeto Waypoint
+ function r = multiplyLatBy(obj, n)
+ r = n*[obj.latitude];
+ end
+
+ % Si queremos agregar dos objetos Waypoint juntos sin llamar
+ % a una función especial, podemos sobrecargar la aritmética de Matlab así:
+ function r = plus(o1,o2)
+ r = WaypointClass([o1.latitude] +[o2.latitude], ...
+ [o1.longitude]+[o2.longitude]);
+ end
+ end
+end
+% Fin WaypointClass.m
+
+% Podemos crear un objeto de la clase usando el constructor
+a = WaypointClass(45.0, 45.0)
+
+% Las propiedades de clase se comportan exactamente como estructuras de Matlab.
+a.latitude = 70.0
+a.longitude = 25.0
+
+% Los métodos se pueden llamar de la misma manera que las funciones
+ans = multiplyLatBy(a,3)
+
+% El método también se puede llamar usando notación de puntos. En este caso, el objeto
+% no necesita ser pasado al método.
+ans = a.multiplyLatBy(a,1/3)
+
+% Las funciones de Matlab pueden sobrecargarse para manejar objetos.
+% En el método anterior, hemos sobrecargado cómo maneja Matlab
+% la adición de dos objetos Waypoint.
+b = WaypointClass(15.0, 32.0)
+c = a + b
+
+```
+
+## Más sobre Matlab
+
+* [The official website (EN)](http://www.mathworks.com/products/matlab/)
+* [The official MATLAB Answers forum (EN)](http://www.mathworks.com/matlabcentral/answers/)
+* [Loren on the Art of MATLAB (EN)](http://blogs.mathworks.com/loren/)
+* [Cleve's Corner (EN)](http://blogs.mathworks.com/cleve/)
+
diff --git a/es-es/objective-c-es.html.markdown b/es-es/objective-c-es.html.markdown
index bdbce524..26cd14d9 100644
--- a/es-es/objective-c-es.html.markdown
+++ b/es-es/objective-c-es.html.markdown
@@ -13,7 +13,7 @@ Objective C es el lenguaje de programación principal utilizado por Apple para l
Es un lenguaje de programación para propósito general que le agrega al lenguaje de programación C una mensajería estilo "Smalltalk".
-```objective_c
+```objectivec
// Los comentarios de una sola línea inician con //
/*
diff --git a/es-es/pascal-es.html.markdown b/es-es/pascal-es.html.markdown
new file mode 100644
index 00000000..8328fa1e
--- /dev/null
+++ b/es-es/pascal-es.html.markdown
@@ -0,0 +1,205 @@
+---
+language: Pascal
+filename: learnpascal-es.pas
+contributors:
+ - ["Ganesha Danu", "http://github.com/blinfoldking"]
+ - ["Keith Miyake", "https://github.com/kaymmm"]
+translators:
+ - ["Ivan Alburquerque", "https://github.com/AlburIvan"]
+lang: es-es
+---
+
+
+>Pascal es un lenguaje de programación imperativo y de procedimiento, que Niklaus Wirth diseñó en 1968–69 y publicó en 1970, como un lenguaje pequeño y eficiente destinado a fomentar las buenas prácticas de programación utilizando programación estructurada y estructuración de datos. Se nombra en honor al matemático, filósofo y físico francés Blaise Pascal. fuente: [wikipedia](https://es.wikipedia.org/wiki/Pascal_(lenguaje_de_programación)))
+
+Para compilar y ejecutar un programa pascal puede usar un compilador pascal gratuito. [Descargar aquí](https://www.freepascal.org/)
+
+```pascal
+//Anatomía de un programa en Pascal
+//Esto es un comentario
+{
+ Esto es un
+ comentario multilínea
+}
+
+//nombre del programa
+program learn_pascal; //<-- no olvides el punto y coma
+
+const
+ {
+ Aquí es donde se debe declarar valores constantes.
+ }
+type
+ {
+ Aquí es donde se debe declarar un tipo de datos personalizado
+ }
+var
+ {
+ aquí es donde se debe declarar una variable
+ }
+
+//área principal del programa
+begin
+ {
+ área para declarar su instrucción
+ }
+end. // El final de un área principal del programa debe requerir un símbolo "."
+```
+
+```pascal
+//declarando variable
+//puedes hacer esto
+var a:integer;
+var b:integer;
+//o esto
+var
+ a : integer;
+ b : integer;
+//o esto
+var a,b : integer;
+```
+
+```pascal
+program Learn_More;
+//Aprendamos sobre los tipos de datos y sus operaciones.
+
+const
+ PI = 3.141592654;
+ GNU = 'GNU No Es Unix';
+ // las constantes se nombran convencionalmente usando CAPS (mayúscula)
+ // sus valores son fijos y no se pueden cambiar durante el tiempo de ejecución
+ // tiene cualquier tipo de datos estándar (enteros, reales, booleanos, characteres, cadenas)
+
+type
+ ch_array : array [0..255] of char;
+ // los son nuevos 'tipos' que especifican la longitud y el tipo de datos
+ // esto define un nuevo tipo de datos que contiene 255 caracteres
+ // (esto es funcionalmente equivalente a una variable string[256])
+ md_array : array of array of integer;
+ // los arreglos anidados son equivalentes a los arreglos multidimensionales
+ // puede definir arreglos de longitud cero (0) que son de tamaño dinámico
+ // esta es una matriz bidimensional de enteros
+
+//Declarando variables
+var
+ int, c, d : integer;
+ // Tres variables que contienen números enteros.
+ // los enteros son de 16 bits y están limitados al rango [-32,768..32,767]
+ r : real;
+ // una variable que contiene un número real como tipos de datos
+ // el rango de los reales pueden variar entre [3.4E-38..3.4E38]
+ bool : boolean;
+ // una variable que contiene un valor booleano (True/False)
+ ch : char;
+ // una variable que contiene un valor de carácter
+ // Las variables char se almacenan como tipos de datos de 8 bits, por lo que no hay UTF
+ str : string;
+ // una variable no estándar que contiene un valor de cadena
+ // Las cadenas son una extensión incluida en la mayoría de los compiladores de Pascal.
+ // se almacenan como una matriz de caracteres con una longitud predeterminada de 255.
+ s : string[50];
+ // una cadena con longitud máxima de 50 caracteres.
+ // puede especificar la longitud de la cadena para minimizar el uso de memoria
+ my_str: ch_array;
+ // Puedes declarar variables de tipos personalizados.
+ my_2d : md_array;
+ // Las matrices de tamaño dinámico deben dimensionarse antes de que puedan usarse.
+
+ // tipos de datos enteros adicionales
+ b : byte; // rango [0..255]
+ shi : shortint; // rango [-128..127]
+ smi : smallint; // rango [-32,768..32,767] (entero estándar)
+ w : word; // rango [0..65,535]
+ li : longint; // rango [-2,147,483,648..2,147,483,647]
+ lw : longword; // rango [0..4,294,967,295]
+ c : cardinal; // longword
+ i64 : int64; // rango [-9223372036854775808..9223372036854775807]
+ qw : qword; // rango [0..18,446,744,073,709,551,615]
+
+ // tipos reales adicionales
+ rr : real; // rango depende de la plataforma (i.e., 8-bit, 16-bit, etc.)
+ rs : single; // rango [1.5E-45..3.4E38]
+ rd : double; // rango [5.0E-324 .. 1.7E308]
+ re : extended; // rango [1.9E-4932..1.1E4932]
+ rc : comp; // rango [-2E64+1 .. 2E63-1]
+
+Begin
+ int := 1;// como asignar un valor a una variable
+ r := 3.14;
+ ch := 'a';
+ str := 'manzana';
+ bool := true;
+ //pascal no es un lenguaje sensible a mayúsculas y minúsculas
+ //operación aritmética
+ int := 1 + 1; // int = 2 sobrescribiendo la asignacion anterior
+ int := int + 1; // int = 2 + 1 = 3;
+ int := 4 div 2; //int = 2 operación de división donde el resultado será redondeado.
+ int := 3 div 2; //int = 1
+ int := 1 div 2; //int = 0
+
+ bool := true or false; // bool = true
+ bool := false and true; // bool = false
+ bool := true xor true; // bool = false
+
+ r := 3 / 2; // un operador de división para reales
+ r := int; // Puede asignar un entero a una variable real pero no a la inversa
+
+ c := str[1]; // asigna la primera letra de str a c
+ str := 'hola' + 'mundo'; // combinando cadenas
+
+ my_str[0] := 'a'; // asignación de matriz necesita un índice
+
+ setlength(my_2d,10,10); // inicializa matrices de tamaño dinámico: matriz 10 × 10
+ for c := 0 to 9 do // los arreglos comienzan en 0 y terminan en longitud - 1
+ for d := 0 to 9 do // Para los contadores de bucle hay que declarar variables.
+ my_2d[c,d] := c * d;
+ // aborda las matrices multidimensionales con un único conjunto de corchete
+
+End.
+```
+
+```pascal
+program Functional_Programming;
+
+Var
+ i, dummy : integer;
+
+function recursion_factorial(const a: integer) : integer;
+{ calcula recursivamente el factorial del parámetro entero a }
+
+// Declare variables locales dentro de la función.
+// e.g.:
+// Var
+// local_a : integer;
+
+Begin
+ If a >= 1 Then
+ // devuelva valores de las funciones asignando un valor al nombre de la función
+ recursion_factorial := a * recursion_factorial(a-1)
+ Else
+ recursion_factorial := 1;
+End; // termine una función usando un punto y coma después de la instrucción End.
+
+procedure obtener_entero(var i : integer; dummy : integer);
+{ obten la entrada del usuario y almacenarla en el parámetro entero i.
+ los parámetros que preceden a 'var' son variables, lo que significa que su valor
+ puede cambiar fuera del parámetro. Los parámetros de valor (sin 'var') como 'dummy'
+ son estáticos y los cambios realizados dentro del alcance de la función/procedimiento
+ no afectan la variable que se pasa como parámetro }
+
+Begin
+ write('Escriba un entero: ');
+ readln(i);
+ dummy := 4; // dummy no cambiará el valor fuera del procedimiento
+End;
+
+Begin // bloque de programa principal
+ dummy := 3;
+ obtener_entero(i, dummy);
+ writeln(i, '! = ', recursion_factorial(i));
+ // muestra i!
+ writeln('dummy = ', dummy); // siempre muestra '3' ya que dummy no ha cambiado.
+End.
+
+```
+
diff --git a/es-es/pcre-es.html.markdown b/es-es/pcre-es.html.markdown
new file mode 100644
index 00000000..279c9a39
--- /dev/null
+++ b/es-es/pcre-es.html.markdown
@@ -0,0 +1,84 @@
+---
+language: PCRE
+filename: pcre-es.txt
+contributors:
+ - ["Sachin Divekar", "http://github.com/ssd532"]
+translators:
+ - ["Roberto R", "https://github.com/rrodriguze"]
+lang: es-es
+---
+
+Una expresión regular (regex o regexp para abreviar) es una cadena especial
+utilizada para definir un patrón, por ejemplo, buscar una secuencia de
+caracteres; por ejemplo, `/^[a-z]+:/` se puede usar para extraer `http:`
+desde la URL `http://github.com/`.
+
+PCRE (Pearl Compatible Regular Expressions) es una biblioteca para expresiones
+muy similar a la Perls, desde ahí el nombre. Se trata de una de las sintaxis
+más comunes para escribir expresiones regulares.
+
+Hay dos tipos de metacaracteres (caracteres con una función especial):
+
+* Caracteres reconocidos en todas partes excepto corchetes
+
+```
+ \ caracter de escape
+ ^ buscar al principio de la cadena (o línea, en modo multilínea)
+ $ busca al final de la cadena (o línea, en modo multilínea)
+ . cualquier caracter exceptoo las nuevas líneas
+ [ inicio de clase de caracter
+ | condiciones alternativas del separador
+ ( inicio del subpatrón
+ ) fin del subpatrón
+ ? cuantificador "0 o 1"
+ * quantificatore "0 o más"
+ + quantificatore "1 o más"
+ { inicio de cuantificador numérico
+```
+
+* Caracteres reconocidos entre corchetes
+
+```
+ \ caracter de escape
+ ^ negar la clase si es el primer caracter
+ - indica una serie de caracteres
+ [ clase de caracteres POSIX (si sigue la sintaxis POSIX)
+ ] termina la clase de caracteres
+```
+
+PCRE también proporciona clases de caracteres predefinidas
+
+```
+ \d cifra decimal
+ \D cifra NO decimal
+ \h espacio horizontal vacío
+ \H espacio horizontal NO vacío
+ \s espacio
+ \S NO esoacui
+ \v espacio vertical vacío
+ \V espacio vertical NO vacío
+ \w palabra
+ \W "NO palabra"
+```
+
+## Ejemplos
+
+Usaremos la siguiente cadena para nuestras pruebas:
+
+```
+66.249.64.13 - - [18/Sep/2004:11:07:48 +1000] "GET /robots.txt HTTP/1.0" 200 468 "-" "Googlebot/2.1"
+```
+
+Se trata de una línea de log del servidor web Apache.
+
+| Regex | Resultado | Comentario |
+| :---- | :-------------- | :------ |
+| `GET` | GET | Busque exactamente la cadena "GET" (distingue entre mayúsculas y minúsculas) |
+| `\d+.\d+.\d+.\d+` | 66.249.64.13 | `\d+` identifica uno o más (cuantificador `+`) números [0-9], `\.` identifica el caracter `.` |
+| `(\d+\.){3}\d+` | 66.249.64.13 | `(\d+\.){3}` busca el grupo (`\d+\.`) exactamente 3 veces. |
+| `\[.+\]` | [18/Sep/2004:11:07:48 +1000] | `.+` identifica cualquier caracter, excepto las nuevas líneas; `.` indica cualquier carácter |
+| `^\S+` | 66.249.64.13 | `^` buscar al inicio de la cadena, `\S+` identifica la primera cadena de caracteres que no sea espacio |
+| `\+[0-9]+` | +1000 | `\+` identifica el caracter `+`. `[0-9]` indica una cifra de 0 a 9. La expresión es equivalente a `\+\d+` |
+
+## Otros recursos
+[Regex101](https://regex101.com/) - probador de expresiones regulares
diff --git a/es-es/perl-es.html.markdown b/es-es/perl-es.html.markdown
index 644182ff..76e9b6e6 100644
--- a/es-es/perl-es.html.markdown
+++ b/es-es/perl-es.html.markdown
@@ -11,9 +11,9 @@ translators:
lang: es-es
---
-Perl 5 es un lenguaje de programación altamente capaz, rico en características, con más de 25 años de desarrollo.
+Perl es un lenguaje de programación altamente capaz, rico en características, con más de 25 años de desarrollo.
-Perl 5 corre en más de 100 plataformas, desde portátiles hasta ordenadores centrales, y es adecuado para realizar desde prototipos rápidos hasta desarrollar proyectos a gran escala.
+Perl corre en más de 100 plataformas, desde portátiles hasta ordenadores centrales, y es adecuado para realizar desde prototipos rápidos hasta desarrollar proyectos a gran escala.
```perl
# Comentarios de una sola línea con un carácter hash
@@ -31,7 +31,7 @@ Perl 5 corre en más de 100 plataformas, desde portátiles hasta ordenadores cen
my $animal = "camello";
my $respuesta = 42;
-# Los valores escalares pueden ser cadenas de caracteres, números enteros o
+# Los valores escalares pueden ser cadenas de caracteres, números enteros o
# de punto flotante; Perl automáticamente los convertirá como sea requerido
## Arreglos
@@ -52,7 +52,7 @@ my %color_fruta = (
# Los escalares, arreglos y hashes están más documentados en perldata (perldoc perldata)
-# Los tipos de datos más complejos se pueden construir utilizando
+# Los tipos de datos más complejos se pueden construir utilizando
# referencias, las cuales le permiten construir listas y hashes dentro
# de listas y hashes
@@ -61,7 +61,7 @@ my %color_fruta = (
# Perl tiene la mayoría de las estructuras condicionales y de ciclos más comunes
if ( $var ) {
...;
-} elsif ( $var eq 'bar' ) {
+} elsif ( $var eq 'bar' ) {
...;
} else {
...;
@@ -98,7 +98,7 @@ foreach (@array) {
#### Expresiones regulares
-# El soporte de expresiones regulares en Perl es muy amplio y profundo, y
+# El soporte de expresiones regulares en Perl es muy amplio y profundo, y
# está sujeto a una extensa documentación en perlrequick, perlretut, entre otros.
# Sin embargo, resumiendo:
@@ -113,7 +113,7 @@ $a =~ s/foo/bar/g; # remplaza TODAS LAS INSTANCIAS de "foo" con "bar" en
#### Archivos y E/S
-# Puede abrir un archivo para obtener datos o escribirlos utilizando la
+# Puede abrir un archivo para obtener datos o escribirlos utilizando la
# función "open()"
open(my $entrada, "<" "entrada.txt") or die "No es posible abrir entrada.txt: $!";
@@ -122,7 +122,7 @@ open(my $log, ">>", "mi.log") or die "No es posible abrir mi.log: $!";
# Es posible leer desde un gestor de archivo abierto utilizando el operador "<>".
# En contexto escalar, leer una sola línea desde el gestor de archivo, y
-# en contexto de lista, leer el archivo completo en donde asigna
+# en contexto de lista, leer el archivo completo en donde asigna
# cada línea a un elemento de la lista
my $linea = <$entrada>;
diff --git a/es-es/pyqt-es.html.markdown b/es-es/pyqt-es.html.markdown
new file mode 100644
index 00000000..6d4fdde7
--- /dev/null
+++ b/es-es/pyqt-es.html.markdown
@@ -0,0 +1,82 @@
+---
+category: tool
+tool: PyQT
+filename: learnpyqt-es.py
+contributors:
+ - ["Nathan Hughes", "https://github.com/sirsharpest"]
+translators:
+ - ["Adrian Rocamora", "https://github.com/adrianrocamora"]
+lang: es-es
+---
+
+**Qt** es un sistema altamente reconocido que permite desarrollar software multiplataforma que puede correr en diferentes entornos de software y hardware con pocos o ningún cambio. Aun así conserva la velocidad y poder de una aplicación nativa. **Qt** fue originalmente escrito en *C++*.
+
+Esta es una adaptación de la introducción a QT con C++ por [Aleksey Kholovchuk](https://github.com/vortexxx192), parte del código ejemplo debería resultar en la misma funcionalidad ¡pero usando python con PyQT!
+
+```python
+import sys
+from PyQt4 import QtGui
+
+def window():
+ # Crear el objeto de la aplicación
+ app = QtGui.QApplication(sys.argv)
+ # Crear un widget en el que colocaremos nuestra etiqueta
+ w = QtGui.QWidget()
+ # Agregamos nuestra etiqueta al widget
+ b = QtGui.QLabel(w)
+ # Agregamos texto a nuestra etiqueta
+ b.setText("Hello World!")
+ # Fijemos información de posición y tamaño del widget
+ w.setGeometry(100, 100, 200, 50)
+ b.move(50, 20)
+ # Proporcionemos un título a nuestra ventana
+ w.setWindowTitle("PyQt")
+ # Mostremos todo
+ w.show()
+ # Ejecutemos lo que hayamos solicitado ya inicializado el resto
+ sys.exit(app.exec_())
+
+if __name__ == '__main__':
+ window()
+
+```
+
+Para poder hacer uso de las funciones más avanzades en **pyqt** necesitamos agregar elementos adicionales.
+Aquí mostramos cómo introducir una caja de diálogo popup, útil para permitir al usuario confirmar su decisión o para brindarnos información.
+
+```Python
+import sys
+from PyQt4.QtGui import *
+from PyQt4.QtCore import *
+
+
+def window():
+ app = QApplication(sys.argv)
+ w = QWidget()
+ # Crear un botón y adjuntarlo al widget w
+ b = QPushButton(w)
+ b.setText("Press me")
+ b.move(50, 50)
+ # Indicar al botón b que llame esta función cuando reciba un click
+ # Nótese la falta de "()" en la llamada de la función
+ b.clicked.connect(showdialog)
+ w.setWindowTitle("PyQt Dialog")
+ w.show()
+ sys.exit(app.exec_())
+
+# Esta función debería crear una ventana de diálogo con un botón
+# que espera a recibir un click y luego sale del programa
+def showdialog():
+ d = QDialog()
+ b1 = QPushButton("ok", d)
+ b1.move(50, 50)
+ d.setWindowTitle("Dialog")
+ # Esta modalidad le indica al popup que bloquee al padre mientras activo
+ d.setWindowModality(Qt.ApplicationModal)
+ # Al recibir un click me gustaría que el proceso termine
+ b1.clicked.connect(sys.exit)
+ d.exec_()
+
+if __name__ == '__main__':
+ window()
+```
diff --git a/es-es/python-es.html.markdown b/es-es/python-es.html.markdown
index a27203d1..7deec286 100644
--- a/es-es/python-es.html.markdown
+++ b/es-es/python-es.html.markdown
@@ -1,26 +1,25 @@
---
-language: python
+language: Python
contributors:
- - ["Louie Dinh", "http://ldinh.ca"]
+ - ["Louie Dinh", "http://pythonpracticeprojects.com"]
translators:
- - ["Camilo Garrido", "http://www.twitter.com/hirohope"]
- - ["Fabio Souto", "http://fabiosouto.me"]
+ - ["Camilo Garrido", "http://twitter.com/hirohope"]
lang: es-es
filename: learnpython-es.py
---
-Python fue creado por Guido Van Rossum en el principio de los 90. Ahora es uno
-de los lenguajes más populares que existen. Me enamoré de Python por su claridad sintáctica.
+Python fue creado por Guido Van Rossum en el principio de los 90'. Ahora es uno
+de los lenguajes más populares en existencia. Me enamoré de Python por su claridad sintáctica.
Es básicamente pseudocódigo ejecutable.
¡Comentarios serán muy apreciados! Pueden contactarme en [@louiedinh](http://twitter.com/louiedinh) o louiedinh [at] [servicio de email de google]
-Nota: Este artículo aplica a Python 2.7 específicamente, pero debería ser aplicable a Python 2.x. ¡Pronto un recorrido por Python 3!
-
```python
+
# Comentarios de una línea comienzan con una almohadilla (o signo gato)
-""" Strings multilínea pueden escribirse
- usando tres "'s, y comúnmente son usados
+
+""" Strings multilinea pueden escribirse
+ usando tres "'s, y comunmente son usados
como comentarios.
"""
@@ -31,69 +30,49 @@ Nota: Este artículo aplica a Python 2.7 específicamente, pero debería ser apl
# Tienes números
3 #=> 3
-# Evidentemente puedes realizar operaciones matemáticas
-1 + 1 #=> 2
-8 - 1 #=> 7
-10 * 2 #=> 20
-35 / 5 #=> 7
-
-# La división es un poco complicada. Es división entera y toma la parte entera
-# de los resultados automáticamente.
-5 / 2 #=> 2
+# Matemática es lo que esperarías
+1 + 1 #=> 2
+8 - 1 #=> 7
+10 * 2 #=> 20
-# Para arreglar la división necesitamos aprender sobre 'floats'
-# (números de coma flotante).
-2.0 # Esto es un 'float'
-11.0 / 4.0 #=> 2.75 ahhh...mucho mejor
+# Excepto la división la cual por defecto retorna un número 'float' (número de coma flotante)
+35 / 5 # => 7.0
+# Sin embargo también tienes disponible división entera
+34 // 5 # => 6
-# Resultado de la división de enteros truncada para positivos y negativos
-5 // 3 # => 1
-5.0 // 3.0 # => 1.0 # funciona con números de coma flotante
--5 // 3 # => -2
--5.0 // 3.0 # => -2.0
-
-# El operador módulo devuelve el resto de una división entre enteros
-7 % 3 # => 1
-
-# Exponenciación (x elevado a y)
-2**4 # => 16
+# Cuando usas un float, los resultados son floats
+3 * 2.0 # => 6.0
# Refuerza la precedencia con paréntesis
-(1 + 3) * 2 #=> 8
+(1 + 3) * 2 # => 8
-# Operadores booleanos
-# Nota: "and" y "or" son sensibles a mayúsculas
-True and False #=> False
-False or True #=> True
-# Podemos usar operadores booleanos con números enteros
-0 and 2 #=> 0
--5 or 0 #=> -5
-0 == False #=> True
-2 == True #=> False
-1 == True #=> True
+# Valores 'boolean' (booleanos) son primitivos
+True
+False
# Niega con 'not'
-not True #=> False
-not False #=> True
+not True # => False
+not False # => True
+
# Igualdad es ==
-1 == 1 #=> True
-2 == 1 #=> False
+1 == 1 # => True
+2 == 1 # => False
# Desigualdad es !=
-1 != 1 #=> False
-2 != 1 #=> True
+1 != 1 # => False
+2 != 1 # => True
# Más comparaciones
-1 < 10 #=> True
-1 > 10 #=> False
-2 <= 2 #=> True
-2 >= 2 #=> True
+1 < 10 # => True
+1 > 10 # => False
+2 <= 2 # => True
+2 >= 2 # => True
# ¡Las comparaciones pueden ser concatenadas!
-1 < 2 < 3 #=> True
-2 < 3 < 2 #=> False
+1 < 2 < 3 # => True
+2 < 3 < 2 # => False
# Strings se crean con " o '
"Esto es un string."
@@ -105,40 +84,41 @@ not False #=> True
# Un string puede ser tratado como una lista de caracteres
"Esto es un string"[0] #=> 'E'
-# % pueden ser usados para formatear strings, como esto:
-"%s pueden ser %s" % ("strings", "interpolados")
+# .format puede ser usaro para darle formato a los strings, así:
+"{} pueden ser {}".format("strings", "interpolados")
-# Una forma más reciente de formatear strings es el método 'format'.
-# Este método es la forma preferida
-"{0} pueden ser {1}".format("strings", "formateados")
-# Puedes usar palabras clave si no quieres contar.
-"{nombre} quiere comer {comida}".format(nombre="Bob", comida="lasaña")
+# Puedes reutilizar los argumentos de formato si estos se repiten.
+"{0} sé ligero, {0} sé rápido, {0} brinca sobre la {1}".format("Jack", "vela") #=> "Jack sé ligero, Jack sé rápido, Jack brinca sobre la vela"
+# Puedes usar palabras claves si no quieres contar.
+"{nombre} quiere comer {comida}".format(nombre="Bob", comida="lasaña") #=> "Bob quiere comer lasaña"
+# También puedes interpolar cadenas usando variables en el contexto
+nombre = 'Bob'
+comida = 'Lasaña'
+f'{nombre} quiere comer {comida}' #=> "Bob quiere comer lasaña"
# None es un objeto
-None #=> None
+None # => None
# No uses el símbolo de igualdad `==` para comparar objetos con None
-# Usa `is` en lugar de
+# Usa `is` en su lugar
"etc" is None #=> False
None is None #=> True
-# El operador 'is' prueba la identidad del objeto. Esto no es
-# muy útil cuando se trata de datos primitivos, pero es
-# muy útil cuando se trata de objetos.
-
-# None, 0, y strings/listas vacíos(as) todas se evalúan como False.
+# None, 0, y strings/listas/diccionarios/conjuntos vacíos(as) todos se evalúan como False.
# Todos los otros valores son True
-bool(0) #=> False
-bool("") #=> False
+bool(0) # => False
+bool("") # => False
+bool([]) #=> False
+bool({}) #=> False
+bool(set()) #=> False
####################################################
## 2. Variables y Colecciones
####################################################
-# Imprimir es muy fácil
-print "Soy Python. ¡Encantado de conocerte!"
-
+# Python tiene una función para imprimir
+print("Soy Python. Encantado de conocerte")
# No hay necesidad de declarar las variables antes de asignarlas.
una_variable = 5 # La convención es usar guiones_bajos_con_minúsculas
@@ -148,19 +128,16 @@ una_variable #=> 5
# Ve Control de Flujo para aprender más sobre el manejo de excepciones.
otra_variable # Levanta un error de nombre
-# 'if' puede ser usado como una expresión
-"yahoo!" if 3 > 2 else 2 #=> "yahoo!"
-
-# Las listas almacenan secuencias
+# Listas almacena secuencias
lista = []
# Puedes empezar con una lista prellenada
otra_lista = [4, 5, 6]
# Añadir cosas al final de una lista con 'append'
-lista.append(1) # lista ahora es [1]
-lista.append(2) # lista ahora es [1, 2]
-lista.append(4) # lista ahora es [1, 2, 4]
-lista.append(3) # lista ahora es [1, 2, 4, 3]
+lista.append(1) #lista ahora es [1]
+lista.append(2) #lista ahora es [1, 2]
+lista.append(4) #lista ahora es [1, 2, 4]
+lista.append(3) #lista ahora es [1, 2, 4, 3]
# Remueve del final de la lista con 'pop'
lista.pop() #=> 3 y lista ahora es [1, 2, 4]
# Pongámoslo de vuelta
@@ -181,6 +158,12 @@ lista[1:3] #=> [2, 4]
lista[2:] #=> [4, 3]
# Omite el final
lista[:3] #=> [1, 2, 4]
+# Selecciona cada dos elementos
+lista[::2] # =>[1, 4]
+# Invierte la lista
+lista[::-1] # => [3, 4, 2, 1]
+# Usa cualquier combinación de estos para crear trozos avanzados
+# lista[inicio:final:pasos]
# Remueve elementos arbitrarios de una lista con 'del'
del lista[2] # lista ahora es [1, 2, 3]
@@ -191,14 +174,14 @@ lista + otra_lista #=> [1, 2, 3, 4, 5, 6] - Nota: lista y otra_lista no se tocan
# Concatenar listas con 'extend'
lista.extend(otra_lista) # lista ahora es [1, 2, 3, 4, 5, 6]
-# Chequea la existencia en una lista con
+# Verifica la existencia en una lista con 'in'
1 in lista #=> True
-# Examina el tamaño de una lista con 'len'
+# Examina el largo de una lista con 'len'
len(lista) #=> 6
-# Las tuplas son como las listas, pero son inmutables.
+# Tuplas son como listas pero son inmutables.
tupla = (1, 2, 3)
tupla[0] #=> 1
tupla[0] = 3 # Levanta un error TypeError
@@ -217,7 +200,7 @@ d, e, f = 4, 5, 6
e, d = d, e # d ahora es 5 y e ahora es 4
-# Diccionarios almacenan mapeos
+# Diccionarios relacionan llaves y valores
dicc_vacio = {}
# Aquí está un diccionario prellenado
dicc_lleno = {"uno": 1, "dos": 2, "tres": 3}
@@ -225,16 +208,16 @@ dicc_lleno = {"uno": 1, "dos": 2, "tres": 3}
# Busca valores con []
dicc_lleno["uno"] #=> 1
-# Obtén todas las llaves como una lista
-dicc_lleno.keys() #=> ["tres", "dos", "uno"]
+# Obtén todas las llaves como una lista con 'keys()'. Necesitamos envolver la llamada en 'list()' porque obtenemos un iterable. Hablaremos de eso luego.
+list(dicc_lleno.keys()) #=> ["tres", "dos", "uno"]
# Nota - El orden de las llaves del diccionario no está garantizada.
# Tus resultados podrían no ser los mismos del ejemplo.
-# Obtén todos los valores como una lista
-dicc_lleno.values() #=> [3, 2, 1]
+# Obtén todos los valores como una lista. Nuevamente necesitamos envolverlas en una lista para sacarlas del iterable.
+list(dicc_lleno.values()) #=> [3, 2, 1]
# Nota - Lo mismo que con las llaves, no se garantiza el orden.
-# Chequea la existencia de una llave en el diccionario con 'in'
+# Verifica la existencia de una llave en el diccionario con 'in'
"uno" in dicc_lleno #=> True
1 in dicc_lleno #=> False
@@ -248,19 +231,18 @@ dicc_lleno.get("cuatro") #=> None
dicc_lleno.get("uno", 4) #=> 1
dicc_lleno.get("cuatro", 4) #=> 4
-# El método 'setdefault' es una manera segura de añadir nuevos pares
-# llave-valor en un diccionario
+# El método 'setdefault' inserta en un diccionario solo si la llave no está presente
dicc_lleno.setdefault("cinco", 5) #dicc_lleno["cinco"] es puesto con valor 5
dicc_lleno.setdefault("cinco", 6) #dicc_lleno["cinco"] todavía es 5
+# Remueve llaves de un diccionario con 'del'
+del dicc_lleno['uno'] # Remueve la llave 'uno' de dicc_lleno
+
# Sets (conjuntos) almacenan ... bueno, conjuntos
conjunto_vacio = set()
-# Inicializar un conjunto con montón de valores
-un_conjunto = set([1,2,2,3,4]) # un_conjunto ahora es set([1, 2, 3, 4])
-
-# Desde Python 2.7, {} puede ser usado para declarar un conjunto
-conjunto_lleno = {1, 2, 2, 3, 4} # => {1 2 3 4}
+# Inicializar un conjunto con montón de valores. Yeah, se ve un poco como un diccionario. Lo siento.
+un_conjunto = {1,2,2,3,4} # un_conjunto ahora es {1, 2, 3, 4}
# Añade más valores a un conjunto
conjunto_lleno.add(5) # conjunto_lleno ahora es {1, 2, 3, 4, 5}
@@ -275,7 +257,7 @@ conjunto_lleno | otro_conjunto #=> {1, 2, 3, 4, 5, 6}
# Haz diferencia de conjuntos con -
{1,2,3,4} - {2,3,5} #=> {1, 4}
-# Chequea la existencia en un conjunto con 'in'
+# Verifica la existencia en un conjunto con 'in'
2 in conjunto_lleno #=> True
10 in conjunto_lleno #=> False
@@ -284,32 +266,30 @@ conjunto_lleno | otro_conjunto #=> {1, 2, 3, 4, 5, 6}
## 3. Control de Flujo
####################################################
-# Hagamos sólo una variable
-una_variable = 5
+# Creemos una variable para experimentar
+some_var = 5
-# Aquí está una declaración de un 'if'. ¡La indentación es importante en Python!
+# Aquí está una declaración de un 'if'. ¡La indentación es significativa en Python!
# imprime "una_variable es menor que 10"
if una_variable > 10:
- print "una_variable es completamente mas grande que 10."
+ print("una_variable es completamente mas grande que 10.")
elif una_variable < 10: # Este condición 'elif' es opcional.
- print "una_variable es mas chica que 10."
+ print("una_variable es mas chica que 10.")
else: # Esto también es opcional.
- print "una_variable es de hecho 10."
-
+ print("una_variable es de hecho 10.")
"""
-For itera sobre listas
+For itera sobre iterables (listas, cadenas, diccionarios, tuplas, generadores...)
imprime:
perro es un mamifero
gato es un mamifero
raton es un mamifero
"""
for animal in ["perro", "gato", "raton"]:
- # Puedes usar % para interpolar strings formateados
- print "%s es un mamifero" % animal
+ print("{} es un mamifero".format(animal))
"""
-`range(número)` retorna una lista de números
+`range(número)` retorna un generador de números
desde cero hasta el número dado
imprime:
0
@@ -318,7 +298,7 @@ imprime:
3
"""
for i in range(4):
- print i
+ print(i)
"""
While itera hasta que una condición no se cumple.
@@ -330,18 +310,49 @@ imprime:
"""
x = 0
while x < 4:
- print x
+ print(x)
x += 1 # versión corta de x = x + 1
# Maneja excepciones con un bloque try/except
-
-# Funciona desde Python 2.6 en adelante:
try:
# Usa raise para levantar un error
raise IndexError("Este es un error de indice")
except IndexError as e:
pass # Pass no hace nada. Usualmente harias alguna recuperacion aqui.
+# Python oferce una abstracción fundamental llamada Iterable.
+# Un iterable es un objeto que puede ser tratado como una sequencia.
+# El objeto es retornado por la función 'range' es un iterable.
+
+dicc_lleno = {"uno": 1, "dos": 2, "tres": 3}
+nuestro_iterable = dicc_lleno.keys()
+print(nuestro_iterable) #=> dict_keys(['uno', 'dos', 'tres']). Este es un objeto que implementa nuestra interfaz Iterable
+
+Podemos recorrerla.
+for i in nuestro_iterable:
+ print(i) # Imprime uno, dos, tres
+
+# Aunque no podemos selecionar un elemento por su índice.
+nuestro_iterable[1] # Genera un TypeError
+
+# Un iterable es un objeto que sabe como crear un iterador.
+nuestro_iterator = iter(nuestro_iterable)
+
+# Nuestro iterador es un objeto que puede recordar el estado mientras lo recorremos.
+# Obtenemos el siguiente objeto llamando la función __next__.
+nuestro_iterator.__next__() #=> "uno"
+
+# Mantiene el estado mientras llamamos __next__.
+nuestro_iterator.__next__() #=> "dos"
+nuestro_iterator.__next__() #=> "tres"
+
+# Después que el iterador ha retornado todos sus datos, da una excepción StopIterator.
+nuestro_iterator.__next__() # Genera StopIteration
+
+# Puedes obtener todos los elementos de un iterador llamando a list() en el.
+list(dicc_lleno.keys()) #=> Retorna ["uno", "dos", "tres"]
+
+
####################################################
## 4. Funciones
@@ -349,7 +360,7 @@ except IndexError as e:
# Usa 'def' para crear nuevas funciones
def add(x, y):
- print "x es %s y y es %s" % (x, y)
+ print("x es {} y y es {}".format(x, y))
return x + y # Retorna valores con una la declaración return
# Llamando funciones con parámetros
@@ -358,6 +369,7 @@ add(5, 6) #=> imprime "x es 5 y y es 6" y retorna 11
# Otra forma de llamar funciones es con argumentos de palabras claves
add(y=6, x=5) # Argumentos de palabra clave pueden ir en cualquier orden.
+
# Puedes definir funciones que tomen un número variable de argumentos
def varargs(*args):
return args
@@ -373,6 +385,7 @@ def keyword_args(**kwargs):
# Llamémosla para ver que sucede
keyword_args(pie="grande", lago="ness") #=> {"pie": "grande", "lago": "ness"}
+
# Puedes hacer ambas a la vez si quieres
def todos_los_argumentos(*args, **kwargs):
print args
@@ -410,23 +423,28 @@ filter(lambda x: x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]
# Podemos usar listas por comprensión para mapeos y filtros agradables
[add_10(i) for i in [1, 2, 3]] #=> [11, 12, 13]
[x for x in [3, 4, 5, 6, 7] if x > 5] #=> [6, 7]
+# también hay diccionarios
+{k:k**2 for k in range(3)} #=> {0: 0, 1: 1, 2: 4}
+# y conjuntos por comprensión
+{c for c in "la cadena"} #=> {'d', 'l', 'a', 'n', ' ', 'c', 'e'}
####################################################
-## 5. Clases
+## 5. Classes
####################################################
+
# Heredamos de object para obtener una clase.
class Humano(object):
# Un atributo de clase es compartido por todas las instancias de esta clase
especie = "H. sapiens"
- # Constructor básico, se llama al instanciar la clase.
+ # Constructor basico
def __init__(self, nombre):
# Asigna el argumento al atributo nombre de la instancia
self.nombre = nombre
- # Un método de instancia. Todos los metodos toman self como primer argumento
+ # Un metodo de instancia. Todos los metodos toman self como primer argumento
def decir(self, msg):
return "%s: %s" % (self.nombre, msg)
@@ -436,7 +454,7 @@ class Humano(object):
def get_especie(cls):
return cls.especie
- # Un metodo estático es llamado sin la clase o instancia como referencia
+ # Un metodo estatico es llamado sin la clase o instancia como referencia
@staticmethod
def roncar():
return "*roncar*"
@@ -467,12 +485,12 @@ Humano.roncar() #=> "*roncar*"
# Puedes importar módulos
import math
-print math.sqrt(16) #=> 4
+print(math.sqrt(16)) #=> 4.0
# Puedes obtener funciones específicas desde un módulo
from math import ceil, floor
-print ceil(3.7) #=> 4.0
-print floor(3.7) #=> 3.0
+print(ceil(3.7)) #=> 4.0
+print(floor(3.7))#=> 3.0
# Puedes importar todas las funciones de un módulo
# Precaución: Esto no es recomendable
@@ -495,52 +513,48 @@ dir(math)
## 7. Avanzado
####################################################
-# Los generadores permiten evaluación perezosa
+# Los generadores te ayudan a hacer un código perezoso (lazy)
def duplicar_numeros(iterable):
for i in iterable:
yield i + i
-# Un generador crea valores sobre la marcha
-# En vez de generar y devolver todos los valores de una vez, crea un valor
-# en cada iteración. En este ejemplo los valores mayores que 15 no serán
-# procesados en duplicar_numeros.
-# Nota: xrange es un generador que hace lo mismo que range.
-# Crear una lista de 1 a 900000000 lleva mucho tiempo y ocupa mucho espacio.
-# xrange crea un generador, mientras que range crea toda la lista.
-# Añadimos un guión bajo a los nombres de variable que coinciden con palabras
-# reservadas de python.
-xrange_ = xrange(1, 900000000)
-
-# duplica todos los números hasta que encuentra un resultado >= 30
-for i in duplicar_numeros(xrange_):
- print i
+# Un generador crea valores sobre la marcha.
+# En vez de generar y retornar todos los valores de una vez, crea uno en cada iteración.
+# Esto significa que valores más grandes que 15 no serán procesados en 'duplicar_numeros'.
+# Fíjate que 'range' es un generador. Crear una lista 1-900000000 tomaría mucho tiempo en crearse.
+_rango = range(1, 900000000)
+# Duplicará todos los números hasta que un resultado >= se encuentre.
+for i in duplicar_numeros(_rango):
+ print(i)
if i >= 30:
break
+
# Decoradores
-# en este ejemplo pedir rodea a hablar
-# Si por_favor es True se cambiará el mensaje.
+# en este ejemplo 'pedir' envuelve a 'decir'
+# Pedir llamará a 'decir'. Si decir_por_favor es True entonces cambiará el mensaje a retornar
from functools import wraps
-def pedir(target_function):
- @wraps(target_function)
+def pedir(_decir):
+ @wraps(_decir)
def wrapper(*args, **kwargs):
- msg, por_favor = target_function(*args, **kwargs)
- if por_favor:
- return "{} {}".format(msg, "¡Por favor! Soy pobre :(")
- return msg
+ mensaje, decir_por_favor = _decir(*args, **kwargs)
+ if decir_por_favor:
+ return "{} {}".format(mensaje, "¡Por favor! Soy pobre :(")
+ return mensaje
return wrapper
@pedir
-def hablar(por_favor=False):
- msg = "¿Me puedes comprar una cerveza?"
- return msg, por_favor
+def say(decir_por_favor=False):
+ mensaje = "¿Puedes comprarme una cerveza?"
+ return mensaje, decir_por_favor
+
-print hablar() # ¿Me puedes comprar una cerveza?
-print hablar(por_favor=True) # ¿Me puedes comprar una cerveza? ¡Por favor! Soy pobre :(
+print(decir()) # ¿Puedes comprarme una cerveza?
+print(decir(decir_por_favor=True)) # ¿Puedes comprarme una cerveza? ¡Por favor! Soy pobre :()
```
## ¿Listo para más?
@@ -549,9 +563,10 @@ print hablar(por_favor=True) # ¿Me puedes comprar una cerveza? ¡Por favor! So
* [Learn Python The Hard Way](http://learnpythonthehardway.org/book/)
* [Dive Into Python](http://www.diveintopython.net/)
-* [The Official Docs](http://docs.python.org/2.6/)
+* [Ideas for Python Projects](http://pythonpracticeprojects.com)
+* [The Official Docs](http://docs.python.org/3/)
* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)
-* [Python Module of the Week](http://pymotw.com/2/)
+* [Python Module of the Week](http://pymotw.com/3/)
* [A Crash Course in Python for Scientists](http://nbviewer.ipython.org/5920182)
### Encuadernados
diff --git a/es-es/python3-es.html.markdown b/es-es/pythonlegacy-es.html.markdown
index 05fd7065..0a7304e9 100644
--- a/es-es/python3-es.html.markdown
+++ b/es-es/pythonlegacy-es.html.markdown
@@ -1,15 +1,16 @@
---
-language: python3
+language: Python 2 (legacy)
contributors:
- - ["Louie Dinh", "http://pythonpracticeprojects.com"]
+ - ["Louie Dinh", "http://ldinh.ca"]
translators:
- - ["Camilo Garrido", "http://twitter.com/hirohope"]
+ - ["Camilo Garrido", "http://www.twitter.com/hirohope"]
+ - ["Fabio Souto", "http://fabiosouto.me"]
lang: es-es
-filename: learnpython3-es.py
+filename: learnpythonlegacy-es.py
---
-Python fue creado por Guido Van Rossum en el principio de los 90'. Ahora es uno
-de los lenguajes más populares en existencia. Me enamoré de Python por su claridad sintáctica.
+Python fue creado por Guido Van Rossum en el principio de los 90. Ahora es uno
+de los lenguajes más populares que existen. Me enamoré de Python por su claridad sintáctica.
Es básicamente pseudocódigo ejecutable.
¡Comentarios serán muy apreciados! Pueden contactarme en [@louiedinh](http://twitter.com/louiedinh) o louiedinh [at] [servicio de email de google]
@@ -17,11 +18,9 @@ Es básicamente pseudocódigo ejecutable.
Nota: Este artículo aplica a Python 2.7 específicamente, pero debería ser aplicable a Python 2.x. ¡Pronto un recorrido por Python 3!
```python
-
# Comentarios de una línea comienzan con una almohadilla (o signo gato)
-
-""" Strings multilinea pueden escribirse
- usando tres "'s, y comunmente son usados
+""" Strings multilínea pueden escribirse
+ usando tres "'s, y comúnmente son usados
como comentarios.
"""
@@ -32,47 +31,69 @@ Nota: Este artículo aplica a Python 2.7 específicamente, pero debería ser apl
# Tienes números
3 #=> 3
-# Matemática es lo que esperarías
-1 + 1 #=> 2
-8 - 1 #=> 7
-10 * 2 #=> 20
+# Evidentemente puedes realizar operaciones matemáticas
+1 + 1 #=> 2
+8 - 1 #=> 7
+10 * 2 #=> 20
+35 / 5 #=> 7
+
+# La división es un poco complicada. Es división entera y toma la parte entera
+# de los resultados automáticamente.
+5 / 2 #=> 2
+
+# Para arreglar la división necesitamos aprender sobre 'floats'
+# (números de coma flotante).
+2.0 # Esto es un 'float'
+11.0 / 4.0 #=> 2.75 ahhh...mucho mejor
-# Excepto la división la cual por defecto retorna un número 'float' (número de coma flotante)
-35 / 5 # => 7.0
+# Resultado de la división de enteros truncada para positivos y negativos
+5 // 3 # => 1
+5.0 // 3.0 # => 1.0 # funciona con números de coma flotante
+-5 // 3 # => -2
+-5.0 // 3.0 # => -2.0
-# Cuando usas un float, los resultados son floats
-3 * 2.0 # => 6.0
+# El operador módulo devuelve el resto de una división entre enteros
+7 % 3 # => 1
+
+# Exponenciación (x elevado a y)
+2**4 # => 16
# Refuerza la precedencia con paréntesis
-(1 + 3) * 2 # => 8
+(1 + 3) * 2 #=> 8
+# Operadores booleanos
+# Nota: "and" y "or" son sensibles a mayúsculas
+True and False #=> False
+False or True #=> True
-# Valores 'boolean' (booleanos) son primitivos
-True
-False
+# Podemos usar operadores booleanos con números enteros
+0 and 2 #=> 0
+-5 or 0 #=> -5
+0 == False #=> True
+2 == True #=> False
+1 == True #=> True
# Niega con 'not'
-not True # => False
-not False # => True
-
+not True #=> False
+not False #=> True
# Igualdad es ==
-1 == 1 # => True
-2 == 1 # => False
+1 == 1 #=> True
+2 == 1 #=> False
# Desigualdad es !=
-1 != 1 # => False
-2 != 1 # => True
+1 != 1 #=> False
+2 != 1 #=> True
# Más comparaciones
-1 < 10 # => True
-1 > 10 # => False
-2 <= 2 # => True
-2 >= 2 # => True
+1 < 10 #=> True
+1 > 10 #=> False
+2 <= 2 #=> True
+2 >= 2 #=> True
# ¡Las comparaciones pueden ser concatenadas!
-1 < 2 < 3 # => True
-2 < 3 < 2 # => False
+1 < 2 < 3 #=> True
+2 < 3 < 2 #=> False
# Strings se crean con " o '
"Esto es un string."
@@ -84,37 +105,40 @@ not False # => True
# Un string puede ser tratado como una lista de caracteres
"Esto es un string"[0] #=> 'E'
-# .format puede ser usaro para darle formato a los strings, así:
-"{} pueden ser {}".format("strings", "interpolados")
-
-# Puedes repetir los argumentos de formateo para ahorrar tipeos.
-"{0} sé ligero, {0} sé rápido, {0} brinca sobre la {1}".format("Jack", "vela") #=> "Jack sé ligero, Jack sé rápido, Jack brinca sobre la vela"
-# Puedes usar palabras claves si no quieres contar.
-"{nombre} quiere comer {comida}".format(nombre="Bob", food="lasaña") #=> "Bob quiere comer lasaña"
+# % pueden ser usados para formatear strings, como esto:
+"%s pueden ser %s" % ("strings", "interpolados")
+# Una forma más reciente de formatear strings es el método 'format'.
+# Este método es la forma preferida
+"{0} pueden ser {1}".format("strings", "formateados")
+# Puedes usar palabras clave si no quieres contar.
+"{nombre} quiere comer {comida}".format(nombre="Bob", comida="lasaña")
# None es un objeto
-None # => None
+None #=> None
# No uses el símbolo de igualdad `==` para comparar objetos con None
-# Usa `is` en su lugar
+# Usa `is` en lugar de
"etc" is None #=> False
None is None #=> True
-# None, 0, y strings/listas/diccionarios vacíos(as) todos se evalúan como False.
+# El operador 'is' prueba la identidad del objeto. Esto no es
+# muy útil cuando se trata de datos primitivos, pero es
+# muy útil cuando se trata de objetos.
+
+# None, 0, y strings/listas vacíos(as) todas se evalúan como False.
# Todos los otros valores son True
-bool(0) # => False
-bool("") # => False
-bool([]) #=> False
-bool({}) #=> False
+bool(0) #=> False
+bool("") #=> False
####################################################
## 2. Variables y Colecciones
####################################################
-# Python tiene una función para imprimir
-print("Soy Python. Encantado de conocerte")
+# Imprimir es muy fácil
+print "Soy Python. ¡Encantado de conocerte!"
+
# No hay necesidad de declarar las variables antes de asignarlas.
una_variable = 5 # La convención es usar guiones_bajos_con_minúsculas
@@ -124,16 +148,19 @@ una_variable #=> 5
# Ve Control de Flujo para aprender más sobre el manejo de excepciones.
otra_variable # Levanta un error de nombre
-# Listas almacena secuencias
+# 'if' puede ser usado como una expresión
+"yahoo!" if 3 > 2 else 2 #=> "yahoo!"
+
+# Las listas almacenan secuencias
lista = []
# Puedes empezar con una lista prellenada
otra_lista = [4, 5, 6]
# Añadir cosas al final de una lista con 'append'
-lista.append(1) #lista ahora es [1]
-lista.append(2) #lista ahora es [1, 2]
-lista.append(4) #lista ahora es [1, 2, 4]
-lista.append(3) #lista ahora es [1, 2, 4, 3]
+lista.append(1) # lista ahora es [1]
+lista.append(2) # lista ahora es [1, 2]
+lista.append(4) # lista ahora es [1, 2, 4]
+lista.append(3) # lista ahora es [1, 2, 4, 3]
# Remueve del final de la lista con 'pop'
lista.pop() #=> 3 y lista ahora es [1, 2, 4]
# Pongámoslo de vuelta
@@ -154,12 +181,6 @@ lista[1:3] #=> [2, 4]
lista[2:] #=> [4, 3]
# Omite el final
lista[:3] #=> [1, 2, 4]
-# Selecciona cada dos elementos
-lista[::2] # =>[1, 4]
-# Invierte la lista
-lista[::-1] # => [3, 4, 2, 1]
-# Usa cualquier combinación de estos para crear trozos avanzados
-# lista[inicio:final:pasos]
# Remueve elementos arbitrarios de una lista con 'del'
del lista[2] # lista ahora es [1, 2, 3]
@@ -170,14 +191,14 @@ lista + otra_lista #=> [1, 2, 3, 4, 5, 6] - Nota: lista y otra_lista no se tocan
# Concatenar listas con 'extend'
lista.extend(otra_lista) # lista ahora es [1, 2, 3, 4, 5, 6]
-# Chequea la existencia en una lista con 'in'
+# Chequea la existencia en una lista con
1 in lista #=> True
-# Examina el largo de una lista con 'len'
+# Examina el tamaño de una lista con 'len'
len(lista) #=> 6
-# Tuplas son como listas pero son inmutables.
+# Las tuplas son como las listas, pero son inmutables.
tupla = (1, 2, 3)
tupla[0] #=> 1
tupla[0] = 3 # Levanta un error TypeError
@@ -204,13 +225,13 @@ dicc_lleno = {"uno": 1, "dos": 2, "tres": 3}
# Busca valores con []
dicc_lleno["uno"] #=> 1
-# Obtén todas las llaves como una lista con 'keys()'. Necesitamos envolver la llamada en 'list()' porque obtenemos un iterable. Hablaremos de eso luego.
-list(dicc_lleno.keys()) #=> ["tres", "dos", "uno"]
+# Obtén todas las llaves como una lista
+dicc_lleno.keys() #=> ["tres", "dos", "uno"]
# Nota - El orden de las llaves del diccionario no está garantizada.
# Tus resultados podrían no ser los mismos del ejemplo.
-# Obtén todos los valores como una lista. Nuevamente necesitamos envolverlas en una lista para sacarlas del iterable.
-list(dicc_lleno.values()) #=> [3, 2, 1]
+# Obtén todos los valores como una lista
+dicc_lleno.values() #=> [3, 2, 1]
# Nota - Lo mismo que con las llaves, no se garantiza el orden.
# Chequea la existencia de una llave en el diccionario con 'in'
@@ -227,18 +248,19 @@ dicc_lleno.get("cuatro") #=> None
dicc_lleno.get("uno", 4) #=> 1
dicc_lleno.get("cuatro", 4) #=> 4
-# El método 'setdefault' inserta en un diccionario solo si la llave no está presente
+# El método 'setdefault' es una manera segura de añadir nuevos pares
+# llave-valor en un diccionario
dicc_lleno.setdefault("cinco", 5) #dicc_lleno["cinco"] es puesto con valor 5
dicc_lleno.setdefault("cinco", 6) #dicc_lleno["cinco"] todavía es 5
-# Remueve llaves de un diccionario con 'del'
-del dicc_lleno['uno'] # Remueve la llave 'uno' de dicc_lleno
-
# Sets (conjuntos) almacenan ... bueno, conjuntos
conjunto_vacio = set()
-# Inicializar un conjunto con montón de valores. Yeah, se ve un poco como un diccionario. Lo siento.
-un_conjunto = {1,2,2,3,4} # un_conjunto ahora es {1, 2, 3, 4}
+# Inicializar un conjunto con montón de valores
+un_conjunto = set([1,2,2,3,4]) # un_conjunto ahora es set([1, 2, 3, 4])
+
+# Desde Python 2.7, {} puede ser usado para declarar un conjunto
+conjunto_lleno = {1, 2, 2, 3, 4} # => {1 2 3 4}
# Añade más valores a un conjunto
conjunto_lleno.add(5) # conjunto_lleno ahora es {1, 2, 3, 4, 5}
@@ -262,17 +284,18 @@ conjunto_lleno | otro_conjunto #=> {1, 2, 3, 4, 5, 6}
## 3. Control de Flujo
####################################################
-# Let's just make a variable
-some_var = 5
+# Hagamos sólo una variable
+una_variable = 5
-# Aquí está una declaración de un 'if'. ¡La indentación es significativa en Python!
+# Aquí está una declaración de un 'if'. ¡La indentación es importante en Python!
# imprime "una_variable es menor que 10"
if una_variable > 10:
- print("una_variable es completamente mas grande que 10.")
+ print "una_variable es completamente mas grande que 10."
elif una_variable < 10: # Este condición 'elif' es opcional.
- print("una_variable es mas chica que 10.")
+ print "una_variable es mas chica que 10."
else: # Esto también es opcional.
- print("una_variable es de hecho 10.")
+ print "una_variable es de hecho 10."
+
"""
For itera sobre listas
@@ -283,7 +306,7 @@ imprime:
"""
for animal in ["perro", "gato", "raton"]:
# Puedes usar % para interpolar strings formateados
- print("{} es un mamifero".format(animal))
+ print "%s es un mamifero" % animal
"""
`range(número)` retorna una lista de números
@@ -295,7 +318,7 @@ imprime:
3
"""
for i in range(4):
- print(i)
+ print i
"""
While itera hasta que una condición no se cumple.
@@ -307,49 +330,18 @@ imprime:
"""
x = 0
while x < 4:
- print(x)
+ print x
x += 1 # versión corta de x = x + 1
# Maneja excepciones con un bloque try/except
+
+# Funciona desde Python 2.6 en adelante:
try:
# Usa raise para levantar un error
raise IndexError("Este es un error de indice")
except IndexError as e:
pass # Pass no hace nada. Usualmente harias alguna recuperacion aqui.
-# Python oferce una abstracción fundamental llamada Iterable.
-# Un iterable es un objeto que puede ser tratado como una sequencia.
-# El objeto es retornado por la función 'range' es un iterable.
-
-dicc_lleno = {"uno": 1, "dos": 2, "tres": 3}
-nuestro_iterable = dicc_lleno.keys()
-print(nuestro_iterable) #=> range(1,10). Este es un objeto que implementa nuestra interfaz Iterable
-
-Podemos recorrerla.
-for i in nuestro_iterable:
- print(i) # Imprime uno, dos, tres
-
-# Aunque no podemos selecionar un elemento por su índice.
-nuestro_iterable[1] # Genera un TypeError
-
-# Un iterable es un objeto que sabe como crear un iterador.
-nuestro_iterator = iter(nuestro_iterable)
-
-# Nuestro iterador es un objeto que puede recordar el estado mientras lo recorremos.
-# Obtenemos el siguiente objeto llamando la función __next__.
-nuestro_iterator.__next__() #=> "uno"
-
-# Mantiene el estado mientras llamamos __next__.
-nuestro_iterator.__next__() #=> "dos"
-nuestro_iterator.__next__() #=> "tres"
-
-# Después que el iterador ha retornado todos sus datos, da una excepción StopIterator.
-nuestro_iterator.__next__() # Genera StopIteration
-
-# Puedes obtener todos los elementos de un iterador llamando a list() en el.
-list(dicc_lleno.keys()) #=> Retorna ["uno", "dos", "tres"]
-
-
####################################################
## 4. Funciones
@@ -357,7 +349,7 @@ list(dicc_lleno.keys()) #=> Retorna ["uno", "dos", "tres"]
# Usa 'def' para crear nuevas funciones
def add(x, y):
- print("x es {} y y es {}".format(x, y))
+ print "x es %s y y es %s" % (x, y)
return x + y # Retorna valores con una la declaración return
# Llamando funciones con parámetros
@@ -366,7 +358,6 @@ add(5, 6) #=> imprime "x es 5 y y es 6" y retorna 11
# Otra forma de llamar funciones es con argumentos de palabras claves
add(y=6, x=5) # Argumentos de palabra clave pueden ir en cualquier orden.
-
# Puedes definir funciones que tomen un número variable de argumentos
def varargs(*args):
return args
@@ -382,7 +373,6 @@ def keyword_args(**kwargs):
# Llamémosla para ver que sucede
keyword_args(pie="grande", lago="ness") #=> {"pie": "grande", "lago": "ness"}
-
# Puedes hacer ambas a la vez si quieres
def todos_los_argumentos(*args, **kwargs):
print args
@@ -422,22 +412,21 @@ filter(lambda x: x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]
[x for x in [3, 4, 5, 6, 7] if x > 5] #=> [6, 7]
####################################################
-## 5. Classes
+## 5. Clases
####################################################
-
# Heredamos de object para obtener una clase.
class Humano(object):
# Un atributo de clase es compartido por todas las instancias de esta clase
especie = "H. sapiens"
- # Constructor basico
+ # Constructor básico, se llama al instanciar la clase.
def __init__(self, nombre):
# Asigna el argumento al atributo nombre de la instancia
self.nombre = nombre
- # Un metodo de instancia. Todos los metodos toman self como primer argumento
+ # Un método de instancia. Todos los metodos toman self como primer argumento
def decir(self, msg):
return "%s: %s" % (self.nombre, msg)
@@ -447,7 +436,7 @@ class Humano(object):
def get_especie(cls):
return cls.especie
- # Un metodo estatico es llamado sin la clase o instancia como referencia
+ # Un metodo estático es llamado sin la clase o instancia como referencia
@staticmethod
def roncar():
return "*roncar*"
@@ -478,12 +467,12 @@ Humano.roncar() #=> "*roncar*"
# Puedes importar módulos
import math
-print(math.sqrt(16)) #=> 4.0
+print math.sqrt(16) #=> 4.0
# Puedes obtener funciones específicas desde un módulo
from math import ceil, floor
-print(ceil(3.7)) #=> 4.0
-print(floor(3.7))#=> 3.0
+print ceil(3.7) #=> 4.0
+print floor(3.7) #=> 3.0
# Puedes importar todas las funciones de un módulo
# Precaución: Esto no es recomendable
@@ -506,48 +495,52 @@ dir(math)
## 7. Avanzado
####################################################
-# Los generadores te ayudan a hacer un código perezoso (lazy)
+# Los generadores permiten evaluación perezosa
def duplicar_numeros(iterable):
for i in iterable:
yield i + i
-# Un generador crea valores sobre la marcha.
-# En vez de generar y retornar todos los valores de una vez, crea uno en cada iteración.
-# Esto significa que valores más grandes que 15 no serán procesados en 'duplicar_numeros'.
-# Fíjate que 'range' es un generador. Crear una lista 1-900000000 tomaría mucho tiempo en crearse.
-_rango = range(1, 900000000)
-# Duplicará todos los números hasta que un resultado >= se encuentre.
-for i in duplicar_numeros(_rango):
- print(i)
+# Un generador crea valores sobre la marcha
+# En vez de generar y devolver todos los valores de una vez, crea un valor
+# en cada iteración. En este ejemplo los valores mayores que 15 no serán
+# procesados en duplicar_numeros.
+# Nota: xrange es un generador que hace lo mismo que range.
+# Crear una lista de 1 a 900000000 lleva mucho tiempo y ocupa mucho espacio.
+# xrange crea un generador, mientras que range crea toda la lista.
+# Añadimos un guión bajo a los nombres de variable que coinciden con palabras
+# reservadas de python.
+xrange_ = xrange(1, 900000000)
+
+# duplica todos los números hasta que encuentra un resultado >= 30
+for i in duplicar_numeros(xrange_):
+ print i
if i >= 30:
break
-
# Decoradores
-# en este ejemplo 'pedir' envuelve a 'decir'
-# Pedir llamará a 'decir'. Si decir_por_favor es True entonces cambiará el mensaje a retornar
+# en este ejemplo pedir rodea a hablar
+# Si por_favor es True se cambiará el mensaje.
from functools import wraps
-def pedir(_decir):
- @wraps(_decir)
+def pedir(target_function):
+ @wraps(target_function)
def wrapper(*args, **kwargs):
- mensaje, decir_por_favor = _decir(*args, **kwargs)
- if decir_por_favor:
- return "{} {}".format(mensaje, "¡Por favor! Soy pobre :(")
- return mensaje
+ msg, por_favor = target_function(*args, **kwargs)
+ if por_favor:
+ return "{} {}".format(msg, "¡Por favor! Soy pobre :(")
+ return msg
return wrapper
@pedir
-def say(decir_por_favor=False):
- mensaje = "¿Puedes comprarme una cerveza?"
- return mensaje, decir_por_favor
-
+def hablar(por_favor=False):
+ msg = "¿Me puedes comprar una cerveza?"
+ return msg, por_favor
-print(decir()) # ¿Puedes comprarme una cerveza?
-print(decir(decir_por_favor=True)) # ¿Puedes comprarme una cerveza? ¡Por favor! Soy pobre :()
+print hablar() # ¿Me puedes comprar una cerveza?
+print hablar(por_favor=True) # ¿Me puedes comprar una cerveza? ¡Por favor! Soy pobre :(
```
## ¿Listo para más?
@@ -556,10 +549,9 @@ print(decir(decir_por_favor=True)) # ¿Puedes comprarme una cerveza? ¡Por favo
* [Learn Python The Hard Way](http://learnpythonthehardway.org/book/)
* [Dive Into Python](http://www.diveintopython.net/)
-* [Ideas for Python Projects](http://pythonpracticeprojects.com)
-* [The Official Docs](http://docs.python.org/3/)
+* [The Official Docs](http://docs.python.org/2.6/)
* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)
-* [Python Module of the Week](http://pymotw.com/3/)
+* [Python Module of the Week](http://pymotw.com/2/)
* [A Crash Course in Python for Scientists](http://nbviewer.ipython.org/5920182)
### Encuadernados
diff --git a/es-es/pythonstatcomp-es.html.markdown b/es-es/pythonstatcomp-es.html.markdown
index 0130b72a..b3d2f0ff 100644
--- a/es-es/pythonstatcomp-es.html.markdown
+++ b/es-es/pythonstatcomp-es.html.markdown
@@ -1,5 +1,6 @@
---
-language: Statistical computing with Python
+category: tool
+tool: Statistical Computing with Python
contributors:
- ["e99n09", "https://github.com/e99n09"]
filename: pythonstatcomp-es.py
diff --git a/es-es/raku-es.html.markdown b/es-es/raku-es.html.markdown
new file mode 100644
index 00000000..e916d0fd
--- /dev/null
+++ b/es-es/raku-es.html.markdown
@@ -0,0 +1,1935 @@
+---
+name: perl6
+category: language
+language: Raku
+filename: learnraku-es.raku
+contributors:
+ - ["vendethiel", "http://github.com/vendethiel"]
+ - ["Samantha McVey", "https://cry.nu"]
+translators:
+ - ["Luis F. Uceta", "https://github.com/uzluisf"]
+lang: es-es
+---
+
+Raku es un lenguaje de programación altamente capaz y con características
+abundantes para hacerlo el lenguage ideal por los próximos 100 años.
+
+El compilador primario de Raku se llama [Rakudo](http://rakudo.org), el cual
+se ejecuta en JVM y en [MoarVM](http://moarvm.com).
+
+Meta-nota: dos signos de números (##) son usados para indicar párrafos,
+mientras que un solo signo de número (#) indica notas.
+
+`#=>` representa la salida de un comando.
+
+```perl6
+# Un comentario de una sola línea comienza con un signo de número
+
+#`(
+ Comentarios multilíneas usan #` y signos de encerradura tales
+ como (), [], {}, 「」, etc.
+)
+```
+
+## Variables
+
+```perl6
+## En Raku, se declara una variable lexical usando `my`
+my $variable;
+## Raku tiene 3 tipos básicos de variables: escalares, arrays, y hashes.
+```
+
+### Escalares
+
+```perl6
+# Un escalar representa un solo valor. Variables escalares comienzan
+# con un `$`
+
+my $str = 'Cadena';
+# Las comillas inglesas ("") permiten la intepolación (lo cual veremos
+# luego):
+my $str2 = "Cadena";
+
+## Los nombres de variables pueden contener pero no terminar con comillas
+## simples y guiones. Sin embargo, pueden contener
+## (y terminar con) guiones bajos (_):
+my $nombre'de-variable_ = 5; # Esto funciona!
+
+my $booleano = True; # `True` y `False` son valores booleanos en Raku.
+my $inverso = !$booleano; # Puedes invertir un booleano con el operador prefijo `!`
+my $bool-forzado = so $str; # Y puedes usar el operador prefijo `so` que
+ # convierte su operador en un Bool
+```
+
+### Arrays y Listas
+
+```perl6
+## Un array representa varios valores. Variables arrays comienzan con `@`.
+## Las listas son similares pero son un tipo inmutable.
+
+my @array = 'a', 'b', 'c';
+# equivalente a:
+my @letras = <a b c>; # array de palabras, delimitado por espacios.
+ # Similar al qw de perl, o el %w de Ruby.
+my @array = 1, 2, 3;
+
+say @array[2]; # Los índices de un array empiezan por el 0 -- Este es
+ # el tercer elemento.
+
+say "Interpola todos los elementos de un array usando [] : @array[]";
+#=> Interpola todos los elementos de un array usando [] : 1 2 3
+
+@array[0] = -1; # Asigna un nuevo valor a un índice del array
+@array[0, 1] = 5, 6; # Asigna varios valores
+
+my @llaves = 0, 2;
+@array[@llaves] = @letras; # Asignación usando un array que contiene valores
+ # índices
+say @array; #=> a 6 b
+```
+
+### Hashes, o Pairs (pares) de llaves-valores.
+
+```perl6
+## Un hash contiene parejas de llaves y valores.
+## Puedes construir un objeto Pair usando la sintaxis `LLave => Valor`.
+## Tablas de hashes son bien rápidas para búsqueda, y son almacenadas
+## sin ningún orden.
+## Ten en cuenta que las llaves son "aplanadas" en contexto de hash, y
+## cualquier llave duplicada es deduplicada.
+my %hash = 1 => 2,
+ 3 => 4;
+my %hash = foo => "bar", # las llaves reciben sus comillas
+ # automáticamente.
+ "some other" => "value", # las comas colgantes estań bien.
+ ;
+
+## Aunque los hashes son almacenados internamente de forma diferente a los
+## arrays, Raku te permite crear un hash usando un array
+## con un número par de elementos fácilmente.
+my %hash = <llave1 valor1 llave2 valor2>;
+
+my %hash = llave1 => 'valor1', llave2 => 'valor2'; # ¡el mismo resultado!
+
+## También puedes usar la sintaxis "pareja con dos puntos":
+## (especialmente útil para parámetros nombrados que verás más adelante)
+my %hash = :w(1), # equivalente a `w => 1`
+ # esto es útil para el atajo `True`:
+ :truey, # equivalente a `:truey(True)`, o `truey => True`
+ # y para el `False`:
+ :!falsey, # equivalente a `:falsey(False)`, o `falsey => False`
+ ;
+
+say %hash{'llave1'}; # Puedes usar {} para obtener el valor de una llave
+say %hash<llave2>; # Si es una cadena de texto, puedes actualmente usar <>
+ # (`{llave1}` no funciona, debido a que Raku no tiene
+ # palabras desnudas (barewords en inglés))
+```
+
+## Subrutinas
+
+```perl6
+## Subrutinas, o funciones como otros lenguajes las llaman, son
+## creadas con la palabra clave `sub`.
+sub di-hola { say "¡Hola, mundo!" }
+
+## Puedes proveer argumentos (tipados). Si especificado,
+## el tipo será chequeado al tiempo de compilación si es posible.
+## De lo contrario, al tiempo de ejecución.
+sub di-hola-a(Str $nombre) {
+ say "¡Hola, $nombre!";
+}
+
+## Una subrutina devuelve el último valor evaluado del bloque.
+sub devolver-valor {
+ 5;
+}
+say devolver-valor; # imprime 5
+sub devolver-vacio {
+}
+say devolver-vacio; # imprime Nil
+
+## Algunas estructuras de control producen un valor. Por ejemplo if:
+sub devuelva-si {
+ if True {
+ "Truthy";
+ }
+}
+say devuelva-si; # imprime Truthy
+
+## Otras no, como un bucle for:
+sub return-for {
+ for 1, 2, 3 { }
+}
+say return-for; # imprime Nil
+
+## Una subrutina puede tener argumentos opcionales:
+sub con-opcional($arg?) { # el signo "?" marca el argumento opcional
+ say "Podría returnar `(Any)` (valor de Perl parecido al 'null') si no me pasan
+ un argumento, o returnaré mi argumento";
+ $arg;
+}
+con-opcional; # devuelve Any
+con-opcional(); # devuelve Any
+con-opcional(1); # devuelve 1
+
+## También puedes proveer un argumento por defecto para
+## cuando los argumentos no son proveídos:
+sub hola-a($nombre = "Mundo") {
+ say "¡Hola, $nombre!";
+}
+hola-a; #=> ¡Hola, Mundo!
+hola-a(); #=> ¡Hola, Mundo!
+hola-a('Tú'); #=> ¡Hola, Tú!
+
+## De igual manera, al usar la sintaxis parecida a la de los hashes
+## (¡Hurra, sintaxis unificada!), puedes pasar argumentos *nombrados*
+## a una subrutina. Ellos son opcionales, y por defecto son del tipo "Any".
+sub con-nombre($arg-normal, :$nombrado) {
+ say $arg-normal + $nombrado;
+}
+con-nombre(1, nombrado => 6); #=> 7
+## Sin embargo, debes tener algo en cuenta aquí:
+## Si pones comillas alrededor de tu llave, Raku no será capaz de verla
+## al tiempo de compilación, y entonces tendrás un solo objeto Pair como
+## un argumento posicional, lo que significa que el siguiente ejemplo
+## falla:
+con-nombre(1, 'nombrado' => 6);
+
+con-nombre(2, :nombrado(5)); #=> 7
+
+## Para hacer un argumento nombrado mandatorio, puedes utilizar el
+## inverso de `?`, `!`:
+sub con-nombre-mandatorio(:$str!) {
+ say "$str!";
+}
+con-nombre-mandatorio(str => "Mi texto"); #=> Mi texto!
+con-nombre-mandatorio; # error al tiempo de ejecución:
+ # "Required named parameter not passed"
+ # ("Parámetro nombrado requerido no proveído")
+con-nombre-mandatorio(3);# error al tiempo de ejecución:
+ # "Too many positional parameters passed"
+ # ("Demasiados argumentos posicionales proveídos")
+
+## Si una subrutina toma un argumento booleano nombrado ...
+sub toma-un-bool($nombre, :$bool) {
+ say "$nombre toma $bool";
+}
+## ... puedes usar la misma sintaxis de hash de un "booleano corto":
+takes-a-bool('config', :bool); # config toma True
+takes-a-bool('config', :!bool); # config toma False
+
+## También puedes proveer tus argumentos nombrados con valores por defecto:
+sub nombrado-definido(:$def = 5) {
+ say $def;
+}
+nombrado-definido; #=> 5
+nombrado-definido(def => 15); #=> 15
+
+## Dado que puedes omitir los paréntesis para invocar una función sin
+## argumentos, necesitas usar "&" en el nombre para almacenar la función
+## `di-hola` en una variable.
+my &s = &di-hola;
+my &otra-s = sub { say "¡Función anónima!" }
+
+## Una subrutina puede tener un parámetro "slurpy", o "no importa cuantos",
+## indicando que la función puede recibir cualquier número de parámetros.
+sub muchos($principal, *@resto) { #`*@` (slurpy) consumirá lo restante
+## Nota: Puedes tener parámetros *antes que* un parámetro "slurpy" (como
+## aquí) pero no *después* de uno.
+ say @resto.join(' / ') ~ "!";
+}
+say muchos('Feliz', 'Cumpleaño', 'Cumpleaño'); #=> Feliz / Cumpleaño!
+ # Nota que el asterisco (*) no
+ # consumió el parámetro frontal.
+
+## Puedes invocar un función con un array usando el
+## operador "aplanador de lista de argumento" `|`
+## (actualmente no es el único rol de este operador pero es uno de ellos)
+sub concat3($a, $b, $c) {
+ say "$a, $b, $c";
+}
+concat3(|@array); #=> a, b, c
+ # `@array` fue "aplanado" como parte de la lista de argumento
+```
+
+## Contenedores
+
+```perl6
+## En Raku, valores son actualmente almacenados en "contenedores".
+## El operador de asignación le pregunta al contenedor en su izquierda
+## almacenar el valor a su derecha. Cuando se pasan alrededor, contenedores
+## son marcados como inmutables. Esto significa que, en una función, tu
+## tendrás un error si tratas de mutar uno de tus argumentos.
+## Si realmente necesitas hacerlo, puedes preguntar por un contenedor
+## mutable usando `is rw`:
+sub mutar($n is rw) {
+ $n++;
+ say "¡\$n es ahora $n!";
+}
+
+my $m = 42;
+mutar $m; # ¡$n es ahora 43!
+
+## Esto funciona porque estamos pasando el contenedor $m para mutarlo. Si
+## intentamos pasar un número en vez de pasar una variable, no funcionará
+## dado que no contenedor ha sido pasado y números enteros son inmutables
+## por naturaleza:
+
+mutar 42; # Parámetro '$n' esperaba un contenedor mutable,
+ # pero recibió un valor Int
+
+## Si en cambio quieres una copia, debes usar `is copy`.
+
+## Por si misma, una subrutina devuelve un contenedor, lo que significa
+## que puede ser marcada con rw:
+my $x = 42;
+sub x-almacena() is rw { $x }
+x-almacena() = 52; # En este caso, los paréntesis son mandatorios
+ # (porque de otra forma, Raku piensa que la función
+ # `x-almacena` es un identificador).
+say $x; #=> 52
+```
+
+## Estructuras de control
+### Condicionales
+
+```perl6
+## - `if`
+## Antes de hablar acerca de `if`, necesitamos saber cuales valores son
+## "Truthy" (representa True (verdadero)), y cuales son "Falsey"
+## (o "Falsy") -- representa False (falso). Solo estos valores son
+## Falsey: 0, (), {}, "", Nil, un tipo (como `Str` o`Int`) y
+## por supuesto False. Todos los valores son Truthy.
+if True {
+ say "¡Es verdadero!";
+}
+
+unless False {
+ say "¡No es falso!";
+}
+
+## Como puedes observar, no necesitas paréntesis alrededor de condiciones.
+## Sin embargo, necesitas las llaves `{}` alrededor del cuerpo de un bloque:
+# if (true) say; # !Esto no funciona!
+
+## También puedes usar sus versiones sufijos seguidas por la palabra clave:
+say "Un poco verdadero" if True;
+
+## - La condicional ternaria, "?? !!" (como `x ? y : z` en otros lenguajes)
+## devuelve $valor-si-verdadera si la condición es verdadera y
+## $valor-si-falsa si es falsa.
+## my $resultado = $valor condición ?? $valor-si-verdadera !! $valor-si-falsa;
+
+my $edad = 30;
+say $edad > 18 ?? "Eres un adulto" !! "Eres menor de 18";
+```
+
+### given/when, ó switch
+
+```perl6
+## - `given`-`when` se parece al `switch` de otros lenguajes, pero es más
+## poderoso gracias a la coincidencia inteligente ("smart matching" en inglés)
+## y la "variable tópica" $_ de Perl.
+##
+## Esta variable ($_) contiene los argumentos por defecto de un bloque,
+## la iteración actual de un loop (a menos que sea explícitamente
+## nombrado), etc.
+##
+## `given` simplemente pone su argumento en `$_` (como un bloque lo haría),
+## y `when` lo compara usando el operador de "coincidencia inteligente" (`~~`).
+##
+## Dado que otras construcciones de Raku usan esta variable (por ejemplo,
+## el bucle `for`, bloques, etc), esto se significa que el poderoso `when` no
+## solo se aplica con un `given`, sino que se puede usar en cualquier
+## lugar donde exista una variable `$_`.
+
+given "foo bar" {
+ say $_; #=> foo bar
+ when /foo/ { # No te preocupies acerca de la coincidencia inteligente –
+ # solo ten presente que `when` la usa.
+ # Esto es equivalente a `if $_ ~~ /foo/`.
+ say "¡Yay!";
+ }
+ when $_.chars > 50 { # coincidencia inteligente con cualquier cosa True es True,
+ # i.e. (`$a ~~ True`)
+ # por lo tanto puedes también poner condiciones "normales".
+ # Este `when` es equivalente a este `if`:
+ # if $_ ~~ ($_.chars > 50) {...}
+ # que significa:
+ # if $_.chars > 50 {...}
+ say "¡Una cadena de texto bien larga!";
+ }
+ default { # lo mismo que `when *` (usando la Whatever Star)
+ say "Algo más";
+ }
+}
+```
+
+### Construcciones de bucle
+
+```perl6
+## - `loop` es un bucle infinito si no le pasas sus argumentos,
+## pero también puede ser un bucle for al estilo de C:
+loop {
+ say "¡Este es un bucle infinito!";
+ last; # last interrumpe el bucle, como la palabra clave `break`
+ # en otros lenguajes.
+}
+
+loop (my $i = 0; $i < 5; $i++) {
+ next if $i == 3; # `next` salta a la siguiente iteración, al igual
+ # que `continue` en otros lenguajes. Ten en cuenta que
+ # también puedes usar la condicionales postfix (sufijas)
+ # bucles, etc.
+ say "¡Este es un bucle al estilo de C!";
+}
+
+## - `for` - Hace iteraciones en un array
+for @array -> $variable {
+ say "¡He conseguido una $variable!";
+}
+
+## Como vimos con `given`, la variable de una "iteración actual" por defecto
+## es `$_`. Esto significa que puedes usar `when` en un bucle `for` como
+## normalmente lo harías con `given`.
+for @array {
+ say "he conseguido a $_";
+
+ .say; # Esto es también permitido.
+ # Una invocación con punto (dot call) sin "tópico" (recibidor) es
+ # enviada a `$_` por defecto.
+ $_.say; # lo mismo de arriba, lo cual es equivalente.
+}
+
+for @array {
+ # Puedes...
+ next if $_ == 3; # Saltar a la siguiente iteración (`continue` en
+ # lenguages parecido a C)
+ redo if $_ == 4; # Re-hacer la iteración, manteniendo la
+ # misma variable tópica (`$_`)
+ last if $_ == 5; # Salir fuera del bucle (como `break`
+ # en lenguages parecido a C)
+}
+
+## La sintaxis de "bloque puntiagudo" no es específica al bucle for.
+## Es solo una manera de expresar un bloque en Raku.
+if computación-larga() -> $resultado {
+ say "El resultado es $resultado";
+}
+```
+
+## Operadores
+
+```perl6
+## Dados que los lenguajes de la familia Perl son lenguages basados
+## mayormente en operadores, los operadores de Raku son actualmente
+## subrutinas un poco cómicas en las categorías sintácticas. Por ejemplo,
+## infix:<+> (adición) o prefix:<!> (bool not).
+
+## Las categorías son:
+## - "prefix" (prefijo): anterior a (como `!` en `!True`).
+## - "postfix" (sufijo): posterior a (como `++` en `$a++`).
+## - "infix" (infijo): en medio de (como `*` en `4 * 3`).
+## - "circumfix" (circunfijo): alrededor de (como `[`-`]` en `[1, 2]`).
+## - "post-circumfix" (pos-circunfijo): alrededor de un término,
+## posterior a otro término.
+## (como `{`-`}` en `%hash{'key'}`)
+
+## La lista de asociatividad y precedencia se explica más abajo.
+
+## ¡Bueno, ya estás listo(a)!
+
+## * Chequeando igualdad
+
+## - `==` se usa en comparaciones numéricas.
+3 == 4; # Falso
+3 != 4; # Verdadero
+
+## - `eq` se usa en comparaciones de cadenas de texto.
+'a' eq 'b';
+'a' ne 'b'; # no igual
+'a' !eq 'b'; # lo mismo que lo anterior
+
+## - `eqv` es equivalencia canónica (or "igualdad profunda")
+(1, 2) eqv (1, 3);
+
+## - Operador de coincidencia inteligente (smart matching): `~~`
+## Asocia (aliasing en inglés) el lado izquierda a la variable $_
+## y después evalúa el lado derecho.
+## Aquí algunas comparaciones semánticas comunes:
+
+## Igualdad de cadena de texto o numérica
+
+'Foo' ~~ 'Foo'; # True si las cadenas de texto son iguales.
+12.5 ~~ 12.50; # True si los números son iguales.
+
+## Regex - Para la comparación de una expresión regular en contra
+## del lado izquierdo. Devuelve un objeto (Match), el cual evalúa
+## como True si el regex coincide con el patrón.
+
+my $obj = 'abc' ~~ /a/;
+say $obj; # 「a」
+say $obj.WHAT; # (Match)
+
+## Hashes
+'llave' ~~ %hash; # True si la llave existe en el hash
+
+## Tipo - Chequea si el lado izquierdo "tiene un tipo" (puede chequear
+## superclases y roles)
+
+1 ~~ Int; # True (1 es un número entero)
+
+## Coincidencia inteligente contra un booleano siempre devuelve ese
+## booleano (y lanzará una advertencia).
+
+1 ~~ True; # True
+False ~~ True; # True
+
+## La sintaxis general es $arg ~~ &función-returnando-bool;
+## Para una lista completa de combinaciones, usa esta tabla:
+## http://perlcabal.org/syn/S03.html#Smart_matching
+
+## También, por supuesto, tienes `<`, `<=`, `>`, `>=`.
+## Sus equivalentes para cadenas de texto están disponibles:
+## `lt`, `le`, `gt`, `ge`.
+3 > 4;
+
+## * Constructores de rango
+3 .. 7; # 3 a 7, ambos incluidos
+## `^` en cualquier lado excluye a ese lado:
+3 ^..^ 7; # 3 a 7, no incluidos (básicamente `4 .. 6`)
+## Esto también funciona como un atajo para `0..^N`:
+^10; # significa 0..^10
+
+## Esto también nos permite demostrar que Raku tiene arrays
+## ociosos/infinitos, usando la Whatever Star:
+my @array = 1..*; # 1 al Infinito! `1..Inf` es lo mismo.
+say @array[^10]; # puedes pasar arrays como subíndices y devolverá
+ # un array de resultados. Esto imprimirá
+ # "1 2 3 4 5 6 7 8 9 10" (y no se quedaré sin memoria!)
+## Nota: Al leer una lista infinita, Raku "cosificará" los elementos que
+## necesita y los mantendrá en la memoria. Ellos no serán calculados más de
+## una vez. Tampoco calculará más elementos de los que necesita.
+
+## Un índice de array también puede ser una clausura ("closure" en inglés).
+## Será llamada con la longitud como el argumento
+say join(' ', @array[15..*]); #=> 15 16 17 18 19
+## lo que es equivalente a:
+say join(' ', @array[-> $n { 15..$n }]);
+## Nota: Si tratas de hacer cualquiera de esos con un array infinito,
+## provocará un array infinito (tu programa nunca terminará)
+
+## Puedes usar eso en los lugares que esperaría, como durante la asignación
+## a un array
+my @números = ^20;
+
+## Aquí los números son incrementados por "6"; más acerca del
+## operador `...` adelante.
+my @seq = 3, 9 ... * > 95; # 3 9 15 21 27 [...] 81 87 93 99;
+@números[5..*] = 3, 9 ... *; # aunque la secuencia es infinita,
+ # solo los 15 números necesarios será calculados.
+say @números; #=> 0 1 2 3 4 3 9 15 21 [...] 81 87
+ # (solamente 20 valores)
+
+## * And &&, Or ||
+3 && 4; # 4, el cual es Truthy. Invoca `.Bool` en `4` y obtiene `True`.
+0 || False; # False. Invoca `.Bool` en `0`
+
+## * Versiones circuito corto de lo de arriba
+## && Devuelve el primer argumento que evalúa a False, o el último.
+
+my ( $a, $b, $c ) = 1, 0, 2;
+$a && $b && $c; # Devuelve 0, el primer valor que es False
+
+## || Devuelve el primer argumento que evalúa a True.
+$b || $a; # 1
+
+## Y porque tu lo querrás, también tienes operadores de asignación
+## compuestos:
+$a *= 2; # multiplica y asigna. Equivalente a $a = $a * 2;
+$b %%= 5; # divisible por y asignación. Equivalente $b = $b %% 5;
+@array .= sort; # invoca el método `sort` y asigna el resultado devuelto.
+```
+
+## ¡Más sobre subrutinas!
+
+```perl6
+## Como dijimos anteriormente, Raku tiene subrutinas realmente poderosas.
+## Veremos unos conceptos claves que la hacen mejores que en cualquier otro
+## lenguaje :-).
+```
+
+### !Desempacado!
+
+```perl6
+## Es la abilidad de extraer arrays y llaves (También conocido como
+## "destructuring"). También funcionará en `my` y en las listas de parámetros.
+my ($f, $g) = 1, 2;
+say $f; #=> 1
+my ($, $, $h) = 1, 2, 3; # mantiene los anónimos no interesante
+say $h; #=> 3
+
+my ($cabeza, *@cola) = 1, 2, 3; # Sí, es lo mismo que con subrutinas "slurpy"
+my (*@small) = 1;
+
+sub desempacar_array(@array [$fst, $snd]) {
+ say "Mi primero es $fst, mi segundo es $snd! De todo en todo, soy un @array[].";
+ # (^ recuerda que `[]` interpola el array)
+}
+desempacar_array(@cola); #=> My first is 2, my second is 3 ! All in all, I'm 2 3
+
+
+## Si no está usando el array, puedes también mantenerlo anónimo, como un
+## escalar:
+sub primero-de-array(@ [$fst]) { $fst }
+primero-de-array(@small); #=> 1
+primero-de-array(@tail); # Lanza un error "Demasiados argumentos posicionales
+ # proveídos"
+ # (lo que significa que el array es muy grande).
+
+## También puedes usar un slurp ...
+sub slurp-en-array(@ [$fst, *@rest]) { # Podrías mantener `*@rest` anónimos
+ say $fst + @rest.elems; # `.elems` returna la longitud de una lista.
+ # Aquí, `@rest` es `(3,)`, since `$fst` holds the `2`.
+}
+slurp-en-array(@tail); #=> 3
+
+## Hasta podrías hacer un extracción usando una slurpy (pero no sería útil ;-).)
+sub fst(*@ [$fst]) { # o simplemente: `sub fst($fst) { ... }`
+ say $fst;
+}
+fst(1); #=> 1
+fst(1, 2); # errores con "Too many positional parameters passed"
+
+## También puedes desestructurar hashes (y clases, las cuales
+## veremos adelante). La sintaxis es básicamente
+## `%nombre-del-hash (:llave($variable-para-almacenar))`.
+## El hash puede permanecer anónimos si solo necesitas los valores extraídos.
+sub llave-de(% (:azul($val1), :red($val2))) {
+ say "Valores: $val1, $val2.";
+}
+## Después invócala con un hash: (necesitas mantener las llaves
+## de los parejas de llave y valor para ser un hash)
+llave-de({azul => 'blue', rojo => "red"});
+#llave-de(%hash); # lo mismo (para un `%hash` equivalente)
+
+## La última expresión de una subrutina es devuelta inmediatamente
+## (aunque puedes usar la palabra clave `return`):
+sub siguiente-indice($n) {
+ $n + 1;
+}
+my $nuevo-n= siguiente-indice(3); # $nuevo-n es ahora 4
+
+## Este es cierto para todo, excepto para las construcciones de bucles
+## (debido a razones de rendimiento): Hay una razón de construir una lista
+## si la vamos a desechar todos los resultados.
+## Si todavías quieres construir una, puedes usar la sentencia prefijo `do`:
+## (o el prefijo `gather`, el cual veremos luego)
+sub lista-de($n) {
+ do for ^$n { # nota el uso del operador de rango `^` (`0..^N`)
+ $_ # iteración de bucle actual
+ }
+}
+my @list3 = lista-de(3); #=> (0, 1, 2)
+```
+
+### lambdas
+
+```perl6
+## Puedes crear una lambda con `-> {}` ("bloque puntiagudo") o `{}` ("bloque")
+my &lambda = -> $argumento { "El argumento pasado a esta lambda es $argumento" }
+## `-> {}` y `{}` son casi la misma cosa, excepto que la primerra puede
+## tomar argumentos, y la segunda puede ser malinterpretada como un hash
+## por el parseador.
+
+## Podemos, por ejemplo, agregar 3 a cada valor de un array usando map:
+my @arraymas3 = map({ $_ + 3 }, @array); # $_ es el argumento implícito
+
+## Una subrutina (`sub {}`) tiene semánticas diferentes a un
+## bloque (`{}` or `-> {}`): Un bloque no tiene "contexto funcional"
+## (aunque puede tener argumentos), lo que significa que si quieres devolver
+## algo desde un bloque, vas a returnar desde la función parental. Compara:
+sub is-in(@array, $elem) {
+ # esto `devolverá` desde la subrutina `is-in`
+ # Una vez que la condición evalúa a True, el bucle terminará
+ map({ return True if $_ == $elem }, @array);
+}
+sub truthy-array(@array) {
+ # esto producirá un array de `True` Y `False`:
+ # (también puedes decir `anon sub` para "subrutina anónima")
+ map(sub ($i) { if $i { return True } else { return False } }, @array);
+ # ^ el `return` solo devuelve desde la `sub`
+}
+
+## También puedes usar la "whatever star" para crear una función anónima
+## (terminará con el último operador en la expresión actual)
+my @arraymas3 = map(*+3, @array); # `*+3` es lo mismo que `{ $_ + 3 }`
+my @arraymas3 = map(*+*+3, @array); # lo mismo que `-> $a, $b { $a + $b + 3 }`
+ # también `sub ($a, $b) { $a + $b + 3 }`
+say (*/2)(4); #=> 2
+ # Inmediatamente ejecuta la función que Whatever creó.
+say ((*+3)/5)(5); #=> 1.6
+ # ¡funciona hasta con los paréntesis!
+
+## Pero si necesitas más que un argumento (`$_`) en un bloque
+## (sin depender en `-> {}`), también puedes usar la sintaxis implícita
+## de argumento, `$` :
+map({ $^a + $^b + 3 }, @array); # equivalente a lo siguiente:
+map(sub ($a, $b) { $a + $b + 3 }, @array); # (aquí con `sub`)
+
+## Nota : Esos son ordernados lexicográficamente.
+# `{ $^b / $^a }` es como `-> $a, $b { $b / $a }`
+```
+
+### Acerca de tipos...
+
+```perl6
+## Raku es gradualmente tipado. Esto quiere decir que tu especifica el
+## tipo de tus variables/argumentos/devoluciones (return), o puedes omitirlos
+## y serán "Any" por defecto.
+## Obviamente tienes acceso a algunas tipos básicos, como Int y Str.
+## Las construcciones para declarar tipos son "class", "role", lo cual
+## verás más adelante.
+
+## Por ahora, examinemos "subset" (subconjunto).
+## Un "subset" es un "sub-tipo" con chequeos adicionales.
+## Por ejemplo: "un número entero bien grande es un Int que es mayor que 500"
+## Puedes especificar el tipo del que creas el subconjunto (por defecto, Any),
+## y añadir chequeos adicionales con la palabra clave "where" (donde):
+subset EnteroGrande of Int where * > 500;
+```
+
+### Despacho Múltiple (Multiple Dispatch)
+
+```perl6
+## Raku puede decidir que variante de una subrutina invocar basado en el
+## tipo de los argumento, o precondiciones arbitrarias, como con un tipo o
+## un `where`:
+
+## con tipos
+multi sub dilo(Int $n) { # nota la palabra clave `multi` aquí
+ say "Número: $n";
+}
+multi dilo(Str $s) { # un multi es una subrutina por defecto
+ say "Cadena de texto: $s";
+}
+dilo("azul"); # prints "Cadena de texto: azul"
+dilo(True); # falla al *tiempo de compilación* con
+ # "calling 'dilo' will never work with arguments of types ..."
+ # (invocar 'dilo' nunca funcionará con argumentos de tipos ...")
+## con precondición arbitraria (¿recuerdas los subconjuntos?):
+multi es-grande(Int $n where * > 50) { "¡Sí!" } # usando una clausura
+multi es-grande(Int $ where 10..50) { "Tal vez." } # Usando coincidencia inteligente
+ # (podrías usar un regexp, etc)
+multi es-grande(Int $) { "No" }
+
+subset Par of Int where * %% 2;
+
+multi inpar-o-par(Par) { "Par" } # El caso principal usando el tipo.
+ # No nombramos los argumentos,
+multi inpar-o-par($) { "Inpar" } # "else"
+
+## ¡Podrías despachar basado en la presencia de argumentos posicionales!
+multi sin_ti-o-contigo(:$with!) { # Necesitas hacerlo mandatorio
+ # para despachar en contra del argumento.
+ say "¡Puedo vivir! Actualmente, no puedo.";
+}
+multi sin_ti-o-contigo {
+ say "Definitivamente no puedo vivir.";
+}
+## Esto es muy útil para muchos propósitos, como subrutinas `MAIN` (de las
+## cuales hablaremos luego), y hasta el mismo lenguaje la está usando
+## en muchos lugares.
+##
+## - `is`, por ejemplo, es actualmente un `multi sub` llamado
+## `trait_mod:<is>`.
+## - `is rw`, es simplemente un despacho a una función con esta signatura:
+## sub trait_mod:<is>(Routine $r, :$rw!) {}
+##
+## (¡lo pusimos en un comentario dado que ejecutando esto sería una terrible
+## idea!)
+```
+
+## Ámbito (Scoping)
+
+```perl6
+## En Raku, a diferencia de otros lenguajes de scripting, (tales como
+## (Python, Ruby, PHP), debes declarar tus variables antes de usarlas. El
+## declarador `my`, del cual aprendiste anteriormente, usa "ámbito léxical".
+## Hay otros declaradores (`our`, `state`, ..., ) los cuales veremos luego.
+## Esto se llama "ámbito léxico", donde en los bloques internos,
+## puedes acceder variables de los bloques externos.
+my $archivo-en-ámbito = 'Foo';
+sub externo {
+ my $ámbito-externo = 'Bar';
+ sub interno {
+ say "$archivo-en-ámbito $ámbito-externo";
+ }
+ &interno; # devuelve la función
+}
+outer()(); #=> 'Foo Bar'
+
+## Como puedes ver, `$archivo-en-ámbito` y `$ámbito-externo`
+## fueron capturados. Pero si intentaramos usar `$bar` fuera de `foo`,
+## la variable estaría indefinida (y obtendrías un error al tiempo de
+## compilación).
+```
+
+## Twigils
+
+```perl6
+## Hay muchos `twigils` especiales (sigilos compuestos) en Raku.
+## Los twigils definen el ámbito de las variables.
+## Los twigils * y ? funcionan con variables regulares:
+## * Variable dinámica
+## ? Variable al tiempo de compilación
+## Los twigils ! y . son usados con los objetos de Raku:
+## ! Atributo (miembro de la clase)
+## . Método (no una variable realmente)
+
+## El twigil `*`: Ámbito dinámico
+## Estas variables usan el twigil `*` para marcar variables con ámbito
+## dinámico. Variables con ámbito dinámico son buscadas a través del
+## invocador, no a través del ámbito externo.
+
+my $*ambito_din_1 = 1;
+my $*ambito_din_2 = 10;
+
+sub di_ambito {
+ say "$*ambito_din_1 $*ambito_din_2";
+}
+
+sub invoca_a_di_ambito {
+ my $*ambito_din_1 = 25; # Define a $*ambito_din_1 solo en esta subrutina.
+ $*ambito_din_2 = 100; # Cambiará el valor de la variable en ámbito.
+ di_ambito(); #=> 25 100 $*ambito_din_1 y 2 serán buscadas en la invocación.
+ # Se usa el valor de $*ambito_din_1 desde el ámbito léxico de esta
+ # subrutina aunque los bloques no están anidados (están anidados por
+ # invocación).
+}
+di_ambito(); #=> 1 10
+invoca_a_di_ambito(); #=> 25 100
+ # Se usa a $*ambito_din_1 como fue definida en invoca_a_di_ambito
+ # aunque la estamos invocando desde afuera.
+di_ambito(); #=> 1 100 Cambiamos el valor de $*ambito_din_2 en invoca_a_di_ambito
+ # por lo tanto su valor a cambiado.
+```
+
+## Modelo de Objeto
+
+```perl6
+## Para invocar a un método en un objeto, agrega un punto seguido por el
+## nombre del objeto:
+## => $object.method
+## Las classes son declaradas usando la palabra clave `class`. Los atributos
+## son declarados con la palabra clave `has`, y los métodos con `method`.
+## Cada atributo que es privado usa el twigil `!`. Por ejemplo: `$!attr`.
+## Atributos públicos inmutables usan el twigil `.` (los puedes hacer
+## mutables con `is rw`).
+## La manera más fácil de recordar el twigil `$.` is comparándolo
+## con como los métodos son llamados.
+
+## El modelo de objeto de Raku ("SixModel") es muy flexible, y te permite
+## agregar métodos dinámicamente, cambiar la semántica, etc ...
+## (no hablaremos de todo esto aquí. Por lo tanto, refiérete a:
+## https://docs.raku.org/language/objects.html).
+
+class Clase-Atrib {
+ has $.atrib; # `$.atrib` es inmutable.
+ # Desde dentro de la clase, usa `$!atrib` para modificarlo.
+ has $.otro-atrib is rw; # Puedes marcar un atributo como público con `rw`.
+ has Int $!atrib-privado = 10;
+
+ method devolver-valor {
+ $.atrib + $!atrib-privado;
+ }
+
+ method asignar-valor($param) { # Métodos pueden tomar parámetros.
+ $!attrib = $param; # Esto funciona porque `$!` es siempre mutable.
+ # $.attrib = $param; # Incorrecto: No puedes usar la versión inmutable `$.`.
+
+ $.otro-atrib = 5; # Esto funciona porque `$.otro-atrib` es `rw`.
+ }
+
+ method !metodo-privado {
+ say "Este método es privado para la clase !";
+ }
+};
+
+## Crear una nueva instancia de Clase-Atrib con $.atrib asignado con 5:
+## Nota: No puedes asignarle un valor a atrib-privado desde aquí (más de
+## esto adelante).
+my $class-obj = Clase-Atrib.new(atrib => 5);
+say $class-obj.devolver-valor; #=> 5
+# $class-obj.atrib = 5; # Esto falla porque `has $.atrib` es inmutable
+$class-obj.otro-atrib = 10; # En cambio, esto funciona porque el atributo
+ # público es mutable (`rw`).
+```
+
+### Herencia de Objeto
+
+```perl6
+## Raku también tiene herencia (junto a herencia múltiple)
+## Mientras los métodos declarados con `method` son heredados, aquellos
+## declarados con `submethod` no lo son.
+## Submétodos son útiles para la construcción y destrucción de tareas,
+## tales como BUILD, o métodos que deben ser anulados por subtipos.
+## Aprenderemos acerca de BUILD más adelante.
+
+class Padre {
+ has $.edad;
+ has $.nombre;
+ # Este submétodo no será heredado por la clase Niño.
+ submethod color-favorito {
+ say "Mi color favorito es Azul";
+ }
+ # Este método será heredado
+ method hablar { say "Hola, mi nombre es $!nombre" }
+}
+# Herencia usa la palabra clave `is`
+class Niño is Padre {
+ method hablar { say "Goo goo ga ga" }
+ # Este método opaca el método `hablar` de Padre.
+ # Este niño no ha aprendido a hablar todavía.
+}
+my Padre $Richard .= new(edad => 40, nombre => 'Richard');
+$Richard.color-favorito; #=> "Mi color favorito es Azul"
+$Richard.hablar; #=> "Hola, mi nombre es Richard"
+## $Richard es capaz de acceder el submétodo; él sabe como decir su nombre.
+
+my Niño $Madison .= new(edad => 1, nombre => 'Madison');
+$Madison.hablar; # imprime "Goo goo ga ga" dado que el método fue cambiado
+ # en la clase Niño.
+# $Madison.color-favorito # no funciona porque no es heredado
+
+## Cuando se usa `my T $var` (donde `T` es el nombre de la clase), `$var`
+## inicia con `T` en si misma, por lo tanto puedes invocar `new` en `$var`.
+## (`.=` es sólo la invocación por punto y el operador de asignación:
+## `$a .= b` es lo mismo que `$a = $a.b`)
+## Por ejemplo, la instancia $Richard pudo también haber sido declarada así:
+## my $Richard = Padre.new(edad => 40, nombre => 'Richard');
+
+## También observa que `BUILD` (el método invocado dentro de `new`)
+## asignará propiedades de la clase padre, por lo que puedes pasar
+## `val => 5`.
+```
+
+### Roles, o Mixins
+
+```perl6
+## Roles son suportados también (comúnmente llamados Mixins en otros
+## lenguajes)
+role PrintableVal {
+ has $!counter = 0;
+ method print {
+ say $.val;
+ }
+}
+
+## Se "importa" un mixin (un "role") con "does":
+class Item does PrintableVal {
+ has $.val;
+
+ ## Cuando se utiliza `does`, un `rol` se mezcla en al clase literalmente:
+ ## los métodos y atributos se ponen juntos, lo que significa que una clase
+ ## puede acceder los métodos y atributos privados de su rol (pero no lo inverso!):
+ method access {
+ say $!counter++;
+ }
+
+ ## Sin embargo, esto:
+ ## method print {}
+ ## es SÓLO válido cuando `print` no es una `multi` con el mismo dispacho.
+ ## (esto significa que una clase padre puede opacar una `multi print() {}`
+ ## de su clase hijo/a, pero es un error sin un rol lo hace)
+
+ ## NOTA: Puedes usar un rol como una clase (con `is ROLE`). En este caso,
+ ## métodos serán opacados, dado que el compilador considerará `ROLE`
+ ## como una clase.
+}
+```
+
+## Excepciones
+
+```perl6
+## Excepciones están construidas al tope de las clases, en el paquete
+## `X` (como `X::IO`).
+## En Raku, excepciones son lanzadas automáticamente.
+open 'foo'; #=> Failed to open file foo: no such file or directory
+## También imprimirá la línea donde el error fue lanzado y otra información
+## concerniente al error.
+
+## Puedes lanzar una excepción usando `die`:
+die 'Error!'; #=> Error!
+
+## O más explícitamente:
+die X::AdHoc.new(payload => 'Error!');
+
+## En Raku, `orelse` es similar al operador `or`, excepto que solamente
+## coincide con variables indefinidas, en cambio de cualquier cosa
+## que evalúa a falso.
+## Valores indefinidos incluyen: `Nil`, `Mu` y `Failure`, también como
+## `Int`, `Str` y otros tipos que no han sido inicializados a ningún valor
+## todavía.
+## Puedes chequear si algo está definido o no usando el método defined:
+my $no-inicializada;
+say $no-inicializada.defined; #=> False
+## Al usar `orelse`, se desarmará la excepción y creará un alias de dicho
+## fallo en $_
+## Esto evitará que sea automáticamente manejado e imprima una marejada de
+## mensajes de errores en la pantalla.
+## Podemos usar el método de excepción en $_ para acceder la excepción:
+open 'foo' orelse say "Algo pasó {.exception}";
+
+## Esto también funciona:
+open 'foo' orelse say "Algo pasó $_"; #=> Algo pasó
+ #=> Failed to open file foo: no such file or directory
+## Ambos ejemplos anteriores funcionan pero en caso de que consigamos un
+## objeto desde el lado izquierdo que no es un fallo, probablemente
+## obtendremos una advertencia. Más abajo vemos como usar `try` y `CATCH`
+## para ser más expecíficos con las excepciones que capturamos.
+```
+
+### Usando `try` y `CATCH`
+
+```perl6
+## Al usar `try` y `CATCH`, puedes contener y manejar excepciones sin
+## interrumpir el resto del programa. `try` asignará la última excepción
+## a la variable especial `$!`.
+## Nota: Esto no tiene ninguna relación con las variables $!.
+
+try open 'foo';
+say "Bueno, lo intenté! $!" if defined $!; #=> Bueno, lo intenté! Failed to open file
+ #foo: no such file or directory
+## Ahora, ¿qué debemos hacer si queremos más control sobre la excepción?
+## A diferencia de otros lenguajes, en Raku se pone el bloque `CATCH`
+## *dentro* del bloque a intentar (`try`). Similarmente como $_ fue asignada
+## cuando 'disarmamos' la excepción con `orelse`, también usamos $_ en el
+## bloque CATCH.
+## Nota: ($! es solo asignada *después* del bloque `try`)
+## Por defecto, un bloque `try` tiene un bloque `CATCH` que captura
+## cualquier excepción (`CATCH { default {} }`).
+
+try { my $a = (0 %% 0); CATCH { say "Algo pasó: $_" } }
+ #=> Algo pasó: Attempt to divide by zero using infix:<%%>
+
+## Puedes redefinir lo anterior usando `when` y (`default`)
+## para manejar las excepciones que desees:
+try {
+ open 'foo';
+ CATCH { # En el bloque `CATCH`, la excepción es asignada a $_
+ when X::AdHoc { say "Error: $_" }
+ #=>Error: Failed to open file /dir/foo: no such file or directory
+
+ ## Cualquier otra excepción será levantada de nuevo, dado que no
+ ## tenemos un `default`.
+ ## Básicamente, si un `when`
+ ## Basically, if a `when` matches (or there's a `default`) marks the
+ ## exception as
+ ## "handled" so that it doesn't get re-thrown from the `CATCH`.
+ ## You still can re-throw the exception (see below) by hand.
+ }
+}
+
+## En Raku, excepciones poseen ciertas sutilezas. Algunas
+## subrutinas en Raku devuelven un `Failure`, el cual es un tipo de
+## "excepción no levantada". Ellas no son levantadas hasta que tu intentas
+## mirar a sus contenidos, a menos que invoques `.Bool`/`.defined` sobre
+## ellas - entonces, son manejadas.
+## (el método `.handled` es `rw`, por lo que puedes marcarlo como `False`
+## por ti mismo)
+## Puedes levantar un `Failure` usando `fail`. Nota que si el pragma
+## `use fatal` estás siendo utilizado, `fail` levantará una excepión (como
+## `die`).
+fail "foo"; # No estamos intentando acceder el valor, por lo tanto no problema.
+try {
+ fail "foo";
+ CATCH {
+ default { say "Levantó un error porque intentamos acceder el valor del fallo!" }
+ }
+}
+
+## También hay otro tipo de excepción: Excepciones de control.
+## Esas son excepciones "buenas", las cuales suceden cuando cambias el flujo
+## de tu programa, usando operadores como `return`, `next` or `last`.
+## Puedes capturarlas con `CONTROL` (no lista un 100% en Rakudo todavía).
+```
+
+## Paquetes
+
+```perl6
+## Paquetes son una manera de reusar código. Paquetes son como
+## "espacio de nombres" (namespaces en inglés), y cualquier elemento del
+## modelo seis (`module`, `role`, `class`, `grammar`, `subset` y `enum`)
+## son paquetes por ellos mismos. (Los paquetes son como el mínimo común
+## denominador)
+## Los paquetes son importantes - especialmente dado que Perl es bien
+## reconocido por CPAN, the Comprehensive Perl Archive Nertwork.
+
+## Puedes usar un módulo (traer sus declaraciones al ámbito) con `use`
+use JSON::Tiny; # si intalaste Rakudo* o Panda, tendrás este módulo
+say from-json('[1]').perl; #=> [1]
+
+## A diferencia de Perl, no deberías declarar paquetes usando
+## la palabra clave `package`. En vez, usa `class Nombre::Paquete::Aquí;`
+## para declarar una clase, o si solamente quieres exportar
+## variables/subrutinas, puedes usar `module`.
+
+module Hello::World { # forma de llaves
+ # Si `Hello` no existe todavía, solamente será una cola ("stub"),
+ # que puede ser redeclarada más tarde.
+ # ... declaraciones aquí ...
+}
+unit module Parse::Text; # forma de ámbito de archivo
+
+grammar Parse::Text::Grammar { # Una gramática (grammar en inglés) es un paquete,
+ # en el cual puedes usar `use`
+} # Aprenderás más acerca de gramáticas en la sección de regex
+
+## Como se dijo anteriormente, cualquier parte del modelo seis es también un
+## paquete. Dado que `JSON::Tiny` usa su propia clase `JSON::Tiny::Actions`,
+## tu puedes usarla de la manera siguiente:
+my $acciones = JSON::Tiny::Actions.new;
+
+## Veremos como exportar variables y subrutinas en la siguiente parte:
+```
+
+## Declaradores
+
+```perl6
+## En Raku, tu obtienes diferentes comportamientos basado en como declaras
+## una variable.
+## Ya has visto `my` y `has`, ahora exploraremos el resto.
+
+## * las declaraciones `our` ocurren al tiempo `INIT` (ve "Phasers" más abajo)
+## Es como `my`, pero también crea una variable paquete.
+## (Todas las cosas relacionadas con paquetes (`class`, `role`, etc) son
+## `our` por defecto)
+module Var::Incrementar {
+ our $nuestra-var = 1; # Nota: No puedes colocar una restricción de tipo
+ my $mi-var = 22; # como Int (por ejemplo) en una variable `our`.
+ our sub Inc {
+
+ our sub disponible { # Si tratas de hacer subrutinas internas `our`...
+ # Mejor que sepas lo que haces (No lo haga!).
+ say "No hagas eso. En serio. Estás jugando con fuego y te quemarás.";
+ }
+
+ my sub no-disponible { # `my sub` es por defecto
+ say "No puedes acceder aquí desde fuera. Soy 'my'!";
+ }
+ say ++$nuestra-var; # Incrementa la variable paquete y muestra su valor
+ }
+
+}
+say $Var::Incrementar::nuestra-var; #=> 1 Esto funciona
+say $Var::Incrementar::mi-var; #=> (Any) Esto no funcionará.
+
+Var::Incrementar::Inc; #=> 2
+Var::Incrementar::Inc; #=> 3 # Nota como el valor de $nuestra-var fue
+ # retenido
+Var::Incrementar::no-disponible; #=> Could not find symbol '&no-disponible'
+
+## * `constant` (ocurre al tiempo `BEGIN`)
+## Puedes usar la palabra clave `constant` para declarar una
+## variable/símbolo al tiempo de compilación:
+constant Pi = 3.14;
+constant $var = 1;
+
+## Y por si te estás preguntando, sí, también puede contener listas infinitas.
+constant porque-no = 5, 15 ... *;
+say porque-no[^5]; #=> 5 15 25 35 45
+
+## * `state` (ocurre al tiempo de ejecución, pero una sola vez)
+## Variables "states" son solo inicializadas una vez.
+## (ellas existen en otros lenguaje como `static` en C)
+sub aleatorio-fijo {
+ state $valor = rand;
+ say $valor;
+}
+aleatorio-fijo for ^10; # imprimirá el mismo número 10 veces
+
+## Nota, sin embargo, que ellas existen separadamente en diferentes contextos.
+## Si declaras una función con un `state` dentro de un bucle, recreará la
+## variable por cada iteración del bucle. Observa:
+for ^5 -> $a {
+ sub foo {
+ state $valor = rand; # Esto imprimirá un valor diferente
+ # por cada valor de `$a`
+ }
+ for ^5 -> $b {
+ say foo; # Esto imprimirá el mismo valor 5 veces, pero sólo 5.
+ # La siguiente iteración ejecutará `rand` nuevamente.
+ }
+}
+```
+
+## Phasers
+
+```perl6
+## Un phaser en Raku es un bloque que ocurre a determinados puntos de tiempo
+## en tu programa. Se les llama phaser porque marca un cambio en la fase de
+## de tu programa. Por ejemplo, cuando el programa es compilado, un bucle
+## for se ejecuta, dejas un bloque, o una excepción se levanta.
+## (¡`CATCH` es actualmente un phaser!)
+## Algunos de ellos pueden ser utilizados por sus valores devueltos, otros
+## no pueden (aquellos que tiene un "[*]" al inicio de su texto de
+## explicación).
+## ¡Tomemos una mirada!
+
+## * Phasers al tiempo de compilación
+BEGIN { say "[*] Se ejecuta al tiempo de compilación, " ~
+ "tan pronto como sea posible, una sola vez" }
+CHECK { say "[*] Se ejecuta al tiempo de compilación, " ~
+ "tan tarde como sea posible, una sola vez" }
+
+## * Phasers al tiempo de ejecución
+INIT { say "[*] Se ejecuta al tiempo de ejecución, " ~
+ "tan pronto como sea posible, una sola vez" }
+END { say "Se ejecuta al tiempo de ejecución, " ~
+ "tan tarde como sea posible, una sola vez" }
+
+## * Phasers de bloques
+ENTER { say "[*] Se ejecuta cada vez que entra en un bloque, " ~
+ "se repite en bloques de bucle" }
+LEAVE { say "Se ejecuta cada vez que abandona un bloque, incluyendo " ~
+ "cuando una excepción ocurre. Se repite en bloques de bucle"}
+
+PRE {
+ say "Impone una precondición a cada entrada de un bloque, " ~
+ "antes que ENTER (especialmente útil para bucles)";
+ say "Si este bloque no returna un valor truthy, " ~
+ "una excepción del tipo X::Phaser::PrePost será levantada.";
+}
+
+## Ejemplos:
+for 0..2 {
+ PRE { $_ > 1 } # Esto fallará con un "Precondition failed"
+}
+
+POST {
+ say "Impone una postcondAsserts a poscondición a la salida de un bloque, " ~
+ "después de LEAVE (especialmente útil para bucles)";
+ say "Si este bloque no returna un valor truthy, " ~
+ "una excepción del tipo X::Phaser::PrePost será levantada, como con PRE.";
+}
+for 0..2 {
+ POST { $_ < 2 } # Esto fallará con un "Postcondition failed"
+}
+
+## * Phasers de bloques/excepciones
+sub {
+ KEEP { say "Se ejecuta cuando sales de un bloque exitosamente
+ (sin lanzar un excepción)" }
+ UNDO { say "Se ejecuta cuando sale de bloque sin éxito
+ (al lanzar una excepción)" }
+}
+
+## * Phasers de bucle
+for ^5 {
+ FIRST { say "[*] La primera vez que un bucle se ejecuta, antes que ENTER" }
+ NEXT { say "Al tiempo de la continuación del bucle, antes que LEAVE" }
+ LAST { say "Al tiempo de la terminación del bucle, después de LEAVE" }
+}
+
+## * Phasers de rol/clase
+COMPOSE { "Cuando un rol es compuesto en una clase. /!\ NO IMPLEMENTADO TODAVÍA" }
+
+## Ellos permite pequeños trucos o código brillante...:
+say "Este código tomó " ~ (time - CHECK time) ~ "s para compilar";
+
+## ... o brillante organización:
+sub do-db-stuff {
+ $db.start-transaction; # comienza una transacción nueva
+ KEEP $db.commit; # commit (procede con) la transacción si todo estuvo bien
+ UNDO $db.rollback; # o retrocede si todo falló
+}
+```
+
+## Prefijos de sentencias
+
+```perl6
+## Los prefijos de sentencias actúan como los phasers: Ellos afectan el
+## comportamiento del siguiente código.
+## Debido a que son ejecutados en línea con el código ejecutable, ellos
+## se escriben en letras minúsculas. (`try` and `start` están teoréticamente
+## en esa lista, pero serán explicados en otra parte)
+## Nota: Ningunos de estos (excepto `start`) necesitan las llaves `{` y `}`.
+
+## - `do` (el cual ya viste) - ejecuta un bloque o una sentencia como un
+## término.
+## Normalmente no puedes usar una sentencia como un valor (o término):
+##
+## my $valor = if True { 1 } # `if` es una sentencia - error del parseador
+##
+## Esto funciona:
+my $a = do if True { 5 } # con `do`, `if` ahora se comporta como un término.
+
+## - `once` - se asegura que una porción de código se ejecute una sola vez.
+for ^5 { once say 1 }; #=> 1
+ # solo imprime ... una sola vez.
+## Al igual que `state`, ellos son clonados por ámbito
+for ^5 { sub { once say 1 }() } #=> 1 1 1 1 1
+ # Imprime una sola vez por ámbito léxico
+
+## - `gather` - Hilo de co-rutina
+## `gather` te permite tomar (`take`) varios valores en un array,
+## al igual que `do`. Encima de esto, te permite tomar cualquier expresión.
+say gather for ^5 {
+ take $_ * 3 - 1;
+ take $_ * 3 + 1;
+} #=> -1 1 2 4 5 7 8 10 11 13
+say join ',', gather if False {
+ take 1;
+ take 2;
+ take 3;
+} # no imprime nada.
+
+## - `eager` - Evalúa una sentencia ávidamente (forza contexto ávido)
+## No intentes esto en casa:
+##
+## eager 1..*; # esto probablemente se colgará por un momento
+## # (y podría fallar...).
+##
+## Pero considera lo siguiente:
+constant tres-veces = gather for ^3 { say take $_ }; # No imprime nada
+
+## frente a esto:
+constant tres-veces = eager gather for ^3 { say take $_ }; #=> 0 1 2
+```
+
+## Iterables
+
+```perl6
+## En Raku, los iterables son objetos que pueden ser iterados similar
+## a la construcción `for`.
+## `flat`, aplana iterables:
+say (1, 10, (20, 10) ); #=> (1 10 (20 10)) Nota como la agrupación se mantiene
+say (1, 10, (20, 10) ).flat; #=> (1 10 20 10) Ahora el iterable es plano
+
+## - `lazy` - Aplaza la evaluación actual hasta que el valor sea requirido
+## (forza contexto perezoso)
+my @lazy-array = (1..100).lazy;
+say @lazy-array.is-lazy; #=> True # Chequea por "pereza" con el método `is-lazy`.
+say @lazy-array; #=> [...] No se ha iterado sobre la lista
+for @lazy-array { .print }; # Esto funciona y hará tanto trabajo como sea necesario.
+
+[//]: # ( TODO explica que gather/take y map son todos perezosos)
+## - `sink` - Un `eager` que desecha los resultados (forza el contexto sink)
+constant nilthingie = sink for ^3 { .say } #=> 0 1 2
+say nilthingie.perl; #=> Nil
+
+## - `quietly` - Un bloque `quietly` reprime las advertencias:
+quietly { warn 'Esto es una advertencia!' }; #=> No salida
+
+## - `contend` - Intenta efectos secundarios debajo de STM
+## ¡No implementado todavía!
+```
+
+## ¡Más operadores!
+
+```perl6
+## ¡Todo el mundo ama los operadores! Tengamos más de ellos.
+
+## La lista de precedencia puede ser encontrada aquí:
+## https://docs.raku.org/language/operators#Operator_Precedence
+## Pero primero, necesitamos un poco de explicación acerca
+## de la asociatividad:
+
+## * Operadores binarios:
+$a ! $b ! $c; # con asociatividad izquierda `!`, esto es `($a ! $b) ! $c`
+$a ! $b ! $c; # con asociatividad derecha `!`, esto es `$a ! ($b ! $c)`
+$a ! $b ! $c; # sin asociatividad `!`, esto es ilegal
+$a ! $b ! $c; # con una cadena de asociatividad `!`, esto es `($a ! $b) and ($b ! $c)`
+$a ! $b ! $c; # con asociatividad de lista `!`, esto es `infix:<>`
+
+## * Operadores unarios:
+!$a! # con asociatividad izquierda `!`, esto es `(!$a)!`
+!$a! # con asociatividad derecha `!`, esto es `!($a!)`
+!$a! # sin asociatividad `!`, esto es ilegal
+```
+
+### ¡Crea tus propios operadores!
+
+```perl6
+## Okay, has leído todo esto y me imagino que debería mostrarte
+## algo interesante.
+## Te mostraré un pequeño secreto (o algo no tan secreto):
+## En Raku, todos los operadores son actualmente solo subrutinas.
+
+## Puedes declarar un operador como declaras una subrutina:
+sub prefix:<ganar>($ganador) { # se refiere a las categorías de los operadores
+ # (exacto, es el "operador de palabras" `<>`)
+ say "¡$ganador ganó!";
+}
+ganar "El Rey"; #=> ¡El Rey Ganó!
+ # (prefijo se pone delante)
+
+## todavías puedes invocar la subrutina con su "nombre completo":
+say prefix:<!>(True); #=> False
+
+sub postfix:<!>(Int $n) {
+ [*] 2..$n; # usando el meta-operador reduce ... Ve más abajo!
+}
+say 5!; #=> 120
+ # Operadores sufijos (postfix) van *directamente* después del témino.
+ # No espacios en blanco. Puedes usar paréntesis para disambiguar,
+ # i.e. `(5!)!`
+
+
+sub infix:<veces>(Int $n, Block $r) { # infijo va en el medio
+ for ^$n {
+ $r(); # Necesitas los paréntesis explícitos para invocar la función
+ # almacenada en la variable `$r`. De lo contrario, te estaría
+ # refiriendo a la variable (no a la función), como con `&r`.
+ }
+}
+3 veces -> { say "hola" }; #=> hola
+ #=> hola
+ #=> hola
+ # Se te recomienda que ponga espacios
+ # alrededor de la invocación de operador infijo.
+
+## Para los circunfijos y pos-circunfijos
+sub circumfix:<[ ]>(Int $n) {
+ $n ** $n
+}
+say [5]; #=> 3125
+ # un circunfijo va alrededor. De nuevo, no espacios en blanco.
+
+sub postcircumfix:<{ }>(Str $s, Int $idx) {
+ ## un pos-circunfijo es
+ ## "después de un término y alrededor de algo"
+ $s.substr($idx, 1);
+}
+say "abc"{1}; #=> b
+ # depués del término `"abc"`, y alrededor del índice (1)
+
+## Esto es de gran valor -- porque todo en Raku usa esto.
+## Por ejemplo, para eliminar una llave de un hash, tu usas el adverbio
+## `:delete` (un simple argumento con nombre debajo):
+%h{$llave}:delete;
+## es equivalente a:
+postcircumfix:<{ }>(%h, $llave, :delete); # (puedes invocar
+ # operadores de esta forma)
+## ¡*Todos* usan los mismos bloques básicos!
+## Categorías sintácticas (prefix, infix, ...), argumentos nombrados
+## (adverbios), ... - usados para construir el lenguaje - están al alcance
+## de tus manos y disponibles para ti.
+## (obviamente, no se te recomienda que hagas un operador de *cualquier
+## cosa* -- Un gran poder conlleva una gran responsabilidad.)
+```
+
+### Meta-operadores!
+
+```perl6
+## ¡Prepárate! Prepárate porque nos estamos metiendo bien hondo
+## en el agujero del conejo, y probablemente no querrás regresar a
+## otros lenguajes después de leer esto.
+## (Me imagino que ya no quieres a este punto).
+## Meta-operadores, como su nombre lo sugiere, son operadores *compuestos*.
+## Básicamente, ellos son operadores que se aplican a otros operadores.
+
+## * El meta-operador reduce (reducir)
+## Es un meta-operador prefijo que toman una función binaria y
+## una o varias listas. Sino se pasa ningún argumento,
+## returna un "valor por defecto" para este operador
+## (un valor sin significado) o `Any` si no hay ningún valor.
+##
+## De lo contrario, remueve un elemento de la(s) lista(s) uno a uno, y
+## aplica la función binaria al último resultado (o al primer elemento de
+## la lista y el elemento que ha sido removido).
+##
+## Para sumar una lista, podrías usar el meta-operador "reduce" con `+`,
+## i.e.:
+say [+] 1, 2, 3; #=> 6
+## es equivalente a `(1+2)+3`
+
+say [*] 1..5; #=> 120
+## es equivalente a `((((1*2)*3)*4)*5)`.
+
+## Puedes reducir con cualquier operador, no solo con operadores matemáticos.
+## Por ejemplo, podrías reducir con `//` para conseguir
+## el primer elemento definido de una lista:
+say [//] Nil, Any, False, 1, 5; #=> False
+ # (Falsey, pero definido)
+
+## Ejemplos con valores por defecto:
+say [*] (); #=> 1
+say [+] (); #=> 0
+ # valores sin significado, dado que N*1=N y N+0=N.
+say [//]; #=> (Any)
+ # No hay valor por defecto para `//`.
+## También puedes invocarlo con una función de tu creación usando
+## los dobles corchetes:
+sub add($a, $b) { $a + $b }
+say [[&add]] 1, 2, 3; #=> 6
+
+## * El meta-operador zip
+## Este es un meta-operador infijo que también puede ser usado como un
+## operador "normal". Toma una función binaria opcional (por defecto, solo
+## crear un par), y remueve un valor de cada array e invoca su función
+## binaria hasta que no tenga más elementos disponibles. Al final, returna
+## un array con todos estos nuevos elementos.
+(1, 2) Z (3, 4); # ((1, 3), (2, 4)), dado que por defecto, la función
+ # crea un array.
+1..3 Z+ 4..6; # (5, 7, 9), usando la función personalizada infix:<+>
+
+## Dado que `Z` tiene asociatividad de lista (ve la lista más arriba),
+## puedes usarlo en más de una lista
+(True, False) Z|| (False, False) Z|| (False, False); # (True, False)
+
+## Y pasa que también puedes usarlo con el meta-operador reduce:
+[Z||] (True, False), (False, False), (False, False); # (True, False)
+
+
+## Y para terminar la lista de operadores:
+
+## * El operador secuencia
+## El operador secuencia es uno de la más poderosas características de
+## Raku: Está compuesto, en la izquierda, de la lista que quieres que
+## Raku use para deducir (y podría incluir una clausura), y en la derecha,
+## un valor o el predicado que dice cuando parar (o Whatever para una
+## lista infinita perezosa).
+my @list = 1, 2, 3 ... 10; # deducción básica
+#my @list = 1, 3, 6 ... 10; # esto muere porque Raku no puede deducir el final
+my @list = 1, 2, 3 ...^ 10; # como con rangos, puedes excluir el último elemento
+ # (la iteración cuando el predicado iguala).
+my @list = 1, 3, 9 ... * > 30; # puedes usar un predicado
+ # (con la Whatever Star, aquí).
+my @list = 1, 3, 9 ... { $_ > 30 }; # (equivalente a lo de arriba)
+
+my @fib = 1, 1, *+* ... *; # lista infinita perezosa de la serie fibonacci,
+ # computada usando una clausura!
+my @fib = 1, 1, -> $a, $b { $a + $b } ... *; # (equivalene a lo de arriba)
+my @fib = 1, 1, { $^a + $^b } ... *; #(... también equivalene a lo de arriba)
+## $a and $b siempre tomarán el valor anterior, queriendo decir que
+## ellos comenzarán con $a = 1 y $b = 1 (valores que hemos asignado
+## de antemano). Por lo tanto, $a = 1 y $b = 2 (resultado del anterior $a+$b),
+## etc.
+
+say @fib[^10]; #=> 1 1 2 3 5 8 13 21 34 55
+ # (usandi un rango como el índice)
+## Nota: Los elementos de un rango, una vez cosificados, no son re-calculados.
+## Esta es la razón por la cual `@primes[^100]` tomará más tiempo la primera
+## vez que se imprime. Después de esto, será hará en un instante.
+```
+
+## Expresiones Regulares
+
+```perl6
+## Estoy seguro que has estado esperando por esta parte. Bien, ahora que
+## sabes algo acerca de Raku, podemos comenzar. Primeramente, tendrás
+## que olvidarte acerca de "PCRE regexps" (perl-compatible regexps)
+## (expresiones regulares compatible de perl).
+##
+## IMPORTANTE: No salte esto porque ya sabes acerca de PCRE. Son totalmente
+## distintos. Algunas cosas son las mismas (como `?`, `+`, y `*`) pero
+## algunas veces la semántica cambia (`|`). Asegúrate de leer esto
+## cuidadosamente porque podrías trospezarte sino lo haces.
+##
+## Raku tiene muchas características relacionadas con RegExps. Después de
+## todo, Rakudo se parsea a si mismo. Primero vamos a estudiar la sintaxis
+## por si misma, después hablaremos acerca de gramáticas (parecido a PEG),
+## las diferencias entre los declaradores `token`, `regex`, y `rule` y
+## mucho más.
+## Nota aparte: Todavía tienes acceso a los regexes PCRE usando el
+## mofificador `:P5` (Sin embargo, no lo discutiremos en este tutorial).
+##
+## En esencia, Raku implementa PEG ("Parsing Expression Grammars")
+## ("Parseado de Expresiones de Gramáticas") nativamente. El orden jerárquico
+## para los parseos ambiguos es determinado por un examen multi-nivel de
+## desempate:
+## - La coincidencia de token más larga. `foo\s+` le gana a `foo`
+## (por 2 o más posiciones)
+## - El prefijo literal más largo. `food\w*` le gana a `foo\w*` (por 1)
+## - Declaración desde la gramática más derivada a la menos derivada
+## (las gramáticas son actualmente clases)
+## - La declaración más temprana gana
+say so 'a' ~~ /a/; #=> True
+say so 'a' ~~ / a /; #=> True # ¡Más legible con los espacios!
+
+## Nota al lector (del traductor):
+## Como pudiste haber notado, he decidido traducir "match" y sus diferentes
+## formas verbales como "coincidir" y sus diferentes formas. Cuando digo que
+## un regex (o regexp) coincide con cierto texto, me refiero a que el regex
+## describe cierto patrón dentro del texto. Por ejemplo, el regex "cencia"
+## coincide con el texto "reminiscencia", lo que significa que dentro del
+## texto aparece ese patrón de caracteres (una `c`, seguida de una `e`,
+## (seguida de una `n`, etc.)
+
+## En todos nuestros ejemplos, vamos a usar el operador de
+## "coincidencia inteligente" contra una expresión regular ("regexp" or
+## "regex" de aquí en adelante). Estamos convirtiendo el resultado usando `so`,
+## pero en efecto, está devolviendo un objeto Match. Ellos saben como responder
+## a la indexación de lista, indexación de hash, y devolver la cadena de
+## texto coincidente.
+## Los resultados de la coincidencia están disponible como `$/` (en
+## ámbito implícito lexical). También puedes usar las variables de captura
+## las cuales comienzan con 0:
+## `$0`, `$1', `$2`...
+##
+## Nota que `~~` no hace un chequeo de inicio/final (es decir,
+## el regexp puede coincider con solo un carácter de la cadena de texto).
+## Explicaremos luego como hacerlo.
+
+## En Raku, puedes tener un carácter alfanumérico como un literal,
+## todo lo demás debe escaparse usando una barra invertida o comillas.
+say so 'a|b' ~~ / a '|' b /; # `True`. No sería lo mismo si no se escapara `|`
+say so 'a|b' ~~ / a \| b /; # `True`. Otra forma de escaparlo
+
+## El espacio en blanco actualmente no se significa nada en un regexp,
+## a menos que uses el adverbio `:s` (`:sigspace`, espacio significante).
+say so 'a b c' ~~ / a b c /; #=> `False`. Espacio no significa nada aquí.
+say so 'a b c' ~~ /:s a b c /; #=> `True`. Agregamos el modificador `:s` aquí.
+## Si usamos solo un espacio entre cadenas de texto en un regexp, Raku
+## nos advertirá:
+say so 'a b c' ~~ / a b c /; #=> 'False' # Espacio no significa nada aquí.
+## Por favor usa comillas o el modificador :s (:sigspace) para suprimir
+## esta advertencia, omitir el espacio, o cambiar el espaciamiento. Para
+## arreglar esto y hacer los espacios menos ambiguos, usa por lo menos
+## dos espacios entre las cadenas de texto o usa el adverbio `:s`.
+
+## Como vimos anteriormente, podemos incorporar `:s` dentro de los
+## delimitadores de barras. También podemos ponerlos fuera de ellos si
+## especificamos `m` for `match` (coincidencia):
+say so 'a b c' ~~ m:s/a b c/; #=> `True`
+## Al usar `m` para especificar 'match', podemos también otros delimitadore:
+say so 'abc' ~~ m{a b c}; #=> `True`
+say so 'abc' ~~ m[a b c]; #=> `True`
+
+## Usa el adverbio :i para especificar que no debería haber distinción entre
+## minúsculas y mayúsculas:
+say so 'ABC' ~~ m:i{a b c}; #=> `True`
+
+## Sin embargo, es importante para como los modificadores son aplicados
+## (lo cual verás más abajo)...
+
+## Cuantificando - `?`, `+`, `*` y `**`.
+## - `?` - 0 o 1
+so 'ac' ~~ / a b c /; # `False`
+so 'ac' ~~ / a b? c /; # `True`, la "b" coincidió (apareció) 0 veces.
+so 'abc' ~~ / a b? c /; # `True`, la "b" coincidió 1 vez.
+
+## ... Como debes saber, espacio en blancos son importante porque
+## determinan en que parte del regexp es el objetivo del modificador:
+so 'def' ~~ / a b c? /; # `False`. Solamente la `c` es opcional
+so 'def' ~~ / a b? c /; # `False`. Espacio en blanco no es significante
+so 'def' ~~ / 'abc'? /; # `True`. El grupo "abc"completo es opcional.
+
+## Aquí (y más abajo) el cuantificador aplica solamente a la `b`
+
+## - `+` - 1 o más
+so 'ac' ~~ / a b+ c /; # `False`; `+` quiere por lo menos una coincidencia
+so 'abc' ~~ / a b+ c /; # `True`; una es suficiente
+so 'abbbbc' ~~ / a b+ c /; # `True`, coincidió con 4 "b"s
+
+## - `*` - 0 o más
+so 'ac' ~~ / a b* c /; # `True`, todos son opcionales.
+so 'abc' ~~ / a b* c /; # `True`
+so 'abbbbc' ~~ / a b* c /; # `True`
+so 'aec' ~~ / a b* c /; # `False`. "b"(s) son opcionales, no reemplazables.
+
+## - `**` - Cuantificador (sin límites)
+## Si entrecierras los ojos lo suficiente, pueder ser que entiendas
+## por qué la exponenciación es usada para la cantidad.
+so 'abc' ~~ / a b**1 c /; # `True` (exactamente una vez)
+so 'abc' ~~ / a b**1..3 c /; # `True` (entre una y tres veces)
+so 'abbbc' ~~ / a b**1..3 c /; # `True`
+so 'abbbbbbc' ~~ / a b**1..3 c /; # `False` (demasiado)
+so 'abbbbbbc' ~~ / a b**3..* c /; # `True` (rangos infinitos no son un problema)
+
+## - `<[]>` - Clases de carácteres
+## Las clases de carácteres son equivalentes a las clases `[]` de PCRE,
+## pero usan una sintaxis de Raku:
+say 'fooa' ~~ / f <[ o a ]>+ /; #=> 'fooa'
+
+## Puedes usar rangos:
+say 'aeiou' ~~ / a <[ e..w ]> /; #=> 'ae'
+
+## Al igual que regexes normales, si quieres usar un carácter especial,
+## escápalo (el último está escapando un espacio)
+say 'he-he !' ~~ / 'he-' <[ a..z \! \ ]> + /; #=> 'he-he !'
+
+## Obtendrás una advertencia si pones nombres duplicados
+## (lo cual tiene el efecto de capturar la frase escrita)
+'he he' ~~ / <[ h e ' ' ]> /; # Advierte "Repeated characters found in characters
+ # class"
+
+## También puedes negarlos... (equivalenta a `[^]` en PCRE)
+so 'foo' ~~ / <-[ f o ]> + /; # False
+
+## ... y componerlos:
+so 'foo' ~~ / <[ a..z ] - [ f o ]> + /; # False (cualquier letra excepto f y o)
+so 'foo' ~~ / <-[ a..z ] + [ f o ]> + /; # True (no letra excepto f and o)
+so 'foo!' ~~ / <-[ a..z ] + [ f o ]> + /; # True (el signo + no reemplaza la
+ # parte de la izquierda)
+```
+
+### Grupos y Capturas
+
+```perl6
+## Grupo: Puedes agrupar partes de tu regexp con `[]`.
+## Estos grupos *no son* capturados (como con `(?:)` en PCRE).
+so 'abc' ~~ / a [ b ] c /; # `True`. El agrupamiento no hace casi nada
+so 'foo012012bar' ~~ / foo [ '01' <[0..9]> ] + bar /;
+## La línea anterior returna `True`.
+## Coincidimos (o encotramos el patrón) "012" una o más de una vez (
+## (el signo `+` fue aplicado al grupo).
+## Pero esto no va demasiado lejos, porque no podemos actualmente obtener
+## devuelta el patrón que coincidió.
+
+## Captura: Podemos actualmente *capturar* los resultados del regexp,
+## usando paréntesis.
+so 'fooABCABCbar' ~~ / foo ( 'A' <[A..Z]> 'C' ) + bar /; # `True`. (usando `so`
+ # aquí, `$/` más abajo)
+
+## Ok. Comenzando con las explicaciones de grupos. Como dijimos,
+### nuestra objeto `Match` está disponible en la variable `$/`:
+say $/; # Imprimirá algo extraño (explicaremos luego) o
+ # "Nil" si nada coincidió
+
+## Como dijimos anteriormente, un objeto Match tiene indexación de array:
+say $/[0]; #=> 「ABC」 「ABC」
+ # Estos corchetes extranos son los objetos `Match`.
+ # Aquí, tenemos un array de ellos.
+say $0; # Lo mismo que lo anterior.
+
+## Nuestra captura es `$0` porque es la primera y única captura en el
+## regexp. Podrías estarte preguntando porque un array y la respuesta es
+## simple: Algunas capturas (indezadas usando `$0`, `$/[0]` o una nombrada)
+## será un array si y solo si puedes tener más de un elemento.
+## (Así que, con `*`, `+` y `**` (cualquiera los operandos), pero no con `?`).
+## Usemos algunos ejemplos para ver como funciona:
+
+## Nota: Pusimos A B C entre comillas para demostrar que el espacio en blanco
+## entre ellos no es significante. Si queremos que el espacio en blanco
+## *sea* significante, podemos utilizar el modificador `:sigspace`.
+so 'fooABCbar' ~~ / foo ( "A" "B" "C" )? bar /; # `True`
+say $/[0]; #=> 「ABC」
+say $0.WHAT; #=> (Match)
+ # Puede haber más de uno, por lo tanto es solo un solo objeto match.
+so 'foobar' ~~ / foo ( "A" "B" "C" )? bar /; #=> True
+say $0.WHAT; #=> (Any)
+ # Esta captura no coincidió, por lo tanto está vacía
+so 'foobar' ~~ / foo ( "A" "B" "C" ) ** 0..1 bar /; # `True`
+say $0.WHAT; #=> (Array)
+ # Un cuantificador específico siempre capturará un Array,
+ # puede ser un rango o un valor específico (hasta 1).
+
+## Las capturas son indezadas por anidación. Esto quiere decir que un grupo
+## dentro de un grup estará anidado dentro de su grupo padre: `$/[0][0]`,
+## para este código:
+'hello-~-world' ~~ / ( 'hello' ( <[ \- \~ ]> + ) ) 'world' /;
+say $/[0].Str; #=> hello~
+say $/[0][0].Str; #=> ~
+
+## Esto se origina de un hecho bien simple: `$/` no contiene cadenas de
+## texto, números enteros o arrays sino que solo contiene objetos Match.
+## Estos objetos contienen los métodos `.list`, `.hash` y `.Str`. (Pero
+## también puedes usar `match<llave>` para accesar un hash y `match[indice]`
+## para accesar un array.
+say $/[0].list.perl; #=> (Match.new(...),).list
+ # Podemos ver que es una lista de objetos Match.
+ # Estos contienen un montón de información: dónde la
+ # coincidencia comenzó o terminó, el "ast"
+ # (chequea las acciones más abajo), etc.
+ # Verás capturas nombradas más abajo con las gramáticas.
+
+## Alternativas - el `or` de regexes
+## Advertencia: Es diferente a los regexes de PCRE.
+so 'abc' ~~ / a [ b | y ] c /; # `True`. o "b" o "y".
+so 'ayc' ~~ / a [ b | y ] c /; # `True`. Obviamente suficiente...
+
+## La diferencia entre este `|` y el otro al que estás acustombrado es LTM.
+## LTM significa "Longest Token Matching", traducido libremente como
+## "Coincidencia de Token Más Larga". Esto significa que el motor ("engine")
+## siempre intentará coindidir tanto como sea posible en la cadena de texto.
+## Básicamente, intentará el patrón más largo que concuerde con el regexp.
+'foo' ~~ / fo | foo /; # `foo` porque es más largo.
+## Para decidir cual parte es la "más larga", primero separa el regex en
+## dos partes:
+## El "prefijo declarativo" (la parte que puede ser analizada estáticamente)
+## y las partes procedimentales.
+## Los prefijos declarativos incluyen alternaciones (`|`), conjunciones (`&`),
+## invocaciones de sub-reglas (no han sido introducidos todavía), clases de
+## caracteres y cuantificadores.
+## Las partes procidimentales incluyen todo lo demás: referencias a elementos
+## anteriores, aserciones de código, y otras cosas que tradicionalmente no pueden
+## ser representadas por regexes normales.
+##
+## Entonces, todas las alternativas se intentan al mismo tiempo, y la
+## más larga gana.
+## Ejemplos:
+## DECLARATIVO | PROCEDIMENTAL
+/ 'foo' \d+ [ <subrule1> || <subrule2> ] /;
+## DECLARATIVO (grupos anidados no son un problema)
+/ \s* [ \w & b ] [ c | d ] /;
+## Sin embargo, las clausuras y la recursión (de regexes nombrados)
+## son procedimentales.
+## ... Hay más reglas complicadas, como la especifidad (los literales ganan
+## son las clases de caracteres)
++
+## Nota: la primera coincidencia `or` todavía existen, pero ahora se
+## deletrea `||`
+'foo' ~~ / fo || foo /; # `fo` ahora.
+```
+
+## Extra: la subrutina MAIN
+
+```perl6
+## La subrutina `MAIN` se invoca cuando tu ejecuta un archivo de Raku
+## directamente. Es realmente poderosa porque Raku actualmente parsea
+## los argumentos y los pasas a la subrutina. También maneja argumentos
+## nombrados (`--foo`) y hasta autogenerará un `--help`.
+sub MAIN($nombre) { say "¡Hola, $nombre!" }
+## Esto produce:
+## $ raku cli.pl
+## Uso:
+## t.pl <nombre>
+
+## Y dado que una subrutina regular en Raku, puedes tener múltiples
+## despachos:
+## (usando un "Bool" por un argumento nombrado para que podamos hacer
+## `--replace` a cambio de `--replace=1`)
+subset File of Str where *.IO.d; # convierte a un objeto IO para chequear si
+ # un archivo existe
+
+multi MAIN('add', $key, $value, Bool :$replace) { ... }
+multi MAIN('remove', $key) { ... }
+multi MAIN('import', File, Str :$as) { ... } # omitiendo parámetros nombrados
+## Esto produce:
+## $ raku cli.pl
+## Uso:
+## t.pl [--replace] add <key> <value>
+## t.pl remove <key>
+## t.pl [--as=<Str>] import (File)
+## Como puedes ver, esto es *realmente* poderoso.
+## Fue tan lejos como para mostrar las constantes en líneas.
+## (el tipo solo se muestra cuando el argumento `$`/ es nombrado)
+```
+
+## APÉNDICE A:
+### Lista de cosas
+
+```perl6
+## Consideramos que por ahora ya sabes lo básico de Raku.
+## Esta sección es solo para listar algunas operaciones comunes
+## las cuales no están en la "parte principal" del tutorial.
+
+## Operadores
+
+## * Comparación para ordenar
+## Ellos returnan un valor de los enum `Order`: `Less`, `Same` y `More`
+## (los cuales representan los números -1, 0 o +1).
+1 <=> 4; # comparación de orden para caracteres numéricos
+'a' leg 'b'; # comparación de orden para cadenas de texto
+$obj eqv $obj2; # comparación de orden usando la semántica eqv
+
+## * Ordenación genérica
+3 before 4; # True
+'b' after 'a'; # True
+
+## * Operador (por defecto) de circuito corto
+## Al igual que `or` y `||`, pero devuelve el primer valor *defined*
+## (definido):
+say Any // Nil // 0 // 5; #=> 0
+
+## * Circuito corto exclusivo or (XOR)
+## Devuelve `True` si uno (y solo uno) de sus argumentos es verdadero:
+say True ^^ False; #=> True
+
+## * Flip Flop
+## Los operadores flip flop (`ff` y `fff`, equivalente a `..`/`...` en P5)
+## son operadores que toman dos predicados para evalualarlos:
+## Ellos son `False` hasta que su lado izquierdo devuelve `True`, entonces
+## son `True` hasta que su lado derecho devuelve `True`.
+## Como los rangos, tu puedes excluir la iteración cuando se convierte en
+## `True`/`False` usando `^` en cualquier lado.
+## Comencemos con un ejemplo:
+for <well met young hero we shall meet later> {
+ # por defecto, `ff`/`fff` hace coincidencia inteligente (`~~`) contra `$_`:
+ if 'met' ^ff 'meet' { # no entrará el bucle if por "met"
+ # (se explica más abajo).
+ .say
+ }
+
+ if rand == 0 ff rand == 1 { # compara variables más que `$_`
+ say "Esto ... probablemente nunca se ejecutará ...";
+ }
+}
+## Esto imprimirá "young hero we shall meet" (exluyendo "met"):
+## el flip-flop comenzará devolviendo `True` cuando primero encuentra "met"
+## (pero no returnará `False` por "met" dabido al `^` al frente de `ff`),
+## hasta que ve "meet", lo cual es cuando comenzará devolviendo `False`.
+
+## La diferencia entre `ff` (al estilo de awk) y `fff` (al estilo de sed)
+## es que `ff` probará su lado derecho cuando su lado izquierdo cambia
+## a `True`, y puede returnar a `False` inmediamente (*excepto* que será
+## `True` por la iteración con la cual coincidió). Por lo contrario,
+## `fff` esperará por la próxima iteración para intentar su lado
+## derecho, una vez que su lado izquierdo ha cambiado:
+.say if 'B' ff 'B' for <A B C B A>; #=> B B
+ # porque el lado derecho se puso a prueba
+ # directamente (y returnó `True`).
+ # Las "B"s se imprimen dadó que coincidió
+ # en ese momento (returnó a `False`
+ # inmediatamente).
+.say if 'B' fff 'B' for <A B C B A>; #=> B C B
+ # El lado derecho no se puso a prueba
+ # hasta que `$_` se convirtió en "C"
+ # (y por lo tanto no coincidió
+ # inmediamente).
+
+## Un flip-flop puede cambiar estado cuantas veces se necesite:
+for <test start print it stop not printing start print again stop not anymore> {
+ .say if $_ eq 'start' ^ff^ $_ eq 'stop'; # excluye a "start" y "stop",
+ #=> "print it print again"
+}
+
+## También podrías usar una Whatever Star, lo cual es equivalente
+## a `True` para el lado izquierdo o `False` para el lado derecho:
+for (1, 3, 60, 3, 40, 60) { # Nota: los paréntesis son superfluos aquí
+ # (algunas veces se les llaman "paréntesis superticiosos")
+ .say if $_ > 50 ff *; # Una vez el flip-flop alcanza un número mayor que 50,
+ # no returnará jamás a `False`
+ #=> 60 3 40 60
+}
+
+## También puedes usar esta propiedad para crear un `If`
+## que no pasará la primera vez:
+for <a b c> {
+ .say if * ^ff *; # el flip-flop es `True` y nunca returna a `False`,
+ # pero el `^` lo hace *que no se ejecute* en la
+ # primera iteración
+ #=> b c
+}
+
+## - `===` es la identidad de valor y usa `.WHICH`
+## en los objetos para compararlos.
+## - `=:=` es la identidad de contenedor y usa `VAR()`
+## en los objetos para compararlos.
+
+```
+Si quieres ir más allá de lo que se muestra aquí, puedes:
+
+ - Leer la [documentación de Raku](https://docs.raku.org/). Esto es un recurso
+ grandioso acerca de Raku. Si estás buscando por algo en particular, usa la
+ barra de búsquedas. Esto te dará un menú de todas las páginas concernientes
+ a tu término de búsqueda (¡Es mucho mejor que usar Google para encontrar
+ documentos acerca de Raku!)
+ - Leer el [Raku Advent Calendar](https://rakuadventcalendar.wordpress.com/). Este es
+ un gran recurso de fragmentos de código de Raku y explicaciones. Si la documentación
+ no describe algo lo suficientemente bien, puedes encontrar información más detallada
+ aquí. Esta información puede ser un poquito más antigua pero hay muchos ejemplos y
+ explicaciones. Las publicaciones fueron suspendidas al final del 2015 cuando
+ el lenguaje fue declarado estable y Raku.c fue lanzado.
+ - Unirte a `#raku` en `irc.freenode.net`. Las personas aquí son siempre serviciales.
+ - Chequear la [fuente de las funciones y clases de Raku
+ ](https://github.com/rakudo/rakudo/tree/master/src/core.c). Rakudo está principalmente
+ escrito en Raku (con mucho de NQP, "Not Quite Perl" ("No Perl Todavía"), un
+ subconjunto de Raku que es más fácil de implementar y optimizar).
+ - Leer [documentos acerca del diseño del lenguaje](http://design.raku.org).
+ Estos explican P6 desde la perspectiva de un implementador, lo cual es bastante
+ interesante.
diff --git a/es-es/ruby-es.html.markdown b/es-es/ruby-es.html.markdown
index e3e43c18..63a47e89 100644
--- a/es-es/ruby-es.html.markdown
+++ b/es-es/ruby-es.html.markdown
@@ -139,7 +139,7 @@ status == :pendiente #=> true
status == 'pendiente' #=> false
-status == :aprovado #=> false
+status == :aprobado #=> false
# Arreglos
diff --git a/es-es/sass-es.html.markdown b/es-es/sass-es.html.markdown
index 89e56ba5..d130fe8c 100644
--- a/es-es/sass-es.html.markdown
+++ b/es-es/sass-es.html.markdown
@@ -1,6 +1,6 @@
---
language: sass
-filename: learnsass.scss
+filename: learnsass-es.scss
contributors:
- ["Laura Kyle", "https://github.com/LauraNK"]
- ["Sean Corrales", "https://github.com/droidenator"]
diff --git a/es-es/scala-es.html.markdown b/es-es/scala-es.html.markdown
new file mode 100644
index 00000000..2dcb9e7f
--- /dev/null
+++ b/es-es/scala-es.html.markdown
@@ -0,0 +1,741 @@
+---
+language: Scala
+filename: learnscala-es.scala
+contributors:
+ - ["George Petrov", "http://github.com/petrovg"]
+ - ["Dominic Bou-Samra", "http://dbousamra.github.com"]
+ - ["Geoff Liu", "http://geoffliu.me"]
+ - ["Ha-Duong Nguyen", "http://reference-error.org"]
+translators:
+ - ["Pablo Arranz Ropero", "http://arranzropablo.com"]
+lang: es-es
+---
+
+Scala - El lenguaje escalable
+
+```scala
+
+/////////////////////////////////////////////////
+// 0. Básicos
+/////////////////////////////////////////////////
+/*
+ Configurar Scala:
+
+ 1) Descarga Scala - http://www.scala-lang.org/downloads
+ 2) Unzip/untar a tu carpeta elegida y pon la subcarpeta bin en tu variable de entorno `PATH`
+*/
+
+/*
+ Prueba REPL
+
+ Scala tiene una herramienta llamada REPL (Read-Eval-Print Loop, en español: Bucle de lectura-evaluación-impresión) que es analogo a interpretes de la linea de comandos en muchos otros lenguajes.
+ Puedes escribir cualquier expresión en Scala y el resultado será evaluado e impreso.
+
+ REPL es una herramienta muy práctica para testear y verificar código.
+ Puedes usarla mientras lees este tutorial para explorar conceptos por tu cuenta.
+*/
+
+// Inicia Scala REPL ejecutando `scala` en tu terminal. Deberías ver:
+$ scala
+scala>
+
+// Por defecto cada expresión que escribes es guardada como un nuevo valor numerado:
+scala> 2 + 2
+res0: Int = 4
+
+// Los valores por defecto pueden ser reusados. Fíjate en el tipo del valor mostrado en el resultado...
+scala> res0 + 2
+res1: Int = 6
+
+// Scala es un lenguaje fuertemente tipado. Puedes usar REPL para comprobar el tipo sin evaluar una expresión.
+scala> :type (true, 2.0)
+(Boolean, Double)
+
+// Las sesiones REPL pueden ser guardadas
+scala> :save /sites/repl-test.scala
+
+// Se pueden cargar archivos en REPL
+scala> :load /sites/repl-test.scala
+Loading /sites/repl-test.scala...
+res2: Int = 4
+res3: Int = 6
+
+// Puedes buscar en tu historial reciente
+scala> :h?
+1 2 + 2
+2 res0 + 2
+3 :save /sites/repl-test.scala
+4 :load /sites/repl-test.scala
+5 :h?
+
+// Ahora que sabes como jugar, aprendamos un poco de Scala...
+
+/////////////////////////////////////////////////
+// 1. Básicos
+/////////////////////////////////////////////////
+
+// Los comentarios de una linea comienzan con dos barras inclinadas
+
+/*
+ Los comentarios de varias lineas, como ya has visto arriba, se hacen de esta manera.
+*/
+
+// Así imprimimos forzando una nueva linea en la siguiente impresión
+println("Hola mundo!")
+println(10)
+// Hola mundo!
+// 10
+
+// Así imprimimos sin forzar una nueva linea en la siguiente impresión
+print("Hola mundo")
+print(10)
+// Hola mundo10
+
+// Para declarar valores usamos var o val.
+// Valores decalrados con val son inmutables, mientras que los declarados con var son mutables.
+// La inmutabilidad es algo bueno.
+val x = 10 // x es 10
+x = 20 // error: reassignment to val
+var y = 10
+y = 20 // y es 20
+
+/*
+ Scala es un lenguaje tipado estáticamente, aunque se puede ver en las expresiones anteriores que no hemos especificado un tipo.
+ Esto es debido a una funcionalidad del lenguaje llamada inferencia. En la mayoría de los casos, el compilador de Scala puede adivinar cual es el tipo de una variable, así que no hace falta escribirlo siempre.
+ Podemos declarar explicitamente el tipo de una variable de la siguiente manera:
+*/
+val z: Int = 10
+val a: Double = 1.0
+
+// Observa la conversión automática de Int a Double, el resultado será 10.0, no 10
+val b: Double = 10
+
+// Valores Booleanos
+true
+false
+
+// Operaciones Booleanas
+!true // false
+!false // true
+true == false // false
+10 > 5 // true
+
+// Las operaciones matemáticas se realizan como siempre
+1 + 1 // 2
+2 - 1 // 1
+5 * 3 // 15
+6 / 2 // 3
+6 / 4 // 1
+6.0 / 4 // 1.5
+6 / 4.0 // 1.5
+
+
+// Evaluar una expresión en REPL te da el tipo y valor del resultado
+
+1 + 7
+
+/* La linea superior tienen como resultado:
+
+ scala> 1 + 7
+ res29: Int = 8
+
+ Esto quiere decir que el resultado de evaluar 1 + 7 es un objeto de tipo Int con valor 8
+
+ Observa que "res29" es un nombre de variable secuencialmente generado para almacenar los resultados de las expresiones escritas, la salida que observes puede diferir en este sentido.
+*/
+
+"Las cadenas en Scala están rodeadas por comillas dobles"
+'a' // Un caracter en Scala
+// 'Las cadenas con comillas simples no existen' <= Esto causa un error
+
+// Las cadenas tienen los los típicos metodos de Java definidos
+"hello world".length
+"hello world".substring(2, 6)
+"hello world".replace("C", "3")
+
+// También tienen algunos métodos extra de Scala. Ver: scala.collection.immutable.StringOps
+"hello world".take(5)
+"hello world".drop(5)
+
+// Interpolación de cadenas: Observa el prefijo "s"
+val n = 45
+s"Tengo $n manzanas" // => "Tengo 45 manzanas"
+
+// Es posible colocar expresiones dentro de cadenas interpoladas
+val a = Array(11, 9, 6)
+s"Mi segunda hija tiene ${a(0) - a(2)} años." // => "Mi segunda hija tiene 5 años."
+s"Hemos doblado la cantidad de ${n / 2.0} manzanas." // => "Hemos doblado la cantidad de 22.5 manzanas."
+s"Potencia de 2: ${math.pow(2, 2)}" // => "Potencia de 2: 4"
+
+// Podemos formatear cadenas interpoladas con el prefijo "f"
+f"Potencia de 5: ${math.pow(5, 2)}%1.0f" // "Potencia de 5: 25"
+f"Raiz cuadrada de 122: ${math.sqrt(122)}%1.4f" // "Raiz cuadrada de 122: 11.0454"
+
+// Las cadenas puras ignoran caracteres especiales.
+raw"Nueva linea: \n. Retorno: \r." // => "Nueva linea: \n. Retorno: \r."
+
+// Algunos caracteres necesitn ser escapados, por ejemplo unas comillas dobles dentro de una cadena:
+"Se quedaron fuera de \"Rose and Crown\"" // => "Se quedaron fuera de "Rose and Crown""
+
+// Las triples comillas dobles dejan que las cadenas se expandan por multiples filas y contengan comillas dobles o simples
+val html = """<form id="daform">
+ <p>Press belo', Joe</p>
+ <input type="submit">
+ </form>"""
+
+
+/////////////////////////////////////////////////
+// 2. Funciones
+/////////////////////////////////////////////////
+
+// Las funciones se definen de la siguiente manera:
+//
+// def nombreFuncion(argumentos...): TipoRetorno = { cuerpo... }
+//
+// Si estás acostumbrado a lenguajes más tradicionales, observa la omisión de la palabra return.
+// En Scala, la última expresión en el bloque de función es el valor de retorno.
+def sumaDeCuadrados(x: Int, y: Int): Int = {
+ val x2 = x * x
+ val y2 = y * y
+ x2 + y2
+}
+
+// Los { } pueden omitirse si el cuerpo de la función es una única expresión:
+def sumaDeCuadradosCorta(x: Int, y: Int): Int = x * x + y * y
+
+// La sintaxis para llamar funciones es familiar:
+sumaDeCuadrados(3, 4) // => 25
+
+// Puedes usar los nombres de los parámetros para llamarlos en orden diferente
+def restar(x: Int, y: Int): Int = x - y
+
+restar(10, 3) // => 7
+restar(y=10, x=3) // => -7
+
+// En la mayoría de los casos (siendo las funciones recursivas la excepción más notable),
+// el tipo de retorno de la función puede ser omitido, y la misma inferencia de tipos que vimos con las variables
+// funcionará con los valores de retorno de las funciones:
+def sq(x: Int) = x * x // El compilador puede adivinar que el tipo de retorno es Int
+
+// Las funciones pueden tener parametros por defecto:
+def sumarConDefecto(x: Int, y: Int = 5) = x + y
+sumarConDefecto(1, 2) // => 3
+sumarConDefecto(1) // => 6
+
+
+// Las funciones anónimas se escriben así:
+(x: Int) => x * x
+
+// Al contrario que los defs, incluso el tipo de entrada de las funciones anónimas puede ser omitido si
+// el contexto lo deja claro. Observa el tipo "Int => Int" que significa que es una función
+// que recibe Int y retorna Int.
+val sq: Int => Int = x => x * x
+
+// Las funciones anónimas pueden ser llamadas como las demás:
+sq(10) // => 100
+
+// Si cada argumento en tu función anónima es usado solo una vez,
+// Scala te da una manera incluso más corta de definirlos.
+// Estas funciones anónimas son extremadamente comunes,
+// como será obvio en la sección de estructuras de datos.
+val sumarUno: Int => Int = _ + 1
+val sumaRara: (Int, Int) => Int = (_ * 2 + _ * 3)
+
+sumarUno(5) // => 6
+sumaRara(2, 4) // => 16
+
+
+// La palabra return existe en Scala, pero solo retorna desde la función más interna que la rodea.
+// ADVERTENCIA: Usar return en Scala puede inducir a errores y debe ser evitado
+// No tiene efecto en funciones anónimas. Por ejemplo:
+def foo(x: Int): Int = {
+ val funcAnon: Int => Int = { z =>
+ if (z > 5)
+ return z // Esta línea hace que z sea el valor de retorno de foo!
+ else
+ z + 2 // Esta línea es el valor de retorno de funcAnon
+ }
+ anonFunc(x) // Esta línea es el valor de retorno de foo
+}
+
+
+/////////////////////////////////////////////////
+// 3. Control del flujo
+/////////////////////////////////////////////////
+
+1 to 5
+val r = 1 to 5
+r.foreach(println)
+
+r foreach println
+// Nota: Scala es un lenguaje muy permisivo cuando se trata de puntos y parentesis - estudia las
+// reglas separadamente. Esto ayuda a escribir DSLs y APIs que se lean en lenguaje natural.
+
+// Por qué `println` no necesita parámetros aquí?
+// Presta atención a las funciones de primera clase en la sección de Programación Funcional más abajo!
+(5 to 1 by -1) foreach (println)
+
+// Un bucle while
+var i = 0
+while (i < 10) { println("i " + i); i += 1 }
+
+while (i < 10) { println("i " + i); i += 1 } // Si, de nuevo. Qué ocurrió? Por qué?
+
+i // Muestra el valor de i. Observa que while es un loop en el sentido clásico -
+ // se ejecuta secuencialmente mientras cambia la variable del bucle. while es muy
+ // rápido, pero los combinadores y comprensiones anteriores son más sencillos
+ // de entender y paralelizar
+
+// Un bucle do-while
+i = 0
+do {
+ println("i es aún menor que 10")
+ i += 1
+} while (i < 10)
+
+// La recursion es la manera idiomática de repetir una acción en Scala (como en la mayoría de
+// lenguajes funcionales).
+// Las funciones recursivas necesitan un tipo de retorno explicito, el compilador no puede inferirlo.
+// En Scala tenemos Unit, que es análogo al tipo de retorno `void` en Java
+def enseñaNumerosEnUnRango(a: Int, b: Int): Unit = {
+ print(a)
+ if (a < b)
+ enseñaNumerosEnUnRango(a + 1, b)
+}
+enseñaNumerosEnUnRango(1, 14)
+
+
+// Condicionales
+
+val x = 10
+
+if (x == 1) println("yeah")
+if (x == 10) println("yeah")
+if (x == 11) println("yeah")
+if (x == 11) println("yeah") else println("nay")
+
+println(if (x == 10) "yeah" else "nope")
+val text = if (x == 10) "yeah" else "nope"
+
+
+/////////////////////////////////////////////////
+// 4. Estructuras de datos
+/////////////////////////////////////////////////
+
+val a = Array(1, 2, 3, 5, 8, 13)
+a(0) // Int = 1
+a(3) // Int = 5
+a(21) // Lanza una excepción
+
+val m = Map("fork" -> "tenedor", "spoon" -> "cuchara", "knife" -> "cuchillo")
+m("fork") // java.lang.String = tenedor
+m("spoon") // java.lang.String = cuchara
+m("bottle") // Lanza una excepción
+
+val mapaSeguro = m.withDefaultValue("no lo se")
+mapaSeguro("bottle") // java.lang.String = no lo se
+
+val s = Set(1, 3, 7)
+s(0) // Boolean = false
+s(1) // Boolean = true
+
+/* Hecha un vistazo a la documentación de Map aquí -
+ * http://www.scala-lang.org/api/current/index.html#scala.collection.immutable.Map
+ * y asegúrate de que puedes leerla
+ */
+
+
+// Tuplas
+
+(1, 2)
+
+(4, 3, 2)
+
+(1, 2, "three")
+
+(a, 2, "three")
+
+// Por qué tener esto?
+val dividirEnteros = (x: Int, y: Int) => (x / y, x % y)
+
+// La función dividirEnteros te da el resultado y el resto
+dividirEnteros(10, 3) // (Int, Int) = (3,1)
+
+// Para acceder a los elementos de una tupla, usa _._n donde n es el indice (comenzando por 1)
+// del elemento
+val d = dividirEnteros(10, 3) // (Int, Int) = (3,1)
+
+d._1 // Int = 3
+d._2 // Int = 1
+
+// Alternativamente puedes asignar multiples variables desde una tupla, lo que
+// resulta más conveniente y legible en muchos casos.
+val (div, mod) = dividirEnteros(10, 3)
+
+div // Int = 3
+mod // Int = 1
+
+
+/////////////////////////////////////////////////
+// 5. Programación Orientada a Objetos
+/////////////////////////////////////////////////
+
+/*
+ Nota: Todo lo que hemos hecho hasta ahora en este tutorial han sido
+ simples expresiones (valores, funciones, etc). Estas expresiones son validas
+ para hacer pruebas rapidas en el interprete de la linea de comandos,
+ pero no pueden existir por si solas en un archivo de Scala. Por ejemplo,
+ no puedes tener simplemente "val x = 5" en un archivo Scala. En lugar de eso,
+ las únicas construcciones de alto nivel en Scala son:
+
+ - Objetos
+ - Clases
+ - Case clases
+ - Traits
+
+ Y ahora explicaremos lo que son estas.
+*/
+
+// Las clases son similares a las clases de otros lenguajes. Los argumentos del constructor
+// son declarados despues del nombre de la clase, y la inicialización se hace en el cuerpo de la clase.
+class Perro(r: String) {
+ // Código del constructor aquí
+ var raza: String = r
+
+ // Define un método llamado ladrar, que devuelva un String
+ def ladrar = "Woof, woof!"
+
+ // Los valores y métodos son asumidos como públicos.
+ // Las palabras "protected" y "private" también son válidas.
+ private def dormir(horas: Int) =
+ println(s"Estoy durmiendo $horas horas")
+
+ // Los métodos abstractos son simplemente métodos sin cuerpo.
+ // Si descomentamos la linea de debajo, la clase Perro necesitaría ser abstracta:
+ // abstract class Perro(...) { ... }
+ // def perseguir(algo: String): String
+}
+
+val miperro = new Dog("greyhound")
+println(mydog.raza) // => "greyhound"
+println(mydog.ladrar) // => "Woof, woof!"
+
+
+// La palabra "object" crea un tipo y una instancia singleton de ese tipo.
+// Es común que las clases en Scala tengan un "companion object", de manera que
+// el comportamiento por instancia es controlado por las clases y el comportamiento
+// relacionado a todas las instancias de esa clase es controlado por el objeto
+// La relación es similar a los métodos de las clases con los métodos estáticos
+// en otros lenguajes. Observa que los objetos y clases pueden tener el mismo nombre.
+object Perro {
+ def todasLasRazasConocidas = List("pitbull", "shepherd", "retriever")
+ def crearPerro(raza: String) = new Dog(breed)
+}
+
+
+// Case clases son clases que tienen funcionalidad extra añadida. Una pregunta
+// común para los principiantes en Scala es cuando usar case clases y cuando usar
+// clases. La linea no está bien definida, pero en general, las clases tienden a
+// enfocarse en la encapsulación, polimorfismo y comportamiento. Los valores en
+// estas clases tienden a ser privados, y solo se exponen los métodos.
+// El propósito principal de las case clases es tener datos inmutables.
+// A menudo tienen pocos métodos, y los métodos raramente tienen efectos secundarios.
+case class Persona(nombre: String, telefono: String)
+
+// Para crear instancia nuevas, observa que las case clases no necesitan "new"
+val george = Persona("George", "1234")
+val kate = Persona("Kate", "4567")
+
+// Con las case clases tienes unas pocas ventajas, como el acceso a los campos:
+george.telefono // => "1234"
+
+// Para la igualdad de campos no necesitas sobreescribir el método equals
+Persona("George", "1234") == Persona("Kate", "1236") // => false
+
+// Manera fácil de copiar
+// otroGeorge == Persona("George", "9876")
+val otroGeorge = george.copy(telefono = "9876")
+
+// Y muchas otras. Las case clases también tienen comparación de patrones, que veremos más abajo.
+
+// Traits
+// De manera similar a las interfaces Java, los traits definen un tipo de objeto y métodos.
+// Scala permite la implementación parcial de dichos métodos.
+// No se permiten parámetros de constructor. Los traits pueden heredar de otros traits o
+// clases sin parámetros.
+
+trait Perro {
+ def raza: String
+ def color: String
+ def ladra: Boolean = true
+ def muerde: Boolean
+}
+class SanBernardo extends Perro {
+ val raza = "San Bernardo"
+ val color = "marrón"
+ def muerde = false
+}
+
+scala> b
+res0: SanBernardo = SanBernardo@3e57cd70
+scala> b.raza
+res1: String = San Bernardo
+scala> b.ladra
+res2: Boolean = true
+scala> b.muerde
+res3: Boolean = false
+
+// Un trait tambien puede ser usado mezclado con otros traits.
+// La clase extiende el primer trait, pero la palabra "with"
+// puede añadir traits adicionales.
+
+trait Ladra {
+ def ladra: String = "Guau"
+}
+trait Perro {
+ def raza: String
+ def color: String
+}
+class SanBernardo extends Perro with Ladra {
+ val raza = "San Bernardo"
+ val color = "marrón"
+}
+
+scala> val b = new SanBernardo
+b: SanBernardo = SanBernardo@7b69c6ba
+scala> b.ladra
+res0: String = Guau
+
+
+/////////////////////////////////////////////////
+// 6. Comparación de patrones
+/////////////////////////////////////////////////
+
+// La comparación de patrones es una poderosa función de Scala.
+// Ahora veremos como comparar patrones en una case clase.
+// Nota: A diferencia de otros lenguajes, Scala "cases" no necesitan
+// "break", porque no ejecuta los "case" posteriores.
+
+def comparaPersona(persona: Persona): String = persona match {
+ // Aqui especificas los patrones:
+ case Persona("George", telefono) => "Hemos encontrado a George! Su número es " + telefono
+ case Persona("Kate", telefono) => "Hemos encontrado a Kate! Su número es " + telefono
+ case Persona(nombre, telefono) => "Hemos encontrado alguien : " + nombre + ", teléfono : " + telefono
+}
+
+// Las expresiones regulares también están incorporadas.
+// Creas una expresión regular con el método `r` en una cadena:
+val email = "(.*)@(.*)".r
+
+// La comparación de patrones puede parecerse al bloque switch en la familia de lenguajes de C,
+// pero aquí es mucho más poderosa. En Scala, puedes hacer más comparaciones:
+def comparaTodo(obj: Any): String = obj match {
+ // Puedes comparar valores:
+ case "Hola mundo" => "Tengo la cadena Hola mundo"
+
+ // Puedes comparar tipos:
+ case x: Double => "Tengo un double: " + x
+
+ // Puedes especificar condiciones:
+ case x: Int if x > 10000 => "Tengo un número muy grande!"
+
+ // Puedes comparar case clases como antes:
+ case Persona(nombre, telefono) => s"Tengo la información de contacto de $nombre!"
+
+ // Puedes comparar expresiones regulares:
+ case email(nombre, dominio) => s"Tengo la dirección de correo $nombre@$dominio"
+
+ // Puedes comparar tuplas:
+ case (a: Int, b: Double, c: String) => s"Tengo la tupla: $a, $b, $c"
+
+ // Puedes comparar estructuras:
+ case List(1, b, c) => s"Tengo un alista con tres elementos que empieza con 1: 1, $b, $c"
+
+ // Puedes anidar patrones:
+ case List(List((1, 2, "YAY"))) => "Tengo una lista de listas de tuplas"
+
+ // Comparar cualquier case (default) si todos los anteriores no han coincido
+ case _ => "Tengo un objeto desconocido"
+}
+
+// De hecho puedes comparar un patrón con cualquier objeto con el método "unapply".
+// Esta función es tan poderosa que Scala te deja definir funciones enteras como patrones:
+val funcPatron: Person => String = {
+ case Persona("George", telefono) => s"Teléfono de George: $telefono"
+ case Persona(nombre, telefono) => s"Teléfono de una persona aleatoria: $telefono"
+}
+
+
+/////////////////////////////////////////////////
+// 7. Programación funcional
+/////////////////////////////////////////////////
+
+// Scala permite a los métodos y funciones devolver o
+// recibir como parámetros otras funciones o métodos
+
+val suma10: Int => Int = _ + 10 // Una función que recibe y devuelve un Int
+List(1, 2, 3) map suma10 // List(11, 12, 13) - suma10 es aplicado a cada elemento
+
+// Las funciones anónimas pueden ser usadas en vez de funciones con nombre:
+List(1, 2, 3) map (x => x + 10)
+
+// Y la barra baja puede ser usada si solo hay un argumento en la función anónima.
+// Se usa como la variable.
+List(1, 2, 3) map (_ + 10)
+
+// Si el bloque anónimo Y la función que estás usando usan los dos un argumento,
+// puedes incluso omitir la barra baja.
+List("Dom", "Bob", "Natalia") foreach println
+
+
+// Combinadores
+// Usando s de arriba:
+// val s = Set(1, 3, 7)
+
+s.map(sq)
+
+val sCuadrado = s. map(sq)
+
+sSquared.filter(_ < 10)
+
+sSquared.reduce (_+_)
+
+// La función filter toma un predicado (una función A -> Boolean) y
+// selecciona todos los elementos que satisfacen el predicado.
+List(1, 2, 3) filter (_ > 2) // List(3)
+case class Persona(nombre: String, edad: Int)
+List(
+ Persona(nombre = "Dom", edad = 23),
+ Persona(nombre = "Bob", edad = 30)
+).filter(_.edad > 25) // List(Persona("Bob", 30))
+
+
+// Ciertas colecciones (como List) en Scala tienen un método `foreach`,
+// que toma como argumento un tipo que devuelva Unit (un método void)
+val unaListaDeNumeros = List(1, 2, 3, 4, 10, 20, 100)
+unaListaDeNumeros foreach (x => println(x))
+unaListaDeNumeros foreach println
+
+// Para comprensiones
+
+for { n <- s } yield sq(n)
+
+val nCuadrado2 = for { n <- s } yield sq(n)
+
+for { n <- nSquared2 if n < 10 } yield n
+
+for { n <- s; nSquared = n * n if nSquared < 10} yield nSquared
+
+/* Nota: Esos no son bucles. La semántica de un bucle es repetir, mientras que un for de comprension define una relación entre dos conjuntos de datos.*/
+
+
+/////////////////////////////////////////////////
+// 8. Implicitos
+/////////////////////////////////////////////////
+
+/* ATENCIÓN ATENCIÓN: Los implicitos son un conjunto de poderosas características de Scala
+ * y es fácil abusar de ellos. Si eres principiante en Scala deberías resistir la tentación
+ * de usarlos hasta que entiendas no solo como funcionan, sino también las mejores prácticas
+ * con ellos. Nosotros solo incluiremos esta sección en el tutorial porque son tan comunes
+ * en las librerias de Scala que es imposible hacer algo significativo sin usar una librería
+ * que tenga implicitos. Esto es para que entiendas como funcionan los implicitos, no para
+ * que definas los tuyos propios.
+ */
+
+// Cualquier valor (val, funciones, objetos, etc) puede ser declarado como implicito usando
+// la palabra "implicit". Observa que usamos la clase Perro de la sección 5.
+implicit val miEnteroImplicito = 100
+implicit def miFunciónImplicita(raza: String) = new Perro("Golden " + raza)
+
+// Por si misma, la palabra implicit no cambia el comportamiento de un valor,
+// así que estos valores pueden ser usados como siempre.
+miEnteroImplicito + 2 // => 102
+miFunciónImplicita("Pitbull").raza // => "Golden Pitbull"
+
+// La diferencia es que estos valores ahora pueden ser usados cuando otra pieza de código
+// necesite un valor implicito. Una situación así puede darse con argumentos implicitos de función:
+def enviaSaludos(aQuien: String)(implicit cuantos: Int) =
+ s"Hola $aQuien, $cuantos saludos a ti y a los tuyos!"
+
+// Si proporcionamos un valor para "cuantos", la función se comporta como siempre
+enviaSaludos("John")(1000) // => "Hola John, 1000 saludos a ti y a los tuyos!"
+
+// Pero si omitimos el parámetro implicito, un valor implicito del mismo tipo es usado,
+// en este caso, "miEnteroImplicito":
+enviaSaludos("Jane") // => "Hello Jane, 100 blessings to you and yours!"
+
+// Los parámetros de función implicit nos permiten simular clases tipo en otros lenguajes funcionales.
+// Es usado tan a menudo que tiene su propio atajo. Las dos siguientes lineas significan lo mismo:
+// def foo[T](implicit c: C[T]) = ...
+// def foo[T : C] = ...
+
+
+// Otra situación en la que el compilador busca un implicit es si tienes
+// obj.método(...)
+// pero "obj" no tiene "método" como un método. En este caso, si hay una conversión
+// implicita de tipo A => B, donde A es el tipo de obj y B tiene un método llamado
+// "método", esa conversión es aplicada. Así que teniendo miFunciónImplicita, podemos decir:
+"Retriever".raza // => "Golden Retriever"
+"Sheperd".ladra // => "Woof, woof!"
+
+// Aquí la cadena es convertida primero a Perro usando nuestra función miFunciónImplicita,
+// y entonces el método apropiado es llamado. Esta es una herramienta extremadamente poderosa
+// pero de nuevo, no puede usarse con ligereza. De hecho, cuando definiste la función implicita,
+// tu compilador debería haber mostrado una advertencia, diciendo que no deberías hacer esto
+// a no ser que realmente sepas lo que estás haciendo.
+
+/////////////////////////////////////////////////
+// 9. Misc
+/////////////////////////////////////////////////
+
+// Importando cosas
+import scala.collection.immutable.List
+
+// Importando todos los "sub paquetes"
+import scala.collection.immutable._
+
+// Importando multiples clases en una línea
+import scala.collection.immutable.{List, Map}
+
+// Renombrar un import usando '=>'
+import scala.collection.immutable.{List => ImmutableList}
+
+// Importar todas las clases, excepto algunas. La siguiente linea excluye Map y Set:
+import scala.collection.immutable.{Map => _, Set => _, _}
+
+// Las clases de Java pueden ser importadas también con sintaxis de Scala:
+import java.swing.{JFrame, JWindow}
+
+// El punto de entrada de tus programas está definido en un fichero scala usando un object,
+// con un solo método, main:
+object Application {
+ def main(args: Array[String]): Unit = {
+ // Aquí va tu código.
+ }
+}
+
+// Los ficheros pueden contener multiples clases y objetos. Compila con scalac
+
+
+// Salida y entrada
+
+// Leer un fichero línea por línea
+import scala.io.Source
+for(line <- Source.fromFile("miarchivo.txt").getLines())
+ println(line)
+
+// Para escribir un archivo usa el PrintWriter de Java
+val writer = new PrintWriter("miarchivo.txt")
+writer.write("Escribiendo linea por linea" + util.Properties.lineSeparator)
+writer.write("Otra linea" + util.Properties.lineSeparator)
+writer.close()
+
+```
+
+## Más recursos
+
+* [Scala para los impacientes](http://horstmann.com/scala/)
+* [Escuela de Scala en Twitter](http://twitter.github.io/scala_school/)
+* [La documentación de Scala](http://docs.scala-lang.org/)
+* [Prueba Scala en tu navegador](http://scalatutorials.com/tour/)
+* Unete al [grupo de usuarios de Scala](https://groups.google.com/forum/#!forum/scala-user)
diff --git a/es-es/sql-es.html.markdown b/es-es/sql-es.html.markdown
new file mode 100644
index 00000000..1ee0d454
--- /dev/null
+++ b/es-es/sql-es.html.markdown
@@ -0,0 +1,115 @@
+---
+language: SQL
+filename: learnsql-es.sql
+contributors:
+ - ["Bob DuCharme", "http://bobdc.com/"]
+translators:
+ - ["FedeHC", "https://github.com/FedeHC"]
+lang: es-es
+---
+
+El lenguaje de consulta estructurada (SQL en inglés) es un lenguaje estándar ISO para crear y trabajar con bases de datos almacenados en un conjunto de tablas. Las implementaciones generalmente añaden sus propias extensiones al lenguaje; [Comparación entre diferentes implementaciones de SQL](http://troels.arvin.dk/db/rdbms/) es una buena referencia sobre las diferencias entre distintos productos.
+
+Las implementaciones típicamente proveen de una línea de comandos donde uno puede introducir los comandos que se muestran aquí en forma interactiva, y también ofrecen una forma de ejecutar una serie de estos comandos almacenados en un archivo de script (mostrar que uno ha terminado con el prompt interactivo es un buen ejemplo de algo que no está estandarizado - la mayoría de las implementaciones de SQL soportan las palabras clave QUIT, EXIT, o ambas).
+
+Varios de estos comandos que sirven de ejemplo asumen que la [base de datos de empleados de muestra de MySQL](https://dev.mysql.com/doc/employee/en/) disponible en [github](https://github.com/datacharmer/test_db) ya ha sido cargada. Los archivos github son scripts de comandos, similares a los comandos que aparecen a continuación, que crean y cargan tablas de datos sobre los empleados de una empresa ficticia. La sintaxis para ejecutar estos scripts dependerá de la implementación de SQL que esté utilizando. Una aplicación que se ejecuta desde el prompt del sistema operativo suele ser lo habitual.
+
+
+```sql
+-- Los comentarios empiezan con dos guiones. Se termina cada comando con punto
+-- y coma.
+
+-- SQL no distingue entre mayúsculas y minúsculas en palabras clave. Los
+-- comandos de ejemplo que aquí se muestran siguen la convención de ser escritos
+-- en mayúsculas porque hace más fácil distinguirlos de los nombres de las bases
+-- de datos, de las tablas y de las columnas.
+
+-- A cont. se crea y se elimina una base de datos. Los nombres de la base de
+-- datos y de la tabla son sensibles a mayúsculas y minúsculas.
+CREATE DATABASE someDatabase;
+DROP DATABASE someDatabase;
+
+-- Lista todas las bases de datos disponibles.
+SHOW DATABASES;
+
+-- Usa una base de datos existente en particular.
+USE employees;
+
+-- Selecciona todas las filas y las columnas de la tabla departments en la base
+-- de datos actual. La actividad predeterminada es que el intérprete desplace
+-- los resultados por la pantalla.
+SELECT * FROM departments;
+
+-- Recupera todas las filas de la tabla departments, pero sólo las columnas
+-- dept_no y dept_name.
+-- Separar los comandos en varias líneas está permitido.
+SELECT dept_no,
+ dept_name FROM departments;
+
+-- Obtiene todas las columnas de departments, pero se limita a 5 filas.
+SELECT * FROM departments LIMIT 5;
+
+-- Obtiene los valores de la columna dept_name desde la tabla departments cuando
+-- dept_name tiene como valor la subcadena 'en'.
+SELECT dept_name FROM departments WHERE dept_name LIKE '%en%';
+
+-- Recuperar todas las columnas de la tabla departments donde la columna
+-- dept_name comienza con una 'S' y tiene exactamente 4 caracteres después
+-- de ella.
+SELECT * FROM departments WHERE dept_name LIKE 'S____';
+
+-- Selecciona los valores de los títulos de la tabla titles, pero no muestra
+-- duplicados.
+SELECT DISTINCT title FROM titles;
+
+-- Igual que el anterior, pero ordenado por los valores de title (se distingue
+-- entre mayúsculas y minúsculas).
+SELECT DISTINCT title FROM titles ORDER BY title;
+
+-- Muestra el número de filas de la tabla departments.
+SELECT COUNT(*) FROM departments;
+
+-- Muestra el número de filas en la tabla departments que contiene 'en' como
+-- subcadena en la columna dept_name.
+SELECT COUNT(*) FROM departments WHERE dept_name LIKE '%en%';
+
+-- Una unión (JOIN) de información desde varias tablas: la tabla titles muestra
+-- quién tiene qué títulos de trabajo, según sus números de empleados, y desde
+-- qué fecha hasta qué fecha. Se obtiene esta información, pero en lugar del
+-- número de empleado se utiliza el mismo como una referencia cruzada a la
+-- tabla employee para obtener el nombre y apellido de cada empleado (y se
+-- limita los resultados a 10 filas).
+SELECT employees.first_name, employees.last_name,
+ titles.title, titles.from_date, titles.to_date
+FROM titles INNER JOIN employees ON
+ employees.emp_no = titles.emp_no LIMIT 10;
+
+-- Se enumera todas las tablas de todas las bases de datos. Las implementaciones
+-- típicamente proveen sus propios comandos para hacer esto con la base de datos
+-- actualmente en uso.
+SELECT * FROM INFORMATION_SCHEMA.TABLES
+WHERE TABLE_TYPE='BASE TABLE';
+
+-- Crear una tabla llamada tablename1, con las dos columnas mostradas, a partir
+-- de la base de datos en uso. Hay muchas otras opciones disponibles para la
+-- forma en que se especifican las columnas, como por ej. sus tipos de datos.
+CREATE TABLE tablename1 (fname VARCHAR(20), lname VARCHAR(20));
+
+-- Insertar una fila de datos en la tabla tablename1. Se asume que la tabla ha
+-- sido definida para aceptar estos valores como aptos.
+INSERT INTO tablename1 VALUES('Richard','Mutt');
+
+-- En tablename1, se cambia el valor de fname a 'John' para todas las filas que
+-- tengan un valor en lname igual a 'Mutt'.
+UPDATE tablename1 SET fname='John' WHERE lname='Mutt';
+
+-- Se borra las filas de la tabla tablename1 donde el valor de lname comience
+-- con 'M'.
+DELETE FROM tablename1 WHERE lname like 'M%';
+
+-- Se borra todas las filas de la tabla tablename1, dejando la tabla vacía.
+DELETE FROM tablename1;
+
+-- Se elimina toda la tabla tablename1 por completo.
+DROP TABLE tablename1;
+```
diff --git a/es-es/swift-es.html.markdown b/es-es/swift-es.html.markdown
index 8f63517a..22e3c532 100644
--- a/es-es/swift-es.html.markdown
+++ b/es-es/swift-es.html.markdown
@@ -446,48 +446,48 @@ if let circle = myEmptyCircle {
// Al igual que las clases, pueden contener métodos
enum Suit {
- case Spades, Hearts, Diamonds, Clubs
+ case spades, hearts, diamonds, clubs
func getIcon() -> String {
switch self {
- case .Spades: return "♤"
- case .Hearts: return "♡"
- case .Diamonds: return "♢"
- case .Clubs: return "♧"
+ case .spades: return "♤"
+ case .hearts: return "♡"
+ case .diamonds: return "♢"
+ case .clubs: return "♧"
}
}
}
// Los valores de enum permite la sintaxis corta, sin necesidad de poner
// el tipo del enum cuando la variable es declarada de manera explícita
-var suitValue: Suit = .Hearts
+var suitValue: Suit = .hearts
// Enums de tipo no-entero requiere asignaciones de valores crudas directas
enum BookName: String {
- case John = "John"
- case Luke = "Luke"
+ case john = "John"
+ case luke = "Luke"
}
-print("Name: \(BookName.John.rawValue)")
+print("Name: \(BookName.john.rawValue)")
// Enum con valores asociados
enum Furniture {
// Asociación con Int
- case Desk(height: Int)
+ case desk(height: Int)
// Asociación con String e Int
- case Chair(String, Int)
+ case chair(String, Int)
func description() -> String {
switch self {
- case .Desk(let height):
+ case .desk(let height):
return "Desk with \(height) cm"
- case .Chair(let brand, let height):
+ case .chair(let brand, let height):
return "Chair of \(brand) with \(height) cm"
}
}
}
-var desk: Furniture = .Desk(height: 80)
+var desk: Furniture = .desk(height: 80)
print(desk.description()) // "Desk with 80 cm"
-var chair = Furniture.Chair("Foo", 40)
+var chair = Furniture.chair("Foo", 40)
print(chair.description()) // "Chair of Foo with 40 cm"
diff --git a/es-es/tcl-es.html.markdown b/es-es/tcl-es.html.markdown
new file mode 100644
index 00000000..5db72ae1
--- /dev/null
+++ b/es-es/tcl-es.html.markdown
@@ -0,0 +1,600 @@
+---
+language: Tcl
+contributors:
+ - ["Poor Yorick", "https://pooryorick.com/"]
+translators:
+ - ["Héctor Romojaro", "https://github.com/hromojaro"]
+lang: es-es
+filename: learntcl-es.tcl
+---
+
+Tcl fue creado por [John Ousterhout](https://wiki.tcl.tk/John%20Ousterout) como
+un lenguaje reutilizable de scripting para herramientas de diseño de circuitos
+de las que él era autor. En 1997 recibió el
+[ACM Software System Award](https://en.wikipedia.org/wiki/ACM_Software_System_Award)
+por Tcl. Tcl puede ser utilizado tanto como lenguaje de scripting embebido,
+como lenguaje de programación general. Puede ser utilizado también como una
+biblioteca portable de C, incluso en casos donde no se requieren capacidades
+de scripting, ya que provee de estructuras de datos tales como cadenas (*string*)
+de caracteres dinámicas, listas y tablas hash. La biblioteca de C también
+provee funcionalidad portable para cargar bibliotecas dinámicas, formato de
+cadenas y conversión de código, operaciones sobre el sistema de ficheros,
+operaciones de red y más. Algunas características reseñables de Tcl:
+
+* Conveniente API de red multiplataforma
+
+* Sistema de ficheros totalmente virtualizado
+
+* Canales apilables de E/S
+
+* Asíncrono hasta el núcleo
+
+* Corrutinas completas
+
+* Un modelo de hebras reconocido como robusto y fácil de usar
+
+
+Tcl tiene mucho en común con Lisp pero, en lugar de listas, Tcl utiliza cadenas
+de caracteres como moneda de cambio del lenguaje. Todos los valores son cadenas.
+Una lista es una cadena con un formato definido, y el cuerpo de un procedimiento
+(un script) es también una cadena en lugar de un bloque. Para incrementar el
+rendimiento, Tcl cachea internamente representaciones estructuradas de estos
+valores. Las rutinas con listas, por ejemplo, operan en la representación interna
+en caché, y Tcl se ocupa de actualizar la representación en cadenas si es realmente
+necesario en el script. El diseño *copy-on-write* de Tcl permite a los autores
+de scripts mover grandes volúmenes de datos sin incurrir en el consumo adicional
+de memoria. Los procedimientos son automáticamente compilados (*byte-compiled*)
+a no ser que utilicen rutinas dinámicas como "uplevel", "upvar" o "trace".
+
+Programar en Tcl es un placer. Le resultará atractivo a hackers que encuentren
+atractivo Lisp, Forth o Smalltalk, y a ingenieros y científicos que simplemente
+quieren ponerse a trabajar con una herramienta que se doblega a su voluntad. La
+disciplina de exponer toda la funcionalidad programática como rutinas, incluyendo
+cosas como iteraciones y operaciones matemáticas que normalmente están en la
+sintaxis de otros lenguajes, permitiendo fundirse en el fondo de cualquier
+funcionalidad específica del dominio que necesita un proyecto. Su sintaxis,
+incluso más simple que la de lisp, simplemente se quita de en medio.
+
+
+
+```tcl
+#! /bin/env tclsh
+
+###############################################################################
+## 1. Directrices
+###############################################################################
+
+# ¡Tcl no es ni Sh ni C! Es necesario decirlo porque el entrecomillado estándar
+# de shell casi funciona en Tcl, y es común que la gente empiece con Tcl e
+# intente utilizar sintaxis de otros lenguajes. Funciona al principio, pero
+# rápidamente conduce a frustración cuando los scripts se vuelven más complejos.
+
+# Las llaves son un mecanismo de entrecomillado, no de sintaxis para la construcción
+# de bloques de código o listas. Tcl no tiene ninguna de ellas. Las llaves se
+# usan para escapar caracteres especiales, lo que las hace apropiadas para
+# entrecomillar cuerpos de procedimientos y cadenas que deberían ser interpretadas
+# como listas.
+
+
+###############################################################################
+## 2. Sintaxis
+###############################################################################
+
+# Un script consiste en comandos delimitados por saltos de línea o puntos y coma.
+# Cada comando es una llamada a una rutina. La primera palabra es el nombre de
+# la rutina a llamar, y las siguientes palabras son argumentos de la rutina.
+# Las palabras están delimitadas por espacios. Puesto que cada argumento es una
+# palabra en el comando, y una cadena de caracteres, puede no ser entrecomillada:
+set part1 Sal
+set part2 ut; set part3 ations
+
+
+# el símbolo del dólar introduce la sustitución de variables:
+set greeting $part1$part2$part3
+
+
+# Cuando "set"recibe sólamente el nombre de una variable, devuelve su valor:
+set part3 ;# Returns the value of the variable.
+
+
+# Los corchetes delimitan un script que será evaluado y sustituido por su resultado:
+set greeting $part1$part2[set part3]
+
+
+# Un script incrustado puede estar compuesto de múltiples comandos, el último de
+# los cuales devuelve el resultado de la sustitución:
+set greeting $greeting[
+ incr i
+ incr i
+ incr i
+]
+puts $greeting ;# La salida es "Salutations3"
+
+# Cada palabra en un comando es una cadena, incluyendo el nombre de la rutina,
+# así que se pueden utilizar sustituciones allí también. Dada esta asignación
+# de variable,
+
+set action pu
+
+# los siguientes tres comandos son equivalentes:
+puts $greeting
+${action}ts $greeting
+[set action]ts $greeting
+
+
+# La barra invertida suprime el significado especial de los caracteres:
+set amount \$16.42
+
+
+# La barra invertida añade significado especial a ciertos caracteres:
+puts lots\nof\n\n\n\n\n\nnewlines
+
+
+# Una palabra encerrada entre llaves no está sujeta a interpretación especial o
+# sustitución, excepto que una barra invertida antes de una llave no cuenta al
+# buscar la llave de cierre:
+set somevar {
+ This is a literal $ sign, and this \} escaped
+ brace remains uninterpreted
+}
+
+
+# En una palabra delimitada por comillas dobles, los espacios pierden su significado
+# especial:
+set name Neo
+set greeting "Hello, $name"
+
+
+# Un nombre de variable puede ser cualquier cadena:
+set {first name} New
+
+
+# La forma de sustitución de variables utilizando llaves permite nombres de
+# variable más complejos:
+set greeting "Hello, ${first name}"
+
+
+# "set" puede utilizarse siempre en lugar de la sustitución de variables, y permite
+# utilizar cualquier nombre de variable:
+set greeting "Hello, [set {first name}]"
+
+
+# Para desempaquetar una lista en un el comando, se utiliza el operador de expansión,
+# "{*}". Estos dos comandos son equivalentes:
+set name Neo
+set {*}{name Neo}
+
+
+# Un array es una variable especial que sirve como contenedor de otras variables.
+set person(name) Neo
+set person(destiny) {The One}
+set greeting "Hello, $person(name)"
+
+
+# "variable" se puede utilizar para declarar o asignar variables. Al contrario
+# que "set", que utiliza el espacio de nombres global y el actual para resolver
+# un nombre de variable, "variable" usa solamente el actual:
+variable name New
+
+
+# "namespace eval" crea un nuevo espacio de nombres en caso de no existir.
+# Un espacio de nombres puede contener tanto rutinas como variables:
+namespace eval people {
+ namespace eval person1 {
+ variable name Neo
+ }
+}
+
+
+# Use dos o más ":" para delimitar componentes del espacio de nombres en nombres
+# de variables:
+namespace eval people {
+ set greeting "Hello $person1::name"
+}
+
+# Dos o más ":" también delimitan componentes del espacio de nombres en nombres
+# de rutinas:
+proc people::person1::speak {} {
+ puts {I am The One.}
+}
+
+# Nombres completos comienzan con dos ":":
+set greeting "Hello $::people::person1::name"
+
+
+
+###############################################################################
+## 3. No más sintaxis
+###############################################################################
+
+# El resto de funcionalidades se implementa mediante rutinas. Desde este punto,
+# no hay nueva sintaxis. Todo lo que queda para aprender Tcl es acerca del
+# comportamiento de rutinas individuales y el significado que asignan a sus
+# argumentos.
+
+
+
+###############################################################################
+## 4. Variables y espacios de nombres
+###############################################################################
+
+# Cada variable y cada rutina están asociadas a algún espacio de nombres
+
+# Para terminar con un intérprete inútil, sólo hay que eliminar el espacio de
+# nombres global. No es algo muy útil, pero sirve para ilustrar la naturaleza
+# de Tcl. El nombre del espacio de nombres global es en realidad la cadena
+# vacía, pero la única forma de representarlo es como un nombre completo. Para
+# probarlo, se puede usar esta rutina.
+proc delete_global_namespace {} {
+ namespace delete ::
+}
+
+# Como "set" siempre mantiene su vista en los espacios de nombres global y actual,
+# es más seguro utilizar "variable" para declarar o asignar un valor a una
+# variable. Si una variable llamada "nombre" ya existe en el espacio de nombres
+# global, usar "set" asignará un valor a la variable local en lugar de a la
+# variable del espacio de nombres actual, mientras que "variable" opera en el
+# espacio de nombres actual solamente.
+namespace eval people {
+ namespace eval person1 {
+ variable name Neo
+ }
+}
+
+# Una vez que una variable es declarada en un espacio de nombres, [set] la vé
+# en lugar de una variable de idéntico nombre en el espacio de nombres global:
+namespace eval people {
+ namespace eval person1 {
+ variable name
+ set name Neo
+ }
+}
+
+# En cambio, si "set" tiene que crear una nueva variable, siempre lo hace en el
+# espacio de nombres actual:
+unset name
+namespace eval people {
+ namespace eval person1 {
+ set name neo
+ }
+
+}
+set people::person1::name
+
+
+# Un nombre absoluto siempre comienza con el nombre del espacio de nombres global
+# (cadena vacía), seguido de dos ":":
+set ::people::person1::name Neo
+
+
+# En el interior de un procedimiento, la variable enlaza una variable en el espacio
+# de nombres actual en el ámbito local:
+namespace eval people::person1 {
+ proc fly {} {
+ variable name
+ puts "$name is flying!"
+ }
+}
+
+
+
+
+###############################################################################
+## 4. Rutinas incorporadas
+###############################################################################
+
+# Las operaciones matemáticas se pueden hacer con "expr":
+set a 3
+set b 4
+set c [expr {$a + $b}]
+
+# Como "expr" realiza sustituciones de variables por sí mismo, es necesario
+# poner la expresión entre llaves para prevenir a Tcl sustituir las variables
+# primero. Ver "http://wiki.tcl.tk/Brace%20your%20#%20expr-essions" para más
+# detalles.
+
+
+# "expr" entiende sustitución de variables y scripts:
+set c [expr {$a + [set b]}]
+
+
+# "expr" provee de un conjunto de funciones matemáticas:
+set c [expr {pow($a,$b)}]
+
+
+# Los operadores matemáticos están disponibles como rutinas en el espacio de
+# nombres ::tcl::mathop
+::tcl::mathop::+ 5 3
+
+# Las rutinas pueden ser importadas desde otros espacios de nombres:
+namespace import ::tcl::mathop::+
+set result [+ 5 3]
+
+
+# Los valores no numéricos deben ser entrecomillados, y los operadores como "eq"
+# pueden utilizarse para restringir la operación a una comparación de cadenas:
+set name Neo
+expr {{Bob} eq $name}
+
+# Los operadores generales recurren a la comparación de cadenas si una operación
+# numérica no es factible.
+expr {{Bob} == $name}
+
+
+# "proc" crea nuevas rutinas:
+proc greet name {
+ return "Hello, $name!"
+}
+
+# Se pueden especificar múltiples parámetros:
+proc greet {greeting name} {
+ return "$greeting, $name!"
+}
+
+
+# Como se dijo antes, las llaves no construyen un bloque de código. Cada valor,
+# incluso el tercer argumento de "proc", es una cadena. El comando anterior
+# puede ser reescrito sin usar llaves:
+proc greet greeting\ name return\ \"\$greeting,\ \$name!\"
+
+
+
+# Cuando el último parámetro es el valor literal "args", todos los argumentos
+# extra pasados a la rutina son recogidos en una lista y asignado a "args":
+proc fold {cmd first args} {
+ foreach arg $args {
+ set first [$cmd $first $arg]
+ }
+ return $first
+}
+fold ::tcl::mathop::* 5 3 3 ;# -> 45
+
+
+# La ejecución condicional se implementa como una rutina:
+if {3 > 4} {
+ puts {This will never happen}
+} elseif {4 > 4} {
+ puts {This will also never happen}
+} else {
+ puts {This will always happen}
+}
+
+
+# Los bucles se implementan como rutinas. Los primer y tercer argumentos de "for"
+# son tratados como scripts, mientras que el segundo lo es como una expresión:
+set res 0
+for {set i 0} {$i < 10} {incr i} {
+ set res [expr {$res + $i}]
+}
+unset res
+
+
+# El primer argumento de "while" se trata también como una expresión:
+set i 0
+while {$i < 10} {
+ incr i 2
+}
+
+
+# Una lista es una cadena, y los elementos de la lista se delimitan con espacios
+# en blanco:
+set amounts 10\ 33\ 18
+set amount [lindex $amounts 1]
+
+# El espacio en blanco dentro de una lista debe ser entrecomillado:
+set inventory {"item 1" item\ 2 {item 3}}
+
+
+# Generalmente, es mejor idea usar rutinas de listas al modificarlas:
+lappend inventory {item 1} {item 2} {item 3}
+
+
+# Las llaves y barras invertidas pueden utilizarse para formatear valores más
+# complejos en una lista. Una lista parece un script, excepto en que el carácter
+# de nueva línea y el ":" pierden su significado especial, y no hay sustitución
+# de variable o scripts. Esta característica hace Tcl homoicónico. Hay tres
+# elementos en la siguiente lista:
+set values {
+
+ one\ two
+
+ {three four}
+
+ five\{six
+
+}
+
+
+# Como, al igual que todos los valores, una lista es una cadena, operaciones de
+# cadenas pueden ser realizadas sobre ellas, corriendo el riesgo de corromper
+# el formato de la lista:
+set values {one two three four}
+set values [string map {two \{} $values] ;# $values is no-longer a \
+ properly-formatted list
+
+
+# La forma segura de conseguir una lista debidamente formateada es utilizando
+# las rutinas propias de lista:
+set values [list one \{ three four]
+lappend values { } ;# add a single space as an item in the list
+
+
+# Se puede utilizar "eval" para evaluar un valor como un script:
+eval {
+ set name Neo
+ set greeting "Hello, $name"
+}
+
+
+# Una lista siempre puede ser pasada a "eval" como un script compuesto de un único
+# comando:
+eval {set name Neo}
+eval [list set greeting "Hello, $name"]
+
+
+# Por lo tanto, cuando se utiliza "eval", use "list" para construir el comando
+# deseado:
+set command {set name}
+lappend command {Archibald Sorbisol}
+eval $command
+
+
+# Un error común es no usar funciones de listas al construir un comando:
+set command {set name}
+append command { Archibald Sorbisol}
+try {
+ eval $command ;# El error es que "set" tiene demasiados argumentos en \
+ {set name Archibald Sorbisol}
+} on error {result eoptions} {
+ puts [list {received an error} $result]
+}
+
+# Este error puede ocurrir fácilmente con "subst":
+
+set replacement {Archibald Sorbisol}
+set command {set name $replacement}
+set command [subst $command]
+try {
+ eval $command ;# El mismo error que antes: demasiados argumentos a "set" en \
+ {set name Archibald Sorbisol}
+} trap {TCL WRONGARGS} {result options} {
+ puts [list {received another error} $result]
+}
+
+
+# "list" formatea correctamente un valor para su sustitución:
+set replacement [list {Archibald Sorbisol}]
+set command {set name $replacement}
+set command [subst $command]
+eval $command
+
+
+# "list" se utiliza normalmente para formatear valores para su sustitución en
+# scripts: Hay muchos ejemplos de esto más abajo.
+
+
+# "apply" evalúa una lista de dos elementos como una rutina:
+set cmd {{greeting name} {
+ return "$greeting, $name!"
+}}
+apply $cmd Whaddup Neo
+
+# Un tercer elemento puede ser utilizado para especificar el espacio de nombres
+# donde aplicar la rutina:
+set cmd [list {greeting name} {
+ return "$greeting, $name!"
+} [namespace current]]
+apply $cmd Whaddup Neo
+
+
+# "uplevel" evalúa un script en un nivel superior de la pila de llamadas:
+proc greet {} {
+ uplevel {puts "$greeting, $name"}
+}
+
+proc set_double {varname value} {
+ if {[string is double $value]} {
+ uplevel [list variable $varname $value]
+ } else {
+ error [list {not a double} $value]
+ }
+}
+
+
+# "upvar" enlaza una variable en el nivel actual de la pila de llamadas a una
+# variable en un nivel superior:
+proc set_double {varname value} {
+ if {[string is double $value]} {
+ upvar 1 $varname var
+ set var $value
+ } else {
+ error [list {not a double} $value]
+ }
+}
+
+
+# Deshacerse de la rutina "while" incorporada, y utilizar "proc" para definir
+# una nueva:
+rename ::while {}
+# la manipulación se deja como ejercicio:
+proc while {condition script} {
+ if {[uplevel 1 [list expr $condition]]} {
+ uplevel 1 $script
+ tailcall [namespace which while] $condition $script
+ }
+}
+
+
+# "coroutine" crea una nueva pila de llamadas, una nueva rutina en la que
+# introducir esa pila de llamadas, y luego llama a dicha rutina. "yield" suspende
+# la evaluación en esa pila y devuelve el control a la pila que efectúa la llamada.
+proc countdown count {
+ # devuelve algo al creador de la corrutina, efectivamente pausando esta
+ # pila de llamadas por ahora.
+ yield [info coroutine]
+
+ while {$count > 1} {
+ yield [incr count -1]
+ }
+ return 0
+}
+coroutine countdown1 countdown 3
+coroutine countdown2 countdown 5
+puts [countdown1] ;# -> 2
+puts [countdown2] ;# -> 4
+puts [countdown1] ;# -> 1
+puts [countdown1] ;# -> 0
+catch {
+ puts [coundown1] ;# -> invalid command name "countdown1"
+} cres copts
+puts $cres
+puts [countdown2] ;# -> 3
+
+
+# Pilas de corrutinas pueden cederse el control entre sí:
+
+proc pass {whom args} {
+ return [yieldto $whom {*}$args]
+}
+
+coroutine a apply {{} {
+ yield
+ set result [pass b {please pass the salt}]
+ puts [list got the $result]
+ set result [pass b {please pass the pepper}]
+ puts [list got the $result]
+}}
+
+coroutine b apply {{} {
+ set request [yield]
+ while 1 {
+ set response [pass c $request]
+ puts [list [info coroutine] is now yielding]
+ set request [pass a $response]
+ }
+}}
+
+coroutine c apply {{} {
+ set request [yield]
+ while 1 {
+ if {[string match *salt* $request]} {
+ set request [pass b salt]
+ } else {
+ set request [pass b huh?]
+ }
+ }
+}}
+
+# Pon las cosas en marcha
+a
+
+
+```
+
+## Reference
+
+[Documentación oficial de Tcl](http://www.tcl.tk/man/tcl/)
+
+[Tcl Wiki](http://wiki.tcl.tk)
+
+[Tcl Subreddit](http://www.reddit.com/r/Tcl)
diff --git a/es-es/visualbasic-es.html.markdown b/es-es/visualbasic-es.html.markdown
index c7f581c0..c677c20f 100644
--- a/es-es/visualbasic-es.html.markdown
+++ b/es-es/visualbasic-es.html.markdown
@@ -4,13 +4,11 @@ contributors:
- ["Brian Martin", "http://brianmartin.biz"]
translators:
- ["Adolfo Jayme Barrientos", "https://github.com/fitojb"]
-author: Brian Martin
-author_url: https://github.com/fitojb
filename: learnvisualbasic-es.vb
lang: es-es
---
-```vb
+```
Module Module1
Sub Main()
diff --git a/es-es/xml-es.html.markdown b/es-es/xml-es.html.markdown
index 2e9326cf..23831f3b 100644
--- a/es-es/xml-es.html.markdown
+++ b/es-es/xml-es.html.markdown
@@ -1,6 +1,6 @@
---
language: xml
-filename: learnxml.xml
+filename: learnxml-es.xml
contributors:
- ["João Farias", "https://github.com/JoaoGFarias"]
translators:
diff --git a/es-es/yaml-es.html.markdown b/es-es/yaml-es.html.markdown
index cd3143fb..582fa60e 100644
--- a/es-es/yaml-es.html.markdown
+++ b/es-es/yaml-es.html.markdown
@@ -3,7 +3,7 @@ language: yaml
lang: es-es
filename: learnyaml-es.yaml
contributors:
- - ["Adam Brenecki", "https://github.com/adambrenecki"]
+ - ["Leigh Brenecki", "https://github.com/adambrenecki"]
- ["Everardo Medina","https://github.com/everblut"]
translators:
- ["Daniel Zendejas","https://github.com/DanielZendejas"]