summaryrefslogtreecommitdiffhomepage
path: root/java.html.markdown
diff options
context:
space:
mode:
authorAlburIvan <albur.ivan@outlook.com>2018-10-28 03:00:26 -0400
committerAlburIvan <albur.ivan@outlook.com>2018-10-28 03:00:26 -0400
commitdf0a0fa2a6ea1b818e3c6aaa139f77fde41f0256 (patch)
treec912eebef5bf5bfd45d4c2b6c91f355157041de8 /java.html.markdown
parent73b8cd9a39ab9b63dd5e2c1c123c363fd014753a (diff)
parent27fa7c50ce23def736a69711f827918acc726e37 (diff)
Merge branch 'master' of github.com:adambard/learnxinyminutes-docs into matlab-es
Diffstat (limited to 'java.html.markdown')
-rw-r--r--java.html.markdown152
1 files changed, 130 insertions, 22 deletions
diff --git a/java.html.markdown b/java.html.markdown
index 7b59b085..ca0b04c2 100644
--- a/java.html.markdown
+++ b/java.html.markdown
@@ -11,6 +11,7 @@ contributors:
- ["Michael Dähnert", "https://github.com/JaXt0r"]
- ["Rob Rose", "https://github.com/RobRoseKnows"]
- ["Sean Nam", "https://github.com/seannam"]
+ - ["Shawn M. Hanes", "https://github.com/smhanes15"]
filename: LearnJava.java
---
@@ -44,8 +45,6 @@ import java.util.ArrayList;
// Import all classes inside of java.security package
import java.security.*;
-// Each .java file contains one outer-level public class, with the same name
-// as the file.
public class LearnJava {
// In order to run a java program, it must have a main method as an entry
@@ -173,7 +172,7 @@ public class LearnJava {
// Char - A single 16-bit Unicode character
char fooChar = 'A';
- // final variables can't be reassigned to another object,
+ // final variables can't be reassigned,
final int HOURS_I_WORK_PER_WEEK = 9001;
// but they can be initialized later.
final double E;
@@ -280,7 +279,7 @@ public class LearnJava {
// LinkedLists - Implementation of doubly-linked list. All of the
// operations perform as could be expected for a
// doubly-linked list.
- // Maps - A set of objects that map keys to values. Map is
+ // Maps - A mapping of key Objects to value Objects. Map is
// an interface and therefore cannot be instantiated.
// The type of keys and values contained in a Map must
// be specified upon instantiation of the implementing
@@ -289,10 +288,16 @@ public class LearnJava {
// HashMaps - This class uses a hashtable to implement the Map
// interface. This allows the execution time of basic
// operations, such as get and insert element, to remain
- // constant even for large sets.
- // TreeMap - This class is a sorted tree structure. It implements a red
- // black tree and sorts the entries based on the key value or
- // the comparator provided while creating the object
+ // constant-amortized even for large sets.
+ // TreeMap - A Map that is sorted by its keys. Each modification
+ // maintains the sorting defined by either a Comparator
+ // supplied at instantiation, or comparisons of each Object
+ // if they implement the Comparable interface.
+ // Failure of keys to implement Comparable combined with failure to
+ // supply a Comparator will throw ClassCastExceptions.
+ // Insertion and removal operations take O(log(n)) time
+ // so avoid using this data structure unless you are taking
+ // advantage of the sorting.
///////////////////////////////////////
// Operators
@@ -306,7 +311,7 @@ public class LearnJava {
System.out.println("2-1 = " + (i2 - i1)); // => 1
System.out.println("2*1 = " + (i2 * i1)); // => 2
System.out.println("1/2 = " + (i1 / i2)); // => 0 (int/int returns int)
- System.out.println("1/2 = " + (i1 / (double)i2)); // => 0.5
+ System.out.println("1/2.0 = " + (i1 / (double)i2)); // => 0.5
// Modulo
System.out.println("11%3 = "+(11 % 3)); // => 2
@@ -703,15 +708,21 @@ public class ExampleClass extends ExampleClassParent implements InterfaceOne,
// // Method declarations
// }
-// Marking a class as abstract means that it contains at least one abstract
-// method that must be defined in a child class. Similar to interfaces, abstract
-// classes cannot be instantiated, but instead must be extended and the abstract
-// methods defined. Different from interfaces, abstract classes can contain a
-// mixture of concrete and abstract methods. Methods in an interface cannot
-// have a body, unless the method is static, and variables are final by default,
-// unlike an abstract class. Also abstract classes CAN have the "main" method.
+// Abstract Classes cannot be instantiated.
+// Abstract classes may define abstract methods.
+// Abstract methods have no body and are marked abstract
+// Non-abstract child classes must @Override all abstract methods
+// from their super-classes.
+// Abstract classes can be useful when combining repetitive logic
+// with customised behavior, but as Abstract classes require
+// inheritance, they violate "Composition over inheritance"
+// so consider other approaches using composition.
+// https://en.wikipedia.org/wiki/Composition_over_inheritance
+
public abstract class Animal
{
+ private int age;
+
public abstract void makeSound();
// Method can have a body
@@ -722,17 +733,12 @@ public abstract class Animal
age = 30;
}
- // No need to initialize, however in an interface
- // a variable is implicitly final and hence has
- // to be initialized.
- private int age;
-
public void printAge()
{
System.out.println(age);
}
- // Abstract classes can have main function.
+ // Abstract classes can have main method.
public static void main(String[] args)
{
System.out.println("I am abstract");
@@ -853,6 +859,108 @@ public class EnumTest {
// The enum body can include methods and other fields.
// You can see more at https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
+// Getting Started with Lambda Expressions
+//
+// New to Java version 8 are lambda expressions. Lambdas are more commonly found
+// in functional programming languages, which means they are methods which can
+// be created without belonging to a class, passed around as if it were itself
+// an object, and executed on demand.
+//
+// Final note, lambdas must implement a functional interface. A functional
+// interface is one which has only a single abstract method declared. It can
+// have any number of default methods. Lambda expressions can be used as an
+// instance of that functional interface. Any interface meeting the requirements
+// is treated as a functional interface. You can read more about interfaces
+// above.
+//
+import java.util.Map;
+import java.util.HashMap;
+import java.util.function.*;
+import java.security.SecureRandom;
+
+public class Lambdas {
+ public static void main(String[] args) {
+ // Lambda declaration syntax:
+ // <zero or more parameters> -> <expression body or statement block>
+
+ // We will use this hashmap in our examples below.
+ Map<String, String> planets = new HashMap<>();
+ planets.put("Mercury", "87.969");
+ planets.put("Venus", "224.7");
+ planets.put("Earth", "365.2564");
+ planets.put("Mars", "687");
+ planets.put("Jupiter", "4,332.59");
+ planets.put("Saturn", "10,759");
+ planets.put("Uranus", "30,688.5");
+ planets.put("Neptune", "60,182");
+
+ // Lambda with zero parameters using the Supplier functional interface
+ // from java.util.function.Supplier. The actual lambda expression is
+ // what comes after numPlanets =.
+ Supplier<String> numPlanets = () -> Integer.toString(planets.size());
+ System.out.format("Number of Planets: %s\n\n", numPlanets.get());
+
+ // Lambda with one parameter and using the Consumer functional interface
+ // from java.util.function.Consumer. This is because planets is a Map,
+ // which implements both Collection and Iterable. The forEach used here,
+ // found in Iterable, applies the lambda expression to each member of
+ // the Collection. The default implementation of forEach behaves as if:
+ /*
+ for (T t : this)
+ action.accept(t);
+ */
+
+ // The actual lambda expression is the parameter passed to forEach.
+ planets.keySet().forEach((p) -> System.out.format("%s\n", p));
+
+ // If you are only passing a single argument, then the above can also be
+ // written as (note absent parentheses around p):
+ planets.keySet().forEach(p -> System.out.format("%s\n", p));
+
+ // Tracing the above, we see that planets is a HashMap, keySet() returns
+ // a Set of its keys, forEach applies each element as the lambda
+ // expression of: (parameter p) -> System.out.format("%s\n", p). Each
+ // time, the element is said to be "consumed" and the statement(s)
+ // referred to in the lambda body is applied. Remember the lambda body
+ // is what comes after the ->.
+
+ // The above without use of lambdas would look more traditionally like:
+ for (String planet : planets.keySet()) {
+ System.out.format("%s\n", planet);
+ }
+
+ // This example differs from the above in that a different forEach
+ // implementation is used: the forEach found in the HashMap class
+ // implementing the Map interface. This forEach accepts a BiConsumer,
+ // which generically speaking is a fancy way of saying it handles
+ // the Set of each Key -> Value pairs. This default implementation
+ // behaves as if:
+ /*
+ for (Map.Entry<K, V> entry : map.entrySet())
+ action.accept(entry.getKey(), entry.getValue());
+ */
+
+ // The actual lambda expression is the parameter passed to forEach.
+ String orbits = "%s orbits the Sun in %s Earth days.\n";
+ planets.forEach((K, V) -> System.out.format(orbits, K, V));
+
+ // The above without use of lambdas would look more traditionally like:
+ for (String planet : planets.keySet()) {
+ System.out.format(orbits, planet, planets.get(planet));
+ }
+
+ // Or, if following more closely the specification provided by the
+ // default implementation:
+ for (Map.Entry<String, String> planet : planets.entrySet()) {
+ System.out.format(orbits, planet.getKey(), planet.getValue());
+ }
+
+ // These examples cover only the very basic use of lambdas. It might not
+ // seem like much or even very useful, but remember that a lambda can be
+ // created as an object that can later be passed as parameters to other
+ // methods.
+ }
+}
```
## Further Reading