summaryrefslogtreecommitdiffhomepage
path: root/osl.html.markdown
diff options
context:
space:
mode:
authorPreetham Pemmasani <75422607+Preetham-ai@users.noreply.github.com>2024-03-23 11:04:39 +0530
committerGitHub <noreply@github.com>2024-03-23 14:34:39 +0900
commit4273e67f566ad82d657ef8692e22f06a01d8bda1 (patch)
tree93b737f1ad9c0c0671609c50e2b77f0054f33525 /osl.html.markdown
parentd72ab67435028216145e2cdb579df7f3cf6154ff (diff)
[osl/en] Added OSL and covered almost everything (#4857)
* added OSL language Added most of the basics * Update osl.html.markdown * Updated Datatypes * Added some functions * Update osl.html.markdown * Added Pattern Generations, Calculus, Texture and Light functions * Final * fixed 80 words * Added Examples
Diffstat (limited to 'osl.html.markdown')
-rw-r--r--osl.html.markdown751
1 files changed, 751 insertions, 0 deletions
diff --git a/osl.html.markdown b/osl.html.markdown
new file mode 100644
index 00000000..af5f83bc
--- /dev/null
+++ b/osl.html.markdown
@@ -0,0 +1,751 @@
+---
+language: osl
+filename: learnosl.osl
+contributors:
+ - ["Preetham Pemmasani", "https://github.com/Preetham-ai"]
+---
+
+OSL (Open Shading Language) is a programming language designed by Sony for Arnold Renderer used for creating shaders.
+
+[Read more here.](https://raw.githubusercontent.com/imageworks/OpenShadingLanguage/master/src/doc/osl-languagespec.pdf)
+
+```c
+
+
+// Single-line comments start with //
+
+/* Multi line comments are preserved. */
+
+// Statements can be terminated by ;
+divide(1,2);
+
+///////////////
+// 1. Basics //
+///////////////
+
+// Declating variables
+color Blue; // Initializing a variable
+int _num = 3;
+float Num = 3.00;
+float c[3] = {0.1, 0.2, 3.14}; // Array
+
+// Math works as you would expect
+3 + 1; // 4
+74 - 3; // 71
+20 * 2; // 40
+75/3; // 25.0
+
+// And modulo division only works with integers
+10 % 2; // 0
+31 % 4; // 1
+
+// Bitwise operations only works with integers
+- 0 // 1 (Unary Negation)
+~ 00100011 // 11011100 (bitwise Compliment)
+1 << 2; // 4 (shift Left)
+12 >> 1; // 3 (shift Right)
+1 & 0; // 0 (bitwise AND)
+1 | 0; // 1 (bitwise OR)
+1 ^ 1; // 0 (bitwise XOR)
+
+// We also have booleans
+true;
+false;
+
+// Booleans can't be compared to integers
+true == 1 // Error
+false == 0 // Error
+
+// Negation uses the ! symbol
+!0; // 1
+!1; // 0
+!2; // 0
+//... and so on
+
+// Relation Operators are defined like:
+0 == 0 // true (equal to)
+0 != 1 // true (not equal to)
+5 < 3 // false (less then)
+3 <= 3 // true (less than or equal to)
+69 > 69 // false (greater than)
+99 >= 52 // true (greater than or equal)
+
+
+// Functions are same as C and C++
+float sum(float a, float b){
+ return a+b;
+}
+
+int subtract(int a, int b){
+ return a-b;
+}
+
+sum(2,3); // 5
+
+////////////////
+// 2. Shaders //
+////////////////
+
+// Shaders explain the custom behavior of materials and light
+// Shader's syntax is similar to the main function in C
+// The inputs and the outputs should be initialized to default types
+shader multiply(float a = 0.0,
+ float b = 0.0,
+ output float c = 0.0){
+ c = a*b;
+}
+
+// Double brackets[[ ]] is used to classify metadata of a shader
+surface plastic
+ [[ string help = "Realistic wood shader" ]]
+(
+ color Plastic = color (0.7, 0.5, 0.3) [[ string help = "Base color" ]],
+ float Reflectivity = 0.5 [[ float min = 0, float max = 1 ]],
+){...}
+
+///////////////////////////////////////
+// Metadata Types
+///////////////////////////////////////
+
+[[ string label = "IOR" ]] // Display-name in UI of the parameter
+[[ string help = "Change Refractive Index" ]] // Info about the parameter
+[[ string help = "widget" // Gives widgets to input the parameter
+ string widget = "number" ]] // input float or int
+ string widget = "string" ]] // String input
+ string widget = "boolean" ]] // yes/no (or) 1/0
+ string widget = "popup", options = "smooth|rough" ]] // Drop-down list
+ // enum Drop-down list can also be made
+ string widget = "mapper", options = "smooth:0|rough:1" ]]
+ string widget = "filename" ]] // Input files externally
+ string widget = "null" ]] // null input
+
+[[ float min = 0.0 ]] // Minimum value of parameter
+[[ float max = 0.5 ]] // Maximum value of parameter
+[[ int slider = 3.0 // Adds a slider as an input
+ int slidermin = -1]] // minimum value of the slider
+ int slidermax = 3]] // maximum value of the slider
+ int slidercenter = 2]] // origin value of the slider
+
+[[ float sensitivity = 0.5 ]] // step size for incrementing the parameter
+[[ string URL = www.example.com/ ]] // URL of shader's documentation
+
+
+
+// There are different types of shaders
+
+/* Surface shaders determine the basic material properties of a surface and
+how it reacts to light */
+// Light shaders are a type of SURFACE shaders used for emissive objects.
+// Displacement shaders alter the geometry using position and normals.
+// Volume shaders adds a medium like air/smoke/dust into the scene.
+
+volume multiply(float a = 0.0, float b = 0.0, output float c = 0.0){
+ c = 2*a+b;
+}
+
+////////////////////////////////////////
+// 3. Data Types and Global Variables //
+////////////////////////////////////////
+
+// Data Types
+
+// 1. The void type indicates a function that doesn't return any value
+
+// 2. int (Integer)
+ int x = -12; // Minimum size of 32-bits
+ int new2 = 0x01cf; // Hexadecimal can also be specified
+
+ ///////////////////////////////////////
+ // Order of Evaluation
+ ///////////////////////////////////////
+
+ // From top to bottom, top has higher precedence
+ //--------------------------//
+ // Operators //
+ //--------------------------//
+ // int++, int-- //
+ // ++ int --int - ~ ! //
+ // * / % //
+ // + - //
+ // << >> //
+ // < <= > >= //
+ // == != //
+ // & //
+ // ^ //
+ // | //
+ // && //
+ // || //
+ // ?: //
+ // = += -= *= /= //
+ //--------------------------//
+
+// 3. float (Floating-point number)
+ float A = 2.3; // minimum IEEE 32-bit float
+ float Z = -4.1e2; // Z = -4.1 * 10^2
+
+ // Order of evaluation is similar to int.
+ // Operations like ( ~ ! % << >> ^ | & && || ) aren't available in float
+
+// 4. string
+ // The syntax is similar to C
+ string new = "Hello World";
+ // some Special characters:
+ /*
+ '\"'; // double quote
+ '\n'; // newline character
+ '\t'; // tab character (left justifies text)
+ '\v'; // vertical tab
+ '\\'; // back slash
+ '\r'; // carriage return
+ '\b'; // backspace character
+ */
+
+ // Strings are concatenated with whitespace
+ "Hello " "world!"; // "Hello world!"
+ // concat function can also be used
+ string concat ("Hello ","World!"); // "Hello world!"
+
+ // printf function is same as C
+ int i = 18;
+ printf("I am %d years old",i); // I am 18 years old
+
+ // String functions can alse be used
+ int strlen (string s); // gives the length of the string
+ int len = strlen("Hello, World!"); // len = 13
+
+ // startswith returns 1 if string starts with prefix, else returns 0
+ int starts = startswith("The quick brown fox", "The"); // starts = 1
+
+ // endswith returns 1 if string starts with suffix, else returns 0
+ int ends = endswith("The quick brown fox", "fox"); // ends will be 1
+
+// 5. color (Red, Green, Blue)
+ color p = color(0,1,2); // black
+ color q = color(1); // white ( same as color(1,1,1) )
+ color r = color("rgb", 0.23, 0.1, 0.8); // explicitly specify in RGB
+ color s = color("hsv", 0.23, 0.1, 0.8); // specify in HSV
+ // HSV stands for (Hue, Saturation, Luminance)
+ // HSL stands for (Hue, Saturation, Lightness)
+ // YIQ, XYZ and xyY formats can also be used
+ // We can also access the indivudual values of (R,G,B)
+ float Red = p[0]; // 0 (access the red component)
+ float Green = p[1]; // 1 (access the green component)
+ float Blue = p[2]; // 2 (access the blue component)
+
+ // They can also be accessed like this
+ float Red = p.r; // 0 (access the red component)
+ float Green = p.g; // 1 (access the green component)
+ float Blue = p.b; // 2 (access the blue component)
+
+ // Math operators work like this with decreasing precedence
+ color C = (3,2,3) * (1,0,0); // (3, 0, 0)
+ color D = (1,1,1) * 255; // (255, 255, 255)
+ color E = (25,5,125) / 5; // (5, 1, 25)
+ color F = (30,40,50) / (3,4,5); // (10, 10, 10)
+ color A = (1,2,3) + (1,0,0); // (2, 2, 3)
+ color B = (1,2,3) - (1,0,0); // (0, 2, 3)
+ // Operators like ( - == != ) are also used
+
+ // Color Functions
+ color blackbody (1500) // Gives color based on temperature (in Kelvin)
+ float luminance (0.5, 0.3, 0.8) // 0.37 gives luminance cd/m^2
+ // Luminance is calculated by 0.2126R+0.7152G+0.0722B
+ color wavelength color (700) // (1, 0, 0) Gives color based on wavelength
+ color transformc ("hsl", "rgb") // converts one system to another
+
+// 6. point (x,y,z) is position of a point in the 3D space
+// 7. vector (x,y,z) has length and direction but no position
+// 8. normal (x,y,z) is a special vector perpendicular to a surface
+ // These Operators are the same as color and have the same precedence
+ L = point(0.5, 0.6, 0.7);
+ M = vector(30, 100, 70);
+ N = normal(0, 0, 1);
+
+ // These 3 types can be assigned to a coordinate system
+ L = point("object", 0.5, 0.6, 0.7); // relative to local space
+ M = vector("common", 30, 100, 70); // relative to world space
+ // There's also ("shader", "world", "camera", "screen", "raster", "NDC")
+
+ float x = L[0]; // 0.5 (access the x-component)
+ float y = L[1]; // 0.6 (access the y-component)
+ float z = L[2]; // 0.7 (access the z-component)
+
+ // They can also be accessed like this
+ float x = M.x; // 30 (access the x-component)
+ float y = M.y; // 100 (access the y-component)
+ float z = M.z; // 70 (access the z-component)
+
+ float a = dot ((1,2,3), (1,2,3)); // 14 (Dot Product)
+ vector b = cross ((1,2,3), (1,2,3)); // (0,0,0) (Cross Product)
+ float l = length(L); // 1.085 (length of vector)
+ vector normalize (vector L); // (0.460, 0.552, 0.644) Normalizes the vector
+
+ point p0 = point(1, 2, 3);
+ point p1 = point(4, 5, 6);
+ point Q = point(0, 0, 0);
+
+ // Finding distance between two points
+ float len = distance(point(1, 2, 3), point(4, 5, 6)); // 5.196
+ // Perpendicular distance from Q to line joining P0 and P1
+ float distance (point P0, point P1, point Q); // 2.45
+
+
+// 9. matrix
+ // Used for transforming vectors between different coordinate systems.
+ // They are usually 4x4 (or) 16 floats
+ matrix zero = 0; // makes a 4x4 zero matrix
+ /* 0.0, 0.0, 0.0, 0.0,
+ 0.0, 0.0, 0.0, 0.0,
+ 0.0, 0.0, 0.0, 0.0,
+ 0.0, 0.0, 0.0, 0.0 */
+
+ matrix ident = 1; // makes a 4x4 identity matrix
+ /* 1.0, 0.0, 0.0, 0.0,
+ 0.0, 1.0, 0.0, 0.0,
+ 0.0, 0.0, 1.0, 0.0,
+ 0.0, 0.0, 0.0, 1.0 */
+
+ matrix m = 7; // Maked a 4x4 scalar matrix with scaling factor of 7
+ /* 7.0, 0.0, 0.0, 0.0,
+ 0.0, 7.0, 0.0, 0.0,
+ 0.0, 0.0, 7.0, 0.0,
+ 0.0, 0.0, 0.0, 7.0 */
+
+ float x = m[1][1]; // 7
+
+ // matrices can be constructed using floats in row-major order
+ // matrices are usually 4x4 with 16 elements
+ matrix myMatrix = matrix(1.0, 0.0, 0.0, 0.0, // Row 1
+ 0.0, 2.0, 0.0, 0.0, // Row 2
+ 0.0, 0.0, 3.0, 0.0, // Row 3
+ 0.0, 0.0, 0.0, 4.0); // Row 4
+
+ // matrix transformations are easy to implement
+ matrix a = matrix ("shader", 1); // converted shader to common
+ matrix m = matrix ("object", "world"); // converted object to world
+
+ // Operations that can be used with decreasing precedence are:
+ // ( - * / == !=)
+
+ float determinant (matrix M) // 24 (returns the determinant of the matrix)
+ float transpose (matrix M) // returns the transpose of the matrix
+ /* 1.0, 0.0, 0.0, 0.0,
+ 0.0, 2.0, 0.0, 0.0,
+ 0.0, 0.0, 3.0, 0.0,
+ 0.0, 0.0, 0.0, 4.0 */
+
+// 10. array
+ // Arrays in OSL are similar to C
+ float a[5]; // initialize array a with size 5
+ int b[3] = {90,80,70}; // declare array with size 3
+ int len = arraylength(b); // 3
+ int f = b[1]; // 80
+ float anotherarray[3] = b; // arrays can be copied if same type
+
+// 11. struct (Structures)
+ // Structures in OSL are similar to C and C++.
+ struct RGBA { // Defining a structure
+ color rgb;
+ float alpha;
+ };
+
+
+ RGBA col; // Declaring a structure
+ RGBA b = { color(0.1, 0.2, 0.3), 1 }; // Can also be declared like this
+
+ r.rgb = color (1, 0, 0); // Assign to one field
+ color c = r.rgb; // Read from a structure field
+
+// 12. closure
+ // Closure is used to store data that aren't considered when it executes.
+ // It cannot be manipulated or read.
+ // A null closure can always be assigned.
+ // OSL currently only supports color as their closure.
+
+ // A few examples of closures are:
+
+ // Diffuse BSDF closures:
+ closure color oren_nayar_diffuse_bsdf(normal N, color alb, float roughness)
+ closure color burley_diffuse_bsdf(normal N, color alb, float roughness);
+
+ // Dielectric BSDF closure:
+ closure color dielectric_bsdf(normal N, vector U, color reflection_tint,
+ color transmission_tint, float roughness_x, float roughness_y,
+ float ior, string distribution);
+
+ // Conductor BSDF closure:
+ closure color conductor_bsdf(normal N, vector U, float roughness_x,
+ float roughness_y, color ior, color extinction, string distribution);
+
+ // Generalized Schlick BSDF closure:
+ closure color generalized_schlick_bsdf(normal N, vector U,
+ color reflection_tint, color transmission_tint,
+ float roughness_x, float roughness_y, color f0, color f90,
+ float exponent, string distribution);
+
+ // Translucent BSDF closure:
+ closure color translucent_bsdf(normal N, color albedo);
+
+ // Transparent BSDF closure:
+ closure color transparent_bsdf();
+
+ // Subsurface BSSRDF closure:
+ closure color subsurface_bssrdf();
+
+ // Sheen BSDF closure:
+ closure color sheen_bsdf(normal N, color albedo, float roughness);
+
+ // Anisotropic VDF closure: (Volumetric)
+ closure color anisotropic_vdf(color albedo, color extinction,
+ float anisotropy);
+
+ // Medium VDF closure: (Volumetric)
+ closure color medium_vdf(color albedo, float transmission_depth,
+ color transmission_color, float anisotropy, float ior, int priority);
+
+ closure color uniform edf(color emittance); // Emission closure
+ closure color holdout(); // Holdout Hides objects beneath it
+
+ // BSDFs can be layered using this closure
+ closure color layer (closure color top, closure color base);
+
+
+
+// Global Variables
+// Contains info that the renderer knows
+// These variables need not be declared
+
+point P // Position of the point you are shading
+vector I // Incident ray direction from viewing position to shading position
+normal N // Normal of the surface at P
+normal Ng // Normal of the surface at P irrespective of bump mapping
+float u // UV 2D x - parametric coordinate of geometry
+float v // UV 2D y - parametric coordinate of geometry
+vector dPdu // change of P with respect to u tangent to the surface
+vector dPdv // change of P with respect to v tangent to the surface
+float time // Current time
+float dtime // Time covered
+vector dPdtime // change of P with respect to time
+
+/////////////////////
+// 4. Control flow //
+/////////////////////
+
+// Conditionals in OSL are just like in C or C++.
+
+// If/Else
+if (5>2){
+ int x = s;
+ int l = x;
+}
+else{
+ int x = s + l;
+}
+
+// 'while' loop
+int i = 0;
+while (i < 5) {
+ i += 1;
+ printf("Current value of i: %d\n", i);
+}
+
+// 'do-while' loop is where test happens after the body of the loop
+int i = 0;
+do {
+ printf("Current value of i: %d\n", i);
+ i += 1;
+} while (i < 5);
+
+// 'for' loop
+for (int i = 0; i < 5; i += 1) {
+ printf("Current value of i: %d\n", i);
+}
+
+/////////////////////
+// 5. Functions //
+/////////////////////
+
+// Math Constants
+ M_PI // π
+ M_PI_35 // π/35
+ m_E // e
+ M_LN2 // ln 2
+ M_SQRT2 // √2
+ M_SQRT1_2 // √(1/2)
+
+// Geometry Functions
+ vector N = vector(0.1, 1, 0.2); // Normal vector
+ vector I = vector(-0.5, 0.2, 0.8); // Incident vector
+
+ // Faceforward tells the direction of vector
+ vector facing_dir = faceforward(N, I); // facing_dir = (-0.5, 0.2, 0.8)
+
+ // faceforward with three arguments
+ vector ref = vector(0.3, -0.7, 0.6); // Reference normal
+ facing_dir = faceforward(N, I, ref); // facing_dir = (0.5, -0.2, -0.8)
+
+ // reflect gives the reflected vector along normal
+ vector refl = reflect(I, N); // refl = (-0.7, -0.4, 1.4)\
+
+ // refract gives the refracted vector along normal
+ float ior = 1.5; // Index of refraction
+ vector refr = refract(I, N, ior); // refr = (-0.25861, 0.32814, 0.96143)
+
+ /* Fresnel computes the Reflection (R) and Transmission (T) vectors, along
+ with the scaling factors for reflected (Kr) and transmitted (Kt) light. */
+ float Kr, Kt;
+ vector R, T;
+ fresnel(I, N, ior, Kr, Kt, R, T);
+/* Kr = 0.03958, Kt = 0.96042
+ R = (-0.19278, -0.07711, 0.33854)
+ T = (-0.25861, 0.32814, 0.96143) */
+
+ // Rotating a point along a given axis
+ point Q = point(1, 0, 0);
+ float angle = radians(90); // 90 degrees
+ vector axis = vector(0, 0, 1);
+ point rotated_point = rotate(Q, angle, axis);
+ // rotated_point = point(0, 1, 0)
+
+ // Rotating a point along a line made by 2 points
+ point P0 = point(0, 0, 0);
+ point P1 = point(1, 1, 0);
+ angle = radians(45); // 45 degrees
+ Q = point(1, 0, 0);
+ rotated_point = rotate(Q, angle, P0, P1);
+ // rotated_point = point(0.707107, 0.707107, 0)
+
+ // Calculating normal of surface at point p
+ point p1 = point(1, 0, 0); // Point on the sphere of radius 1
+ vector normal1 = calculatenormal(p1);
+ // normal1 = vector(1, 0, 0)
+
+ // Transforming units is easy
+ float transformu ("cm", float x) // converts to cm
+ float transformu ("cm", "m", float y) // converts cm to m
+
+// Displacement Functions
+ void displace (float 5); // Displace by 5 amp units
+ void bump (float 10); // Bump by 10 amp units
+
+
+// Noise Generation
+
+ type noise (type noise (string noisetype, float u, float v, ...)); // noise
+ type noise (string noisetype, point p,...); // point instead of coordinates
+ /* some noises are ("perlin", "snoise", "uperlin", "noise", "cell", "hash"
+ "simplex", "usimplex", "gabor", etc) */
+
+ // Noise Names
+
+ // 1. Perlin Noise (perlin, snoise):
+ // Creates smooth, swirling noise often used for textures.
+ // Range: [-1, 1] (signed)
+ color cloud_texture = noise("perlin", P);
+
+ // 2. Simplex Noise (simplex, usimplex):
+ // Similar to Perlin noise but faster.
+ // Range: [-1, 1] (signed) for simplex, [0, 1] (unsigned) for usimplex
+ float bump_amount = 0.2 * noise("simplex", P * 5.0);
+
+ // 3. UPerlin Noise (uperlin, noise):
+ // Similar to peril
+ // Range: [0, 1] (unsigned)
+ color new_texture = noise("uperlin", P);
+
+ // 4. Cell Noise (cell):
+ // Creates a blocky, cellular and constant values within each unit block
+ // Range: [0, 1] (unsigned)
+ color new_texture = noise("cell", P);
+
+ // 5. Hash Noise (hash):
+ // Generates random, uncorrelated values at each point.
+ // Range: [0, 1] (unsigned)
+ color new_texture = noise("hash", P);
+
+ // Gabor Noise (gabor)
+ // Gabor Noise is advanced version of Perin noies and gives more control
+ // Range: [-1, 1] (signed)
+ // Gabor Noise Parameters
+
+ // Anisotropic (default: 0)
+ // Controls anisotropy:
+ // 0: Isotropic (equal frequency in all directions)
+ // 1: Anisotropic with user-defined direction vector (defaults to (1,0,0))
+ /* 2: Hybrid mode,anisotropic along direction vector but radially isotropic
+ perpendicularly. */
+
+ // Direction (default: (1,0,0))
+ // Specifies the direction of anisotropy (used only if anisotropic is 1).
+
+ // bandwidth (default: 1.0)
+ // Controls the frequency range of the noise.
+
+ // impulses (default: 16)
+ // Controls the number of impulses used per cell, affecting detail level.
+
+ // do_filter (default: 1)
+ // Enables/disables antialiasing (filtering).
+
+ result = noise(
+ "gabor",
+ P,
+ "anisotropic", anisotropic,
+ "direction", direction,
+ "bandwidth", bandwidth,
+ "impulses", impulses,
+ "do_filter", do_filter
+ );
+
+ // Specific noises can also be used instead of passing them as types
+ // pnoise is periodic noise
+ float n1 = pnoise("perlin", 0.5, 1.0);
+ // 2D periodic noise with Gabor type
+ float n2 = pnoise("gabor", 0.2, 0.3, 2.0, 3.0);
+ // 2D non-periodic simplex noise
+ float n3 = snoise(0.1, 0.7);
+ // 2D periodic simplex noise
+ type psnoise (float u, float v, float uperiod, float vperiod);
+ float n4 = psnoise(0.4, 0.6, 0.5, 0.25);
+ // 2D cellular noise
+ float n5 = cellnoise(0.2, 0.8);
+ // 2D hash noise
+ int n6 = hash(0.7, 0.3);
+
+// Step Function
+ // Step Functions are used to compare input and threshold
+
+ // The type may be of float, color, point, vector, or normal.
+ type step (type edge, type x); // Returns 1 if x ≥ edge, else 0
+ color checker = step(0.5, P); // P is a point on the surface
+ /* Pixels with P values below 0.5 will be black, those above or equal will
+ be white */
+ float visibility = step(10, distance(P, light_position));
+ // Light is fully visible within 10 units, completely invisible beyond
+
+ type linearstep (type edge0, type edge1, type x); /* Linearstep Returns 0
+ if x ≤ edge0, and 1 if x ≥ edge1, with linear interpolation */
+ color gradient = linearstep(0, 1, P);
+ // P is a point on the surface between 0 and 1
+ // Color will graduate smoothly from black to white as P moves from 0 to 1
+ float fade = linearstep(0.85, 1, N.z); // N.z is the z-component
+ // Object edges with normals close to vertical (N.z near 1) will fade out
+
+ type smoothstep (type edge0, type edge1, type x); /* smoothstep Returns 0
+ if x ≤ edge0, and 1 if x ≥ edge1, with Hermite interpolation */
+ float soft_mask = smoothstep(0.2, 0.8, noise(P)); /* noise(P) is a noisy
+ value between 0 and 1. soft_mask will vary smoothly between 0 and 1 based
+ on noise(P), with a smoother curve than linearstep */
+
+// Splines
+ // Splines are smooth curves based on a set of control points
+
+ /* The type of interpolation ranges from "catmull-rom", "bezier",
+ "bspline", "hermite", "linear", or "constant" */
+
+ // Spline with knot vector
+ float[] knots = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1};
+ point[] controls = {point(0),point(1, 2, 1),point(2, 1, 2),point(3, 3, 1)};
+ spline curve1 = spline("bezier", 0.5, len(knots), controls);
+ // curve1 is a Bezier spline evaluated at u = 0.5
+
+ // Spline with control points
+ spline curve2 = spline("catmull-rom", 0.25, point(0, 0, 0), point(1, 2, 1),
+ point(2, 1, 2), point(3, 3, 1));
+ // curve2 is a Catmull-Rom spline evaluated at u = 0.25
+
+ // Constant spline with a single float value
+ float value = 10;
+ u = 0.1;
+ spline curve5 = spline("constant", u, value);
+ // curve5 is a constant spline with value 10 evaluated at u = 0.1
+
+ // Hermite spline with point and vector controls
+ point q0 = point(0, 0, 0), q1 = point(3, 3, 3);
+ vector t0 = vector(1, 0, 0), t1 = vector(-1, 1, 1);
+ u = 0.75;
+ spline curve3 = spline("hermite", u, q0, t0, q1, t1);
+ // curve3 is a Hermite spline evaluated at u = 0.75
+
+ // Linear spline with float controls
+ float f0 = 0, f1 = 1, f2 = 2, f3 = 3;
+ u = 0.4;
+ spline curve4 = spline("linear", u, f0, f1, f2, f3);
+ // curve4 is a linear spline evaluated at u = 0.4
+
+ // InverseSplines also exist
+
+ // Inverse spline with control values
+ float y0 = 0, y1 = 1, y2 = 2, y3 = 3;
+ float v = 1.5;
+ float u1 = splineinverse("linear", v, y0, y1, y2, y3);
+ // u1 = 0.5 (linear interpolation between y1 and y2)
+
+ // Inverse spline with knot vector
+ float[] knots = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1};
+ float[] values = {0, 1, 4, 9};
+ v = 6;
+ float u2 = splineinverse("bezier", v, len(knots), values);
+ // u2 = 0.75 (Bezier spline inverse evaluated at v = 6)
+
+ // Inverse spline with constant value
+ v = 10;
+ float u3 = splineinverse("constant", v, 10);
+ // u3 = 0 (since the constant spline always returns 10)
+
+ // Inverse spline with periodic values
+ float y4 = 0, y5 = 1, y6 = 0;
+ v = 0.5;
+ float u4 = splineinverse("periodic", v, y4, y5, y6);
+ // u4 = 0.75 (periodic spline inverse evaluated at v = 0.5)
+
+
+
+// Calculus Operators
+ // Partial derivative of f with respect to x, y and z using Dx, Dy, Dz
+ float a = 3.14;
+ float dx = Dx(a); // partial derivative of a with respect to x
+
+ point p = point(1.0, 2.0, 3.0);
+ vector dp_dx = Dx(p); // partial derivative of p with respect to x
+
+ vector dv_dy = Dy(N); // partial derivative of normal with respect to y
+
+ color c = color(0.5, 0.2, 0.8);
+ color dc_dz = Dz(c); // partial derivative of c with respect to z
+
+
+ float area (point p) // gives the surface area at the position p
+
+ float filterwidth (float x) // gives the changes of x in adjacent samples
+
+// Texture Functions
+ // lookup for a texture at coordinates (x,y)
+ color col1 = texture("texture.png", 0.5, 0.2);
+ // Lookup color at (0.5, 0.2) in texture.png
+
+ // 3D lookup for a texture at coordinates (x,y)
+ color col3 = texture3d("texture3d.vdb", point(0.25, 0.5, 0.75));
+
+ // parameters are ("blur","width","wrap","fill","alpha","interp", ...)
+ color col2 = texture("texture.png",1.0,0.75,"blur",0.1,"wrap", "periodic");
+ // Lookup color at (1.0, 0.75) with blur 0.1 and periodic wrap mode
+
+// Light Functions
+
+ float surfacearea (); // Returns the surface area of area light covers
+ int backfacing (); // Outputs 1 if the normals are backfaced, else 0
+ int raytype (string name); // returns 1 if the ray is a particular raytype
+
+ // Tracing a ray from a position in a direction
+ point pos = point(0, 0, 0); // Starting position of the ray
+ vector dir = vector(0, 0, 1); // Direction of the ray
+ int hit = trace(pos, dir); // returns 1 if it hits, else 0
+
+```
+### Further reading
+
+* [Blender Docs for OSL](https://docs.blender.org/manual/en/latest/render/shader_nodes/osl.html)
+* [C4D Docs for OSL](https://docs.otoy.com/cinema4d//OpenShadingLanguageOSL.html)
+* Open Shading Language on [Github](https://github.com/AcademySoftwareFoundation/OpenShadingLanguage)
+* [Official OSL Documentation](https://open-shading-language.readthedocs.io/en/main/) \ No newline at end of file