summaryrefslogtreecommitdiffhomepage
path: root/pt-br/python3-pt.html.markdown
diff options
context:
space:
mode:
authorDimitris Kokkonis <kokkonisd@gmail.com>2020-10-10 12:31:09 +0200
committerDimitris Kokkonis <kokkonisd@gmail.com>2020-10-10 12:31:09 +0200
commit916dceba25fcca6d7d9858d25c409bc9984c5fce (patch)
treefb9e604256d3c3267e0f55de39e0fa3b4b0b0728 /pt-br/python3-pt.html.markdown
parent922fc494bcce6cb53d80a5c2c9c039a480c82c1f (diff)
parent33cd1f57ef49f4ed0817e906b7579fcf33c253a1 (diff)
Merge remote-tracking branch 'upstream/master' into master
Diffstat (limited to 'pt-br/python3-pt.html.markdown')
-rw-r--r--pt-br/python3-pt.html.markdown746
1 files changed, 0 insertions, 746 deletions
diff --git a/pt-br/python3-pt.html.markdown b/pt-br/python3-pt.html.markdown
deleted file mode 100644
index b72c732a..00000000
--- a/pt-br/python3-pt.html.markdown
+++ /dev/null
@@ -1,746 +0,0 @@
----
-language: python3
-contributors:
- - ["Louie Dinh", "http://pythonpracticeprojects.com"]
- - ["Steven Basart", "http://github.com/xksteven"]
- - ["Andre Polykanine", "https://github.com/Oire"]
- - ["Zachary Ferguson", "http://github.com/zfergus2"]
-translators:
- - ["Paulo Henrique Rodrigues Pinheiro", "http://www.sysincloud.it"]
-lang: pt-br
-filename: learnpython3-pt.py
----
-
-Python foi criado por Guido Van Rossum nos anos 1990. Ele é atualmente uma
-das mais populares linguagens em existência. Eu fiquei morrendo de amor
-pelo Python por sua clareza sintática. É praticamente pseudocódigo executável.
-
-Suas opiniões são grandemente apreciadas. Você pode encontrar-me em
-[@louiedinh](http://twitter.com/louiedinh) ou louiedinh [em]
-[serviço de e-mail do google].
-
-Observação: Este artigo trata de Python 3 especificamente. Verifique
-[aqui](http://learnxinyminutes.com/docs/pt-br/python-pt/) se você pretende
-aprender o velho Python 2.7.
-
-```python
-
-# Comentários em uma única linha começam com uma cerquilha (também conhecido por sustenido).
-
-""" Strings de várias linhas podem ser escritas
- usando três ", e são comumente usadas
- como comentários.
-"""
-
-####################################################
-## 1. Tipos de dados primitivos e operadores
-####################################################
-
-# Você usa números normalmente
-3 # => 3
-
-# Matemática é como você espera que seja
-1 + 1 # => 2
-8 - 1 # => 7
-10 * 2 # => 20
-
-# Números inteiros por padrão, exceto na divisão, que retorna número
-# de ponto flutuante (float).
-35 / 5 # => 7.0
-
-# O resultado da divisão inteira arredonda para baixo tanto para números
-# positivos como para negativos.
-5 // 3 # => 1
-5.0 // 3.0 # => 1.0 # funciona em float também
--5 // 3 # => -2
--5.0 // 3.0 # => -2.0
-
-# Quando você usa um float, o resultado é float.
-3 * 2.0 # => 6.0
-
-# operador módulo
-7 % 3 # => 1
-
-# Exponenciação (x**y, x elevado à potência y)
-2**4 # => 16
-
-# Determine a precedência usando parêntesis
-(1 + 3) * 2 # => 8
-
-# Valores lógicos são primitivos (Atenção à primeira letra maiúscula)
-True
-False
-
-# negação lógica com not
-not True # => False
-not False # => True
-
-# Operadores lógicos
-# Observe que "and" e "or" são sensíveis a maiúsculas e minúsculas
-True and False # => False
-False or True # => True
-
-# Observe a utilização de operadores lógicos com números inteiros
-0 and 2 # => 0
--5 or 0 # => -5
-0 == False # => True
-2 == True # => False
-1 == True # => True
-
-# Igualdade é ==
-1 == 1 # => True
-2 == 1 # => False
-
-# Diferença é !=
-1 != 1 # => False
-2 != 1 # => True
-
-# Mais comparações
-1 < 10 # => True
-1 > 10 # => False
-2 <= 2 # => True
-2 >= 2 # => True
-
-# Comparações podem ser agrupadas
-1 < 2 < 3 # => True
-2 < 3 < 2 # => False
-
-# (operador 'is' e operador '==') is verifica se duas variáveis
-# referenciam um mesmo objeto, mas == verifica se as variáveis
-# apontam para o mesmo valor.
-a = [1, 2, 3, 4] # Referência a uma nova lista, [1, 2, 3, 4]
-b = a # b referencia o que está referenciado por a
-b is a # => True, a e b referenciam o mesmo objeto
-b == a # => True, objetos a e b tem o mesmo conteúdo
-b = [1, 2, 3, 4] # Referência a uma nova lista, [1, 2, 3, 4]
-b is a # => False, a e b não referenciam o mesmo objeto
-b == a # => True, objetos a e b tem o mesmo conteúdo
-
-# Strings são criadas com " ou '
-"Isto é uma string."
-'Isto também é uma string.'
-
-# Strings também podem ser somadas! Mas tente não fazer isso.
-"Olá " + "mundo!" # => "Olá mundo!"
-# Strings podem ser somadas sem usar o '+'
-"Olá " "mundo!" # => "Olá mundo!"
-
-# Uma string pode ser manipulada como se fosse uma lista de caracteres
-"Isso é uma string"[0] # => 'I'
-
-# .format pode ser usado para formatar strings, dessa forma:
-"{} podem ser {}".format("Strings", "interpoladas") # => "Strings podem ser interpoladas"
-
-# Você pode repetir os argumentos para digitar menos.
-"Seja ágil {0}, seja rápido {0}, salte sobre o {1} {0}".format("Jack", "castiçal")
-# => "Seja ágil Jack, seja rápido Jack, salte sobre o castiçal Jack."
-
-# Você pode usar palavras-chave se quiser contar.
-"{nome} quer comer {comida}".format(nome="Beto", comida="lasanha") # => "Beto quer comer lasanha"
-
-# Se você precisa executar seu código Python3 com um interpretador Python 2.5 ou acima, você pode usar a velha forma para formatação de texto:
-"%s podem ser %s da forma %s" % ("Strings", "interpoladas", "antiga") # => "Strings podem ser interpoladas da forma antiga"
-
-
-# None é um objeto
-None # => None
-
-# Não use o operador de igualdade "==" para comparar objetos com None
-# Use "is" para isso. Ele checará pela identidade dos objetos.
-"etc" is None # => False
-None is None # => True
-
-# None, 0, e strings/listas/dicionários vazios todos retornam False.
-# Qualquer outra coisa retorna True
-bool(0) # => False
-bool("") # => False
-bool([]) # => False
-bool({}) # => False
-
-
-####################################################
-## 2. Variáveis e coleções
-####################################################
-
-# Python tem uma função print
-print("Eu sou o Python. Prazer em conhecer!") # => Eu sou o Python. Prazer em conhecer!
-
-# Por padrão a função print também imprime o caractere de nova linha ao final.
-# Use o argumento opcional end para mudar o caractere final.
-print("Olá, Mundo", end="!") # => Olá, Mundo!
-
-# Forma simples para capturar dados de entrada via console
-input_string_var = input("Digite alguma coisa: ") # Retorna o que foi digitado em uma string
-# Observação: Em versões antigas do Python, o método input() era chamado raw_input()
-
-# Não é necessário declarar variáveis antes de iniciá-las
-# È uma convenção usar letras_minúsculas_com_sublinhados
-alguma_variavel = 5
-alguma_variavel # => 5
-
-# Acessar uma variável que não tenha sido inicializada gera uma exceção.
-# Veja Controle de Fluxo para aprender mais sobre tratamento de exceções.
-alguma_variavel_nao_inicializada # Gera a exceção NameError
-
-# Listas armazenam sequencias
-li = []
-# Você pode iniciar com uma lista com alguns valores
-outra_li = [4, 5, 6]
-
-# Adicionar conteúdo ao fim da lista com append
-li.append(1) # li agora é [1]
-li.append(2) # li agora é [1, 2]
-li.append(4) # li agora é [1, 2, 4]
-li.append(3) # li agora é [1, 2, 4, 3]
-# Remover do final da lista com pop
-li.pop() # => 3 e agora li é [1, 2, 4]
-# Vamos colocá-lo lá novamente!
-li.append(3) # li agora é [1, 2, 4, 3] novamente.
-
-# Acessar uma lista da mesma forma que você faz com um array
-li[0] # => 1
-# Acessa o último elemento
-li[-1] # => 3
-
-# Acessando além dos limites gera um IndexError
-li[4] # Gera o IndexError
-
-# Você pode acessar vários elementos com a sintaxe de limites
-# (É um limite fechado, aberto pra você que gosta de matemática.)
-li[1:3] # => [2, 4]
-# Omitindo o final
-li[2:] # => [4, 3]
-# Omitindo o início
-li[:3] # => [1, 2, 4]
-# Selecione cada segunda entrada
-li[::2] # => [1, 4]
-# Tenha uma cópia em ordem invertida da lista
-li[::-1] # => [3, 4, 2, 1]
-# Use qualquer combinação dessas para indicar limites complexos
-# li[inicio:fim:passo]
-
-# Faça uma cópia profunda de um nível usando limites
-li2 = li[:] # => li2 = [1, 2, 4, 3] mas (li2 is li) resultará em False.
-
-# Apague elementos específicos da lista com "del"
-del li[2] # li agora é [1, 2, 3]
-
-# Você pode somar listas
-# Observação: valores em li e other_li não são modificados.
-li + other_li # => [1, 2, 3, 4, 5, 6]
-
-# Concatene listas com "extend()"
-li.extend(other_li) # Agora li é [1, 2, 3, 4, 5, 6]
-
-# Verifique se algo existe na lista com "in"
-1 in li # => True
-
-# Examine tamanho com "len()"
-len(li) # => 6
-
-
-# Tuplas são como l istas, mas imutáveis.
-tup = (1, 2, 3)
-tup[0] # => 1
-tup[0] = 3 # Gera um TypeError
-
-# Observe que uma tupla de tamanho um precisa ter uma vírgula depois do
-# último elemento mas tuplas de outros tamanhos, mesmo vazias, não precisa,.
-type((1)) # => <class 'int'>
-type((1,)) # => <class 'tuple'>
-type(()) # => <class 'tuple'>
-
-# Você pode realizar com tuplas a maior parte das operações que faz com listas
-len(tup) # => 3
-tup + (4, 5, 6) # => (1, 2, 3, 4, 5, 6)
-tup[:2] # => (1, 2)
-2 in tup # => True
-
-# Você pode desmembrar tuplas (ou listas) em variáveis.
-a, b, c = (1, 2, 3) # a é 1, b é 2 e c é 3
-# Por padrão, tuplas são criadas se você não coloca parêntesis.
-d, e, f = 4, 5, 6
-# Veja como é fácil permutar dois valores
-e, d = d, e # d é 5, e é 4
-
-# Dicionários armazenam mapeamentos
-empty_dict = {}
-# Aqui está um dicionário preenchido na definição da referência
-filled_dict = {"um": 1, "dois": 2, "três": 3}
-
-# Observe que chaves para dicionários devem ser tipos imutáveis. Isto é para
-# assegurar que a chave pode ser convertida para uma valor hash constante para
-# buscas rápidas.
-# Tipos imutáveis incluem inteiros, flotas, strings e tuplas.
-invalid_dict = {[1,2,3]: "123"} # => Gera um TypeError: unhashable type: 'list'
-valid_dict = {(1,2,3):[1,2,3]} # Já os valores, podem ser de qualquer tipo.
-
-# Acesse valores com []
-filled_dict["um"] # => 1
-
-# Acesse todas as chaves como um iterável com "keys()". É necessário encapsular
-# a chamada com um list() para transformá-las em uma lista. Falaremos sobre isso
-# mais adiante. Observe que a ordem de uma chave de dicionário não é garantida.
-# Por isso, os resultados aqui apresentados podem não ser exatamente como os
-# aqui apresentados.
-list(filled_dict.keys()) # => ["três", "dois", "um"]
-
-
-# Acesse todos os valores de um iterável com "values()". Novamente, é
-# necessário encapsular ele com list() para não termos um iterável, e sim os
-# valores. Observe que, como foi dito acima, a ordem dos elementos não é
-# garantida.
-list(filled_dict.values()) # => [3, 2, 1]
-
-
-# Verifique a existência de chaves em um dicionário com "in"
-"um" in filled_dict # => True
-1 in filled_dict # => False
-
-# Acessar uma chave inexistente gera um KeyError
-filled_dict["quatro"] # KeyError
-
-# Use o método "get()" para evitar um KeyError
-filled_dict.get("um") # => 1
-filled_dict.get("quatro") # => None
-# O método get permite um parâmetro padrão para quando não existir a chave
-filled_dict.get("um", 4) # => 1
-filled_dict.get("quatro", 4) # => 4
-
-# "setdefault()" insere em dicionário apenas se a dada chave não existir
-filled_dict.setdefault("cinco", 5) # filled_dict["cinco"] tem valor 5
-filled_dict.setdefault("cinco", 6) # filled_dict["cinco"] continua 5
-
-# Inserindo em um dicionário
-filled_dict.update({"quatro":4}) # => {"um": 1, "dois": 2, "três": 3, "quatro": 4}
-#filled_dict["quatro"] = 4 #outra forma de inserir em um dicionário
-
-# Remova chaves de um dicionário com del
-del filled_dict["um"] # Remove a chave "um" de filled_dict
-
-
-# Armazenamento em sets... bem, são conjuntos
-empty_set = set()
-# Inicializa um set com alguns valores. Sim, ele parece um dicionário. Desculpe.
-some_set = {1, 1, 2, 2, 3, 4} # some_set agora é {1, 2, 3, 4}
-
-# Da mesma forma que chaves em um dicionário, elementos de um set devem ser
-# imutáveis.
-invalid_set = {[1], 1} # => Gera um TypeError: unhashable type: 'list'
-valid_set = {(1,), 1}
-
-# Pode definir novas variáveis para um conjunto
-filled_set = some_set
-
-# Inclua mais um item no set
-filled_set.add(5) # filled_set agora é {1, 2, 3, 4, 5}
-
-# Faça interseção de conjuntos com &
-other_set = {3, 4, 5, 6}
-filled_set & other_set # => {3, 4, 5}
-
-# Faça união de conjuntos com |
-filled_set | other_set # => {1, 2, 3, 4, 5, 6}
-
-# Faça a diferença entre conjuntos com -
-{1, 2, 3, 4} - {2, 3, 5} # => {1, 4}
-
-# Verifique a existência em um conjunto com in
-2 in filled_set # => True
-10 in filled_set # => False
-
-
-
-####################################################
-## 3. Controle de fluxo e iteráveis
-####################################################
-
-# Iniciemos um variável
-some_var = 5
-
-# Aqui está uma expressão if. Indentação é significante em python!
-# imprime "somevar é menor que10"
-if some_var > 10:
- print("some_var é absolutamente maior que 10.")
-elif some_var < 10: # Esta cláusula elif é opcional.
- print("some_var é menor que 10.")
-else: # Isto também é opcional.
- print("some_var é, de fato, 10.")
-
-
-"""
-Laços for iteram sobre listas
-imprime:
- cachorro é um mamífero
- gato é um mamífero
- rato é um mamífero
-"""
-for animal in ["cachorro", "gato", "rato"]:
- # Você pode usar format() para interpolar strings formatadas
- print("{} é um mamífero".format(animal))
-
-"""
-"range(número)" retorna um iterável de números
-de zero até o número escolhido
-imprime:
- 0
- 1
- 2
- 3
-"""
-for i in range(4):
- print(i)
-
-"""
-"range(menor, maior)" gera um iterável de números
-começando pelo menor até o maior
-imprime:
- 4
- 5
- 6
- 7
-"""
-for i in range(4, 8):
- print(i)
-
-"""
-"range(menor, maior, passo)" retorna um iterável de números
-começando pelo menor número até o maior númeno, pulando de
-passo em passo. Se o passo não for indicado, o valor padrão é um.
-imprime:
- 4
- 6
-"""
-for i in range(4, 8, 2):
- print(i)
-"""
-
-Laços while executam até que a condição não seja mais válida.
-imprime:
- 0
- 1
- 2
- 3
-"""
-x = 0
-while x < 4:
- print(x)
- x += 1 # Maneira mais curta para for x = x + 1
-
-# Lide com exceções com um bloco try/except
-try:
- # Use "raise" para gerar um erro
- raise IndexError("Isto é um erro de índice")
-except IndexError as e:
- pass # Pass é um não-operador. Normalmente você usa algum código de recuperação aqui.
-except (TypeError, NameError):
- pass # Varias exceções podem ser gerenciadas, se necessário.
-else: # Cláusula opcional para o bloco try/except. Deve estar após todos os blocos de exceção.
- print("Tudo certo!") # Executa apenas se o código em try não gera exceção
-finally: # Sempre é executado
- print("Nós podemos fazer o código de limpeza aqui.")
-
-# Ao invés de try/finally para limpeza você pode usar a cláusula with
-with open("myfile.txt") as f:
- for line in f:
- print(line)
-
-# Python provê uma abstração fundamental chamada Iterável.
-# Um iterável é um objeto que pode ser tratado como uma sequência.
-# O objeto retornou a função range, um iterável.
-
-filled_dict = {"um": 1, "dois": 2, "três": 3}
-our_iterable = filled_dict.keys()
-print(our_iterable) # => range(1,10). Esse é um objeto que implementa nossa interface iterável.
-
-# Nós podemos percorrê-la.
-for i in our_iterable:
- print(i) # Imprime um, dois, três
-
-# Mas não podemos acessar os elementos pelo seu índice.
-our_iterable[1] # Gera um TypeError
-
-# Um iterável é um objeto que sabe como criar um iterador.
-our_iterator = iter(our_iterable)
-
-# Nosso iterador é um objeto que pode lembrar o estado enquanto nós o percorremos.
-# Nós acessamos o próximo objeto com "next()".
-next(our_iterator) # => "um"
-
-# Ele mantém o estado enquanto nós o percorremos.
-next(our_iterator) # => "dois"
-next(our_iterator) # => "três"
-
-# Após o iterador retornar todos os seus dados, ele gera a exceção StopIterator
-next(our_iterator) # Gera StopIteration
-
-# Você pode capturar todos os elementos de um iterador aplicando list() nele.
-list(filled_dict.keys()) # => Retorna ["um", "dois", "três"]
-
-
-####################################################
-## 4. Funções
-####################################################
-
-# Use "def" para criar novas funções.
-def add(x, y):
- print("x é {} e y é {}".format(x, y))
- return x + y # Retorne valores com a cláusula return
-
-# Chamando funções com parâmetros
-add(5, 6) # => imprime "x é 5 e y é 6" e retorna 11
-
-# Outro meio de chamar funções é com argumentos nomeados
-add(y=6, x=5) # Argumentos nomeados podem aparecer em qualquer ordem.
-
-# Você pode definir funções que pegam um número variável de argumentos
-# posicionais
-def varargs(*args):
- return args
-
-varargs(1, 2, 3) # => (1, 2, 3)
-
-# Você pode definir funções que pegam um número variável de argumentos nomeados
-# também
-def keyword_args(**kwargs):
- return kwargs
-
-# Vamos chamá-lo para ver o que acontece
-keyword_args(peh="grande", lago="ness") # => {"peh": "grande", "lago": "ness"}
-
-
-# Você pode fazer ambos simultaneamente, se você quiser
-def all_the_args(*args, **kwargs):
- print(args)
- print(kwargs)
-"""
-all_the_args(1, 2, a=3, b=4) imprime:
- (1, 2)
- {"a": 3, "b": 4}
-"""
-
-# Quando chamar funções, você pode fazer o oposto de args/kwargs!
-# Use * para expandir tuplas e use ** para expandir dicionários!
-args = (1, 2, 3, 4)
-kwargs = {"a": 3, "b": 4}
-all_the_args(*args) # equivalente a foo(1, 2, 3, 4)
-all_the_args(**kwargs) # equivalente a foo(a=3, b=4)
-all_the_args(*args, **kwargs) # equivalente a foo(1, 2, 3, 4, a=3, b=4)
-
-# Retornando múltiplos valores (com atribuição de tuplas)
-def swap(x, y):
- return y, x # Retorna múltiplos valores como uma tupla sem os parêntesis.
- # (Observação: os parêntesis foram excluídos mas podem estar
- # presentes)
-
-x = 1
-y = 2
-x, y = swap(x, y) # => x = 2, y = 1
-# (x, y) = swap(x,y) # Novamente, os parêntesis foram excluídos mas podem estar presentes.
-
-# Escopo de função
-x = 5
-
-def setX(num):
- # A variável local x não é a mesma variável global x
- x = num # => 43
- print (x) # => 43
-
-def setGlobalX(num):
- global x
- print (x) # => 5
- x = num # variável global x agora é 6
- print (x) # => 6
-
-setX(43)
-setGlobalX(6)
-
-
-# Python tem funções de primeira classe
-def create_adder(x):
- def adder(y):
- return x + y
- return adder
-
-add_10 = create_adder(10)
-add_10(3) # => 13
-
-# Também existem as funções anônimas
-(lambda x: x > 2)(3) # => True
-(lambda x, y: x ** 2 + y ** 2)(2, 1) # => 5
-
-# TODO - Fix for iterables
-# Existem funções internas de alta ordem
-map(add_10, [1, 2, 3]) # => [11, 12, 13]
-map(max, [1, 2, 3], [4, 2, 1]) # => [4, 2, 3]
-
-filter(lambda x: x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
-
-# Nós podemos usar compreensão de lista para interessantes mapas e filtros
-# Compreensão de lista armazena a saída como uma lista que pode ser uma lista
-# aninhada
-[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
-[x for x in [3, 4, 5, 6, 7] if x > 5] # => [6, 7]
-
-####################################################
-## 5. Classes
-####################################################
-
-
-# Nós usamos o operador "class" para ter uma classe
-class Human:
-
- # Um atributo de classe. Ele é compartilhado por todas as instâncias dessa
- # classe.
- species = "H. sapiens"
-
- # Construtor básico, é chamado quando esta classe é instanciada.
- # Note que dois sublinhados no início e no final de uma identificados
- # significa objetos ou atributos que são usados pelo python mas vivem em
- # um namespace controlado pelo usuário. Métodos (ou objetos ou atributos)
- # como: __init__, __str__, __repr__, etc. são chamados métodos mágicos (ou
- # algumas vezes chamados métodos dunder - "double underscore")
- # Você não deve usar nomes assim por sua vontade.
- def __init__(self, name):
- @ Atribui o argumento ao atributo da instância
- self.name = name
-
- # Um método de instância. Todos os métodos tem "self" como primeiro
- # argumento
- def say(self, msg):
- return "{name}: {message}".format(name=self.name, message=msg)
-
- # Um método de classe é compartilhado por todas as instâncias
- # Eles são chamados com a classe requisitante como primeiro argumento
- @classmethod
- def get_species(cls):
- return cls.species
-
- # Um método estático é chamado sem uma referência a classe ou instância
- @staticmethod
- def grunt():
- return "*grunt*"
-
-
-# Instancie uma classe
-i = Human(name="Ian")
-print(i.say("oi")) # imprime "Ian: oi"
-
-j = Human("Joel")
-print(j.say("olá")) # imprime "Joel: olá"
-
-# Chama nosso método de classe
-i.get_species() # => "H. sapiens"
-
-# Altera um atributo compartilhado
-Human.species = "H. neanderthalensis"
-i.get_species() # => "H. neanderthalensis"
-j.get_species() # => "H. neanderthalensis"
-
-# Chama o método estático
-Human.grunt() # => "*grunt*"
-
-
-####################################################
-## 6. Módulos
-####################################################
-
-# Você pode importar módulos
-import math
-print(math.sqrt(16)) # => 4.0
-
-# Você pode importar apenas funções específicas de um módulo
-from math import ceil, floor
-print(ceil(3.7)) # => 4.0
-print(floor(3.7)) # => 3.0
-
-# Você pode importar todas as funções de um módulo para o namespace atual
-# Atenção: isso não é recomendado
-from math import *
-
-# Você pode encurtar o nome dos módulos
-import math as m
-math.sqrt(16) == m.sqrt(16) # => True
-
-# Módulos python são apenas arquivos python comuns. Você
-# pode escrever os seus, e importá-los. O nome do
-# módulo é o mesmo nome do arquivo.
-
-# Você pode procurar que atributos e funções definem um módulo.
-import math
-dir(math)
-
-
-####################################################
-## 7. Avançado
-####################################################
-
-# Geradores podem ajudar você a escrever código "preguiçoso"
-def double_numbers(iterable):
- for i in iterable:
- yield i + i
-
-# Um gerador cria valores conforme necessário.
-# Ao invés de gerar e retornar todos os valores de uma só vez ele cria um em
-# cada interação. Isto significa que valores maiores que 15 não serão
-# processados em double_numbers.
-# Nós usamos um sublinhado ao final do nome das variáveis quando queremos usar
-# um nome que normalmente colide com uma palavra reservada do python.
-range_ = range(1, 900000000)
-# Multiplica por 2 todos os números até encontrar um resultado >= 30
-for i in double_numbers(range_):
- print(i)
- if i >= 30:
- break
-
-
-# Decoradores
-# Neste exemplo beg encapsula say
-# beg irá chamar say. Se say_please é verdade então ele irá mudar a mensagem
-# retornada
-from functools import wraps
-
-
-def beg(target_function):
- @wraps(target_function)
- def wrapper(*args, **kwargs):
- msg, say_please = target_function(*args, **kwargs)
- if say_please:
- return "{} {}".format(msg, "Por favor! Eu sou pobre :(")
- return msg
-
- return wrapper
-
-
-@beg
-def say(say_please=False):
- msg = "Você me paga uma cerveja?"
- return msg, say_please
-
-
-print(say()) # Você me paga uma cerveja?
-print(say(say_please=True)) # Você me paga uma cerveja? Por favor! Eu sou pobre :(
-```
-
-## Pronto para mais?
-
-### Free Online
-
-* [Automate the Boring Stuff with Python](https://automatetheboringstuff.com)
-* [Learn Python The Hard Way](http://learnpythonthehardway.org/book/)
-* [Dive Into Python](http://www.diveintopython.net/)
-* [Ideas for Python Projects](http://pythonpracticeprojects.com)
-* [The Official Docs](http://docs.python.org/3/)
-* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)
-* [A Crash Course in Python for Scientists](http://nbviewer.ipython.org/5920182)
-* [Python Course](http://www.python-course.eu/index.php)
-* [First Steps With Python](https://realpython.com/learn/python-first-steps/)
-* [A curated list of awesome Python frameworks, libraries and software](https://github.com/vinta/awesome-python)
-* [30 Python Language Features and Tricks You May Not Know About](http://sahandsaba.com/thirty-python-language-features-and-tricks-you-may-not-know.html)
-* [Official Style Guide for Python](https://www.python.org/dev/peps/pep-0008/)
-
-### Dead Tree
-
-* [Programming Python](http://www.amazon.com/gp/product/0596158106/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0596158106&linkCode=as2&tag=homebits04-20)
-* [Dive Into Python](http://www.amazon.com/gp/product/1441413022/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1441413022&linkCode=as2&tag=homebits04-20)
-* [Python Essential Reference](http://www.amazon.com/gp/product/0672329786/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0672329786&linkCode=as2&tag=homebits04-20)