diff options
author | Adam Bard <github@adambard.com> | 2020-02-13 22:00:05 -0800 |
---|---|---|
committer | GitHub <noreply@github.com> | 2020-02-13 22:00:05 -0800 |
commit | 0a0a40dc2d29ed6ec8305bef5fffa83c14727e4c (patch) | |
tree | af8de5c938a140d28c9836bd88186eeeae85bc64 /ru-ru/pythonlegacy-ru.html.markdown | |
parent | 6078f18d130bc6b609036e7e76b3913c270d8b9c (diff) | |
parent | ae848c481fabaca935ffbe33293a43a43434d268 (diff) |
Merge pull request #3856 from sshine/make-python3-default
[Python] Make Python 3 default
Diffstat (limited to 'ru-ru/pythonlegacy-ru.html.markdown')
-rw-r--r-- | ru-ru/pythonlegacy-ru.html.markdown | 643 |
1 files changed, 643 insertions, 0 deletions
diff --git a/ru-ru/pythonlegacy-ru.html.markdown b/ru-ru/pythonlegacy-ru.html.markdown new file mode 100644 index 00000000..ead2af3d --- /dev/null +++ b/ru-ru/pythonlegacy-ru.html.markdown @@ -0,0 +1,643 @@ +--- +language: Python 2 (legacy) +lang: ru-ru +contributors: + - ["Louie Dinh", "http://ldinh.ca"] +translators: + - ["Yury Timofeev", "http://twitter.com/gagar1n"] + - ["Andre Polykanine", "https://github.com/Oire"] +filename: learnpythonlegacy-ru.py +--- + +Язык Python был создан Гвидо ван Россумом в начале 90-х. Сейчас это один из +самых популярных языков. Я влюбился в Python за понятный и доходчивый синтаксис — это +почти исполняемый псевдокод. + +С благодарностью жду ваших отзывов: [@louiedinh](http://twitter.com/louiedinh) +или louiedinh [at] [почтовый сервис Google] + +Замечание: Эта статья относится к Python 2.7, но должно работать и в других версиях Python 2.x. +Чтобы изучить Python 3.x, обратитесь к статье по Python 3. + +```python +# Однострочные комментарии начинаются с символа решётки. +""" Многострочный текст может быть + записан, используя 3 знака " и обычно используется + в качестве встроенной документации +""" + +#################################################### +## 1. Примитивные типы данных и операторы +#################################################### + +# У вас есть числа +3 #=> 3 + +# Математика работает вполне ожидаемо +1 + 1 #=> 2 +8 - 1 #=> 7 +10 * 2 #=> 20 +35 / 5 #=> 7 + +# А вот деление немного сложнее. В этом случае происходит деление +# целых чисел, и результат автоматически округляется в меньшую сторону. +5 / 2 #=> 2 + +# Чтобы делить правильно, сначала нужно немного узнать о числах +# с плавающей запятой. +2.0 # Это число с плавающей запятой +11.0 / 4.0 #=> 2.75 Вооот... Так гораздо лучше + +# Результат целочисленного деления округляется в меньшую сторону +# как для положительных, так и для отрицательных чисел. +5 // 3 # => 1 +5.0 // 3.0 # => 1.0 # работает и для чисел с плавающей запятой +-5 // 3 # => -2 +-5.0 // 3.0 # => -2.0 + +# Остаток от деления +7 % 3 # => 1 + +# Возведение в степень +2**4 # => 16 + +# Приоритет операций указывается скобками +(1 + 3) * 2 #=> 8 + +# Логические операторы +# Обратите внимание: ключевые слова «and» и «or» чувствительны к регистру букв +True and False #=> False +False or True #=> True + +# Обратите внимание, что логические операторы используются и с целыми числами +0 and 2 #=> 0 +-5 or 0 #=> -5 +0 == False #=> True +2 == True #=> False +1 == True #=> True + +# Для отрицания используется ключевое слово not +not True #=> False +not False #=> True + +# Равенство — это == +1 == 1 #=> True +2 == 1 #=> False + +# Неравенство — это != +1 != 1 #=> False +2 != 1 #=> True + +# Ещё немного сравнений +1 < 10 #=> True +1 > 10 #=> False +2 <= 2 #=> True +2 >= 2 #=> True + +# Сравнения могут быть записаны цепочкой! +1 < 2 < 3 #=> True +2 < 3 < 2 #=> False + +# Строки определяются символом " или ' +"Это строка." +'Это тоже строка.' + +# И строки тоже можно складывать! +"Привет " + "мир!" #=> "Привет мир!" + +# ... или умножать +"Привет" * 3 # => "ПриветПриветПривет" + +# Со строкой можно работать, как со списком символов +"Это строка"[0] #=> 'Э' + +# Символ % используется для форматирования строк, например: +"%s могут быть %s" % ("строки", "интерполированы") + +# Новый способ форматирования строк — использование метода format. +# Это предпочитаемый способ. +"{0} могут быть {1}".format("строки", "форматированы") + +# Если вы не хотите считать, можете использовать ключевые слова. +"{name} хочет есть {food}".format(name="Боб", food="лазанью") + +# None является объектом +None #=> None + +# Не используйте оператор равенства '=='' для сравнения +# объектов с None. Используйте для этого «is» +"etc" is None #=> False +None is None #=> True + +# Оператор 'is' проверяет идентичность объектов. Он не +# очень полезен при работе с примитивными типами, но +# зато просто незаменим при работе с объектами. + +# None, 0 и пустые строки/списки равны False. +# Все остальные значения равны True +0 == False #=> True +"" == False #=> True + + +#################################################### +## 2. Переменные и коллекции +#################################################### + +# В Python есть оператор print, доступный в версиях 2.x, но удалённый в версии 3 +print "Я Python. Приятно познакомиться!" +# В Python также есть функция print(), доступная в версиях 2.7 и 3, +# Но для версии 2.7 нужно добавить следующий импорт модуля (раскомментируйте)): +# from __future__ import print_function +print("Я тоже Python! ") + +# Объявлять переменные перед инициализацией не нужно. +some_var = 5 # По соглашению используется нижний_регистр_с_подчёркиваниями +some_var #=> 5 + +# При попытке доступа к неинициализированной переменной +# выбрасывается исключение. +# См. раздел «Поток управления» для информации об исключениях. +some_other_var # Выбрасывает ошибку именования + +# if может быть использован как выражение +"yahoo!" if 3 > 2 else 2 #=> "yahoo!" + +# Списки хранят последовательности +li = [] +# Можно сразу начать с заполненного списка +other_li = [4, 5, 6] + +# строка разделена в список +a="adambard" +list(a) #=> ['a','d','a','m','b','a','r','d'] + +# Объекты добавляются в конец списка методом append +li.append(1) # [1] +li.append(2) # [1, 2] +li.append(4) # [1, 2, 4] +li.append(3) # [1, 2, 4, 3] +# И удаляются с конца методом pop +li.pop() #=> возвращает 3 и li становится равен [1, 2, 4] +# Положим элемент обратно +li.append(3) # [1, 2, 4, 3]. + +# Обращайтесь со списком, как с обычным массивом +li[0] #=> 1 +# Присваивайте новые значения уже инициализированным индексам с помощью = +li[0] = 42 +li[0] # => 42 +li[0] = 1 # Обратите внимание: возвращаемся на исходное значение +# Обратимся к последнему элементу +li[-1] #=> 3 + +# Попытка выйти за границы массива приведёт к ошибке индекса +li[4] # Выдаёт IndexError + +# Можно обращаться к диапазону, используя так называемые срезы +# (Для тех, кто любит математику, это называется замкнуто-открытый интервал). +li[1:3] #=> [2, 4] +# Опускаем начало +li[2:] #=> [4, 3] +# Опускаем конец +li[:3] #=> [1, 2, 4] +# Выбираем каждый второй элемент +li[::2] # =>[1, 4] +# Переворачиваем список +li[::-1] # => [3, 4, 2, 1] +# Используйте сочетания всего вышеназванного для выделения более сложных срезов +# li[начало:конец:шаг] + +# Удаляем произвольные элементы из списка оператором del +del li[2] # li теперь [1, 2, 3] + +# Вы можете складывать, или, как ещё говорят, конкатенировать списки +li + other_li #=> [1, 2, 3, 4, 5, 6] — Замечание: li и other_li не изменяются +# Обратите внимание: значения li и other_li при этом не изменились. + +# Объединять списки можно методом extend +li.extend(other_li) # Теперь li содержит [1, 2, 3, 4, 5, 6] + +# Проверить элемент на вхождение в список можно оператором in +1 in li #=> True + +# Длина списка вычисляется функцией len +len(li) #=> 6 + + +# Кортежи — это такие списки, только неизменяемые +tup = (1, 2, 3) +tup[0] #=> 1 +tup[0] = 3 # Выдаёт TypeError + +# Всё то же самое можно делать и с кортежами +len(tup) #=> 3 +tup + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6) +tup[:2] #=> (1, 2) +2 in tup #=> True + +# Вы можете распаковывать кортежи (или списки) в переменные +a, b, c = (1, 2, 3) # a == 1, b == 2 и c == 3 +# Кортежи создаются по умолчанию, если опущены скобки +d, e, f = 4, 5, 6 +# Обратите внимание, как легко поменять местами значения двух переменных +e, d = d, e # теперь d == 5, а e == 4 + +# Словари содержат ассоциативные массивы +empty_dict = {} +# Вот так описывается предзаполненный словарь +filled_dict = {"one": 1, "two": 2, "three": 3} + +# Значения извлекаются так же, как из списка, с той лишь разницей, +# что индекс — у словарей он называется ключом — не обязан быть числом +filled_dict["one"] #=> 1 + +# Можно получить все ключи в виде списка с помощью метода keys +filled_dict.keys() #=> ["three", "two", "one"] +# Замечание: сохранение порядка ключей в словаре не гарантируется +# Ваши результаты могут не совпадать с этими. + +# Можно получить и все значения в виде списка, используйте метод values +filled_dict.values() #=> [3, 2, 1] +# То же самое замечание насчёт порядка ключей справедливо и здесь + +# При помощи оператора in можно проверять ключи на вхождение в словарь +"one" in filled_dict #=> True +1 in filled_dict #=> False + +# Попытка получить значение по несуществующему ключу выбросит ошибку ключа +filled_dict["four"] # KeyError + +# Чтобы избежать этого, используйте метод get() +filled_dict.get("one") #=> 1 +filled_dict.get("four") #=> None +# Метод get также принимает аргумент по умолчанию, значение которого будет +# возвращено при отсутствии указанного ключа +filled_dict.get("one", 4) #=> 1 +filled_dict.get("four", 4) #=> 4 +# Обратите внимание, что filled_dict.get("four") всё ещё => None +# (get не устанавливает значение элемента словаря) + +# Присваивайте значение ключам так же, как и в списках +filled_dict["four"] = 4 # теперь filled_dict["four"] => 4 + +# Метод setdefault() вставляет пару ключ-значение, только если такого ключа нет +filled_dict.setdefault("five", 5) #filled_dict["five"] возвращает 5 +filled_dict.setdefault("five", 6) #filled_dict["five"] по-прежнему возвращает 5 + + +# Множества содержат... ну, в общем, множества +# (которые похожи на списки, только в них не может быть дублирующихся элементов) +empty_set = set() +# Инициализация множества набором значений +some_set = set([1,2,2,3,4]) # some_set теперь равно set([1, 2, 3, 4]) + +# Порядок сортировки не гарантируется, хотя иногда они выглядят отсортированными +another_set = set([4, 3, 2, 2, 1]) # another_set теперь set([1, 2, 3, 4]) + +# Начиная с Python 2.7, вы можете использовать {}, чтобы объявить множество +filled_set = {1, 2, 2, 3, 4} # => {1, 2, 3, 4} + +# Добавление новых элементов в множество +filled_set.add(5) # filled_set равно {1, 2, 3, 4, 5} + +# Пересечение множеств: & +other_set = {3, 4, 5, 6} +filled_set & other_set #=> {3, 4, 5} + +# Объединение множеств: | +filled_set | other_set #=> {1, 2, 3, 4, 5, 6} + +# Разность множеств: - +{1,2,3,4} - {2,3,5} #=> {1, 4} + +# Проверка на вхождение во множество: in +2 in filled_set #=> True +10 in filled_set #=> False + + +#################################################### +## 3. Поток управления +#################################################### + +# Для начала заведём переменную +some_var = 5 + +# Так выглядит выражение if. Отступы в python очень важны! +# результат: «some_var меньше, чем 10» +if some_var > 10: + print("some_var намного больше, чем 10.") +elif some_var < 10: # Выражение elif необязательно. + print("some_var меньше, чем 10.") +else: # Это тоже необязательно. + print("some_var равно 10.") + + +""" +Циклы For проходят по спискам + +Результат: + собака — это млекопитающее + кошка — это млекопитающее + мышь — это млекопитающее +""" +for animal in ["собака", "кошка", "мышь"]: + # Можете использовать оператор % для интерполяции форматированных строк + print("%s — это млекопитающее" % animal) + +""" +«range(число)» возвращает список чисел +от нуля до заданного числа +Результат: + 0 + 1 + 2 + 3 +""" +for i in range(4): + print(i) + +""" +Циклы while продолжаются до тех пор, пока указанное условие не станет ложным. +Результат: + 0 + 1 + 2 + 3 +""" +x = 0 +while x < 4: + print(x) + x += 1 # Краткая запись для x = x + 1 + +# Обрабатывайте исключения блоками try/except + +# Работает в Python 2.6 и выше: +try: + # Чтобы выбросить ошибку, используется raise + raise IndexError("Это ошибка индекса") +except IndexError as e: + # pass — это просто отсутствие оператора. Обычно здесь происходит + # восстановление после ошибки. + pass +except (TypeError, NameError): + pass # Несколько исключений можно обработать вместе, если нужно. +else: # Необязательное выражение. Должно следовать за последним блоком except + print("Всё хорошо!") # Выполнится, только если не было никаких исключений + + + +#################################################### +## 4. Функции +#################################################### + +# Используйте def для создания новых функций +def add(x, y): + print("x равен %s, а y равен %s" % (x, y)) + return x + y # Возвращайте результат с помощью ключевого слова return + +# Вызов функции с аргументами +add(5, 6) #=> выводит «x равен 5, а y равен 6» и возвращает 11 + +# Другой способ вызова функции — вызов с именованными аргументами +add(y=6, x=5) # Именованные аргументы можно указывать в любом порядке. + +# Вы можете определить функцию, принимающую переменное число аргументов, +# которые будут интерпретированы как кортеж, если вы не используете * +def varargs(*args): + return args + +varargs(1, 2, 3) #=> (1,2,3) + + +# А также можете определить функцию, принимающую переменное число +# именованных аргументов, которые будут интерпретированы как словарь, +# если вы не используете ** +def keyword_args(**kwargs): + return kwargs + +# Вызовем эту функцию и посмотрим, что из этого получится +keyword_args(big="foot", loch="ness") #=> {"big": "foot", "loch": "ness"} + +# Если хотите, можете использовать оба способа одновременно +def all_the_args(*args, **kwargs): + print(args) + print(kwargs) +""" +all_the_args(1, 2, a=3, b=4) выводит: + (1, 2) + {"a": 3, "b": 4} +""" + +# Вызывая функции, можете сделать наоборот! +# Используйте символ * для распаковки кортежей и ** для распаковки словарей +args = (1, 2, 3, 4) +kwargs = {"a": 3, "b": 4} +all_the_args(*args) # эквивалентно foo(1, 2, 3, 4) +all_the_args(**kwargs) # эквивалентно foo(a=3, b=4) +all_the_args(*args, **kwargs) # эквивалентно foo(1, 2, 3, 4, a=3, b=4) + +# вы можете передавать переменное число позиционных или именованных аргументов +# другим функциям, которые их принимают, распаковывая их с помощью +# * или ** соответственно +def pass_all_the_args(*args, **kwargs): + all_the_args(*args, **kwargs) + print varargs(*args) + print keyword_args(**kwargs) + +# Область определения функций +x = 5 + +def setX(num): + # Локальная переменная x — это не то же самое, что глобальная переменная x + x = num # => 43 + print (x) # => 43 + +def setGlobalX(num): + global x + print (x) # => 5 + x = num # Глобальная переменная x теперь равна 6 + print (x) # => 6 + +setX(43) +setGlobalX(6) + +# В Python функции — «объекты первого класса» +def create_adder(x): + def adder(y): + return x + y + return adder + +add_10 = create_adder(10) +add_10(3) #=> 13 + +# Также есть и анонимные функции +(lambda x: x > 2)(3) #=> True + +# Есть встроенные функции высшего порядка +map(add_10, [1,2,3]) #=> [11, 12, 13] +filter(lambda x: x > 5, [3, 4, 5, 6, 7]) #=> [6, 7] + +# Для удобного отображения и фильтрации можно использовать списочные включения +[add_10(i) for i in [1, 2, 3]] #=> [11, 12, 13] +[x for x in [3, 4, 5, 6, 7] if x > 5] #=> [6, 7] + +#################################################### +## 5. Классы +#################################################### + +# Чтобы получить класс, мы наследуемся от object. +class Human(object): + + # Атрибут класса. Он разделяется всеми экземплярами этого класса + species = "H. sapiens" + + # Обычный конструктор, вызывается при инициализации экземпляра класса + # Обратите внимание, что двойное подчёркивание в начале и в конце имени + # означает объекты и атрибуты, которые используются Python, но находятся + # в пространствах имён, управляемых пользователем. + # Не придумывайте им имена самостоятельно. + def __init__(self, name): + # Присваивание значения аргумента атрибуту класса name + self.name = name + + # Метод экземпляра. Все методы принимают self в качестве первого аргумента + def say(self, msg): + return "%s: %s" % (self.name, msg) + + # Метод класса разделяется между всеми экземплярами + # Они вызываются с указыванием вызывающего класса в качестве первого аргумента + @classmethod + def get_species(cls): + return cls.species + + # Статический метод вызывается без ссылки на класс или экземпляр + @staticmethod + def grunt(): + return "*grunt*" + + +# Инициализация экземпляра класса +i = Human(name="Иван") +print(i.say("привет")) # Выводит: «Иван: привет» + +j = Human("Пётр") +print(j.say("Привет")) # Выводит: «Пётр: привет» + +# Вызов метода класса +i.get_species() #=> "H. sapiens" + +# Изменение разделяемого атрибута +Human.species = "H. neanderthalensis" +i.get_species() #=> "H. neanderthalensis" +j.get_species() #=> "H. neanderthalensis" + +# Вызов статического метода +Human.grunt() #=> "*grunt*" + + +#################################################### +## 6. Модули +#################################################### + +# Вы можете импортировать модули +import math +print(math.sqrt(16)) #=> 4.0 + +# Вы можете импортировать отдельные функции модуля +from math import ceil, floor +print(ceil(3.7)) #=> 4.0 +print(floor(3.7)) #=> 3.0 + +# Можете импортировать все функции модуля. +# (Хотя это и не рекомендуется) +from math import * + +# Можете сокращать имена модулей +import math as m +math.sqrt(16) == m.sqrt(16) #=> True +# Вы также можете убедиться, что функции эквивалентны +from math import sqrt +math.sqrt == m.sqrt == sqrt # => True + +# Модули в Python — это обычные Python-файлы. Вы +# можете писать свои модули и импортировать их. Название +# модуля совпадает с названием файла. + +# Вы можете узнать, какие функции и атрибуты определены +# в модуле +import math +dir(math) + +#################################################### +## 7. Дополнительно +#################################################### + +# Генераторы помогут выполнить ленивые вычисления +def double_numbers(iterable): + for i in iterable: + yield i + i + +# Генератор создаёт значения на лету. +# Он не возвращает все значения разом, а создаёт каждое из них при каждой +# итерации. Это значит, что значения больше 15 в double_numbers +# обработаны не будут. +# Обратите внимание: xrange — это генератор, который делает то же, что и range. +# Создание списка чисел от 1 до 900000000 требует много места и времени. +# xrange создаёт объект генератора, а не список сразу, как это делает range. +# Если нам нужно имя переменной, совпадающее с ключевым словом Python, +# мы используем подчёркивание в конце +xrange_ = xrange(1, 900000000) + +# Будет удваивать все числа, пока результат не превысит 30 +for i in double_numbers(xrange_): + print(i) + if i >= 30: + break + + +# Декораторы +# В этом примере beg оборачивает say +# Метод beg вызовет say. Если say_please равно True, +# он изменит возвращаемое сообщение +from functools import wraps + + +def beg(target_function): + @wraps(target_function) + def wrapper(*args, **kwargs): + msg, say_please = target_function(*args, **kwargs) + if say_please: + return "{} {}".format(msg, " Пожалуйста! У меня нет денег :(") + return msg + + return wrapper + + +@beg +def say(say_please=False): + msg = "Вы не купите мне пива?" + return msg, say_please + + +print(say()) # Вы не купите мне пива? +print(say(say_please=True)) # Вы не купите мне пива? Пожалуйста! У меня нет денег :( + +``` + +## Хотите ещё? + +### Бесплатные онлайн-материалы + +* [Learn Python The Hard Way](http://learnpythonthehardway.org/book/) +* [Dive Into Python](http://www.diveintopython.net/) +* [Официальная документация](http://docs.python.org/2.6/) +* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/) +* [Python Module of the Week](http://pymotw.com/2/) +* [A Crash Course in Python for Scientists](http://nbviewer.ipython.org/5920182) + +### Платные + +* [Programming Python](http://www.amazon.com/gp/product/0596158106/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0596158106&linkCode=as2&tag=homebits04-20) +* [Dive Into Python](http://www.amazon.com/gp/product/1441413022/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1441413022&linkCode=as2&tag=homebits04-20) +* [Python Essential Reference](http://www.amazon.com/gp/product/0672329786/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0672329786&linkCode=as2&tag=homebits04-20) + |