summaryrefslogtreecommitdiffhomepage
path: root/ru-ru
diff options
context:
space:
mode:
authorLevi Bostian <levi.bostian@banno.com>2013-11-25 09:42:37 -0600
committerLevi Bostian <levi.bostian@banno.com>2013-11-25 09:42:37 -0600
commitaf6701904b459b16cf65709cd8c70fd2f5519457 (patch)
tree68cb4bf9ead32686f492e68528e9f0761e41c500 /ru-ru
parentdf3cc00f5233dac96c0e063d87d3552f493e25f6 (diff)
parentd24c824d388669181eed99c3e94bb25c2914304a (diff)
Fix conflict bash.
Diffstat (limited to 'ru-ru')
-rw-r--r--ru-ru/c-ru.html.markdown483
-rw-r--r--ru-ru/clojure-ru.html.markdown1
-rw-r--r--ru-ru/erlang-ru.html.markdown256
-rw-r--r--ru-ru/go-ru.html.markdown306
-rw-r--r--ru-ru/objective-c-ru.html.markdown317
-rw-r--r--ru-ru/php-ru.html.markdown1
-rw-r--r--ru-ru/python-ru.html.markdown107
-rw-r--r--ru-ru/ruby-ru.html.markdown100
8 files changed, 1504 insertions, 67 deletions
diff --git a/ru-ru/c-ru.html.markdown b/ru-ru/c-ru.html.markdown
new file mode 100644
index 00000000..874e0821
--- /dev/null
+++ b/ru-ru/c-ru.html.markdown
@@ -0,0 +1,483 @@
+---
+language: c
+filename: learnc.c
+contributors:
+ - ["Adam Bard", "http://adambard.com/"]
+ - ["Árpád Goretity", "http://twitter.com/H2CO3_iOS"]
+translators:
+ - ["Evlogy Sutormin", "http://evlogii.com"]
+lang: ru-ru
+---
+
+Что ж, Си всё ещё является лидером среди современных высокопроизводительных языков.
+
+Для большинствоа программистов, Си – это самый низкоуровневый язык на котором они когда-либо писали,
+но этот язык даёт больше, чем просто повышение производительности.
+Держите это руководство в памяти и вы сможете использовать Си максимально эффективно.
+
+```c
+// Однострочный комментарий начинается с // - доступен только после С99.
+
+/*
+Многострочный комментарий выглядит так. Работает начиная с С89.
+*/
+
+// Импорт файлов происходит с помощью **#include**
+#include <stdlib.h>
+#include <stdio.h>
+#include <string.h>
+
+// Файлы <в угловых скобочках> будут подключаться из стандартной библиотеки.
+// Свои файлы необходимо подключать с помощью "двойных кавычек".
+#include "my_header.h"
+
+// Объявление функций должно происходить в .h файлах или вверху .c файла.
+void function_1();
+void function_2();
+
+// Точка входа в программу – это функция main.
+int main() {
+ // для форматированного вывода в консоль используется printf
+ // %d – означает, что будем выводить целое число, \n переводит указатель вывода
+ // на новую строчку
+ printf("%d\n", 0); // => напечатает "0"
+ // Каждый оператор заканчивается точкой с запятой.
+
+ ///////////////////////////////////////
+ // Типы
+ ///////////////////////////////////////
+
+ // int обычно имеет длину 4 байта
+ int x_int = 0;
+
+ // short обычно имеет длину 2 байта
+ short x_short = 0;
+
+ // char гарантированно имеет длину 1 байта
+ char x_char = 0;
+ char y_char = 'y'; // Символьные литералы заключаются в кавычки ''
+
+ // long как правило занимает от 4 до 8 байт
+ // long long занимает как минимум 64 бита
+ long x_long = 0;
+ long long x_long_long = 0;
+
+ // float это 32-битное число с плавающей точкой
+ float x_float = 0.0;
+
+ // double это 64-битное число с плавающей точкой
+ double x_double = 0.0;
+
+ // Целые типы могут быть беззнаковыми.
+ unsigned short ux_short;
+ unsigned int ux_int;
+ unsigned long long ux_long_long;
+
+ // sizeof(T) возвращает размер переменной типа Т в байтах.
+ // sizeof(obj) возвращает размер объекта obj в байтах.
+ printf("%zu\n", sizeof(int)); // => 4 (на большинстве машин int занимает 4 байта)
+
+ // Если аргуметом sizeof будет выражение, то этот аргумент вычисляется
+ // ещё во время компиляции кода (кроме динамических массивов).
+ int a = 1;
+ // size_t это беззнаковый целый тип который использует как минимум 2 байта
+ // для записи размера объекта
+ size_t size = sizeof(a++); // a++ не выполнится
+ printf("sizeof(a++) = %zu, где a = %d\n", size, a);
+ // выведет строку "sizeof(a++) = 4, где a = 1" (на 32-битной архитектуре)
+
+ // Можно задать размер массива при объявлении.
+ char my_char_array[20]; // Этот массив занимает 1 * 20 = 20 байт
+ int my_int_array[20]; // Этот массив занимает 4 * 20 = 80 байт (сумма 4-битных слов)
+
+ // Можно обнулить массив при объявлении.
+ char my_array[20] = {0};
+
+ // Индексация массива происходит также как и в других Си-подобных языках.
+ my_array[0]; // => 0
+
+ // Массивы изменяемы. Это просто память как и другие переменные.
+ my_array[1] = 2;
+ printf("%d\n", my_array[1]); // => 2
+
+ // В C99 (а также опционально в C11), массив может быть объявлен динамически.
+ // Размер массива не обязательно должен быть рассчитан на этапе компиляции.
+ printf("Enter the array size: "); // спрашиваем юзера размер массива
+ char buf[0x100];
+ fgets(buf, sizeof buf, stdin);
+ size_t size = strtoul(buf, NULL, 10); // strtoul парсит строку в беззнаковое целое
+ int var_length_array[size]; // объявление динамического массива
+ printf("sizeof array = %zu\n", sizeof var_length_array);
+ // Вывод программы (в зависимости от архитектуры) будет таким:
+ // > Enter the array size: 10
+ // > sizeof array = 40
+
+ // Строка – это просто массив символов, оканчивающийся нулевым (NUL (0x00)) байтом
+ // представляемым в строке специальным символом '\0'.
+ // Нам не нужно вставлять нулевой байт в строковой литерал,
+ // компилятор всё сделает за нас.
+ char a_string[20] = "This is a string";
+ printf("%s\n", a_string); // %s обозначает вывод строки
+
+ printf("%d\n", a_string[16]); // => 0
+ // байт #17 тоже равен 0 (а также 18, 19, и 20)
+
+ // Если между одинарными кавычками есть символ – это символьный литерал,
+ // но это тип int, а не char (по историческим причинам).
+
+ int cha = 'a'; // хорошо
+ char chb = 'a'; // тоже хорошо (подразумевается преобразование int в char)
+
+ ///////////////////////////////////////
+ // Операторы
+ ///////////////////////////////////////
+
+ // Можно использовать множественное объявление.
+ int i1 = 1, i2 = 2;
+ float f1 = 1.0, f2 = 2.0;
+
+ // Арифметика обычная
+ i1 + i2; // => 3
+ i2 - i1; // => 1
+ i2 * i1; // => 2
+ i1 / i2; // => 0 (0.5, но обрезается до 0)
+
+ f1 / f2; // => 0.5, плюс-минус погрешность потому что,
+ // цифры с плавающей точкой вычисляются неточно!
+
+ // Модуль
+ 11 % 3; // => 2
+
+ // Операции сравнения вам уже знакомы, но в Си нет булевого типа.
+ // Вместо него используется int. 0 это false, всё остальное это true.
+ // Операции сравнения всегда возвращают 1 или 0.
+ 3 == 2; // => 0 (false)
+ 3 != 2; // => 1 (true)
+ 3 > 2; // => 1
+ 3 < 2; // => 0
+ 2 <= 2; // => 1
+ 2 >= 2; // => 1
+
+ // Си это не Питон – операции сравнения могут быть только парными.
+ int a = 1;
+ // ОШИБКА:
+ int between_0_and_2 = 0 < a < 2;
+ // Правильно:
+ int between_0_and_2 = 0 < a && a < 2;
+
+ // Логика
+ !3; // => 0 (логическое НЕ)
+ !0; // => 1
+ 1 && 1; // => 1 (логическое И)
+ 0 && 1; // => 0
+ 0 || 1; // => 1 (лигическое ИЛИ)
+ 0 || 0; // => 0
+
+ // Битовые операторы
+ ~0x0F; // => 0xF0 (побитовое отрицание)
+ 0x0F & 0xF0; // => 0x00 (побитовое И)
+ 0x0F | 0xF0; // => 0xFF (побитовое ИЛИ)
+ 0x04 ^ 0x0F; // => 0x0B (исключающее ИЛИ (XOR))
+ 0x01 << 1; // => 0x02 (побитовый сдвиг влево (на 1))
+ 0x02 >> 1; // => 0x01 (побитовый сдвиг вправо (на 1))
+
+ // Будьте осторожны при сдвиге беззнакового int, эти операции не определены:
+ // - сдвиг в знаковый бит у целого числа (int a = 1 << 32)
+ // - сдвиг влево отрицательных чисел (int a = -1 << 2)
+
+ ///////////////////////////////////////
+ // Структуры ветвления
+ ///////////////////////////////////////
+
+ // Условный оператор
+ if (0) {
+ printf("I am never run\n");
+ } else if (0) {
+ printf("I am also never run\n");
+ } else {
+ printf("I print\n");
+ }
+
+ // Цикл с предусловием
+ int ii = 0;
+ while (ii < 10) {
+ printf("%d, ", ii++); // инкрементация происходит после того как
+ // знаечние ii передано ("postincrement")
+ } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
+
+ printf("\n");
+
+ //Цикл с постусловием
+ int kk = 0;
+ do {
+ printf("%d, ", kk);
+ } while (++kk < 10); // инкрементация происходит перед тем как
+ // передаётся знаечние kk ("preincrement")
+ // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
+
+ printf("\n");
+
+ // Цикл со счётчиком
+ int jj;
+ for (jj=0; jj < 10; jj++) {
+ printf("%d, ", jj);
+ } // => prints "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "
+
+ printf("\n");
+
+ // Ветвление с множественным выбором
+ switch (some_integral_expression) {
+ case 0: // значения должны быть целыми константами (и могут быть выражениями)
+ do_stuff();
+ break; // если не написать break; то управление будет передено следующему блоку
+ case 1:
+ do_something_else();
+ break;
+ default:
+ // если не было совпадения, то выполняется блок default:
+ fputs("ошибка!\n", stderr);
+ exit(-1);
+ break;
+ }
+
+ ///////////////////////////////////////
+ // Форматирование вывода
+ ///////////////////////////////////////
+
+ // Каждое выражение в Си имеет тип, но вы можете привести один тип к другому,
+ // если хотите (с некоторыми искажениями).
+
+ int x_hex = 0x01; // Вы можете назначать переменные с помощью шеснадцатеричного кода.
+
+ // Приведение типов будет пытаться сохранять цифровые значения.
+ printf("%d\n", x_hex); // => Prints 1
+ printf("%d\n", (short) x_hex); // => Prints 1
+ printf("%d\n", (char) x_hex); // => Prints 1
+
+ // Типы могут переполняться без вызова предупреждения.
+ printf("%d\n", (unsigned char) 257); // => 1 (Max char = 255 if char is 8 bits long)
+
+ // Для определения максимального значения типов `char`, `signed char` и `unisigned char`,
+ // соответственно используйте CHAR_MAX, SCHAR_MAX и UCHAR_MAX макросы из <limits.h>
+
+ // Целые типы могут быть приведены к вещественным и наоборот.
+ printf("%f\n", (float)100); // %f formats a float
+ printf("%lf\n", (double)100); // %lf formats a double
+ printf("%d\n", (char)100.0);
+
+ ///////////////////////////////////////
+ // Указатели
+ ///////////////////////////////////////
+
+ // Указатель – это переменная которая хранит адрес в памяти.
+ // При объявлении указателя указывается тип данных переменной на которую он будет ссылаться.
+ // Вы можете получить адрес любой переменной, а потом работать с ним.
+
+ // Используйте & для получения адреса переменной.
+ int x = 0;
+ printf("%p\n", (void *)&x); // => Напечатает адрес в памяти, где лежит переменная x
+ // (%p выводит указатель на void *)
+
+ // Для объявления указателя нужно поставить * перед именем.
+ int *px, not_a_pointer; // px это указатель на int
+ px = &x; // сохранит адрес x в px
+ printf("%p\n", (void *)px); // => Напечатает адрес в памяти, где лежит переменная px
+ printf("%zu, %zu\n", sizeof(px), sizeof(not_a_pointer));
+ // => Напечатает "8, 4" в 64 битной системе
+
+ // Для того, чтобы получить знаечние по адресу, напечатайте * перед именем.
+ // Да, использование * при объявлении указателя и получении значения по адресу
+ // немного запутано, но вы привыкнете.
+ printf("%d\n", *px); // => Напечаатет 0, значение перемененной x
+
+ // Вы также можете изменять значение, на которое указывает указатель.
+ (*px)++; // Инкрементирует значение на которое указывает px на единицу
+ printf("%d\n", *px); // => Напечатает 1
+ printf("%d\n", x); // => Напечатает 1
+
+ // Массивы удобно использовать для болшого количества однотипных данных.
+ int x_array[20];
+ int xx;
+ for (xx = 0; xx < 20; xx++) {
+ x_array[xx] = 20 - xx;
+ } // Объявление x_array с значениями 20, 19, 18,... 2, 1
+
+ // Объявление указателя на int с адресом массива.
+ int* x_ptr = x_array;
+ // x_ptr сейчас указывает на первый элемент массива (со значением 20).
+ // Это рабоатет, потому что имя массива возвращает указатель на первый элемент.
+ // Например, когда массив передаётся в функцию или назначается указателю, он
+ // невявно преобразуется в указатель.
+ // Исключения: когда массив является аргументом для оператор '&':
+ int arr[10];
+ int (*ptr_to_arr)[10] = &arr; // &arr не является 'int *'!
+ // он является "указателем на массив" (из десяти 'int'ов).
+ // или когда массив это строчный литерал, используемый при объявлении массива символов:
+ char arr[] = "foobarbazquirk";
+ // или когда массив является аргументом `sizeof` или `alignof` операторов:
+ int arr[10];
+ int *ptr = arr; // то же самое что и "int *ptr = &arr[0];"
+ printf("%zu %zu\n", sizeof arr, sizeof ptr); // напечатает "40, 4" или "40, 8"
+
+ // Декрементация и инкрементация указателей зависит от их типа
+ // (это называется арифметика указателей)
+ printf("%d\n", *(x_ptr + 1)); // => Напечатает 19
+ printf("%d\n", x_array[1]); // => Напечатает 19
+
+ // Вы также можете динамически выделять несколько блоков памяти с помощью
+ // функции malloc из стандартной библиотеки, которая принимает один
+ // аргумент типа size_t – количество байт необходимых для выделения.
+ int *my_ptr = malloc(sizeof(*my_ptr) * 20);
+ for (xx = 0; xx < 20; xx++) {
+ *(my_ptr + xx) = 20 - xx; // my_ptr[xx] = 20-xx
+ } // Выделяет память для 20, 19, 18, 17... 2, 1 (как int'ы)
+
+ // Работа с памятью с помощью указателей может давать неожиданные и
+ // непредсказуемые результаты.
+ printf("%d\n", *(my_ptr + 21)); // => Напечатает кто-нибудь-знает-что?
+ // Скорей всего программа вылетит.
+
+ // Когда вы закончили работать с памятью, которую ранее выделили, вам необходимо
+ // освободить её, иначе это может вызвать утечку памяти или ошибки.
+ free(my_ptr);
+
+ // Строки это массивы символов, но обычно они представляются как
+ // указатели на символ (как указатели на первый элемент массива).
+ // Хорошей практикой считается использование `const char *' при объявлении
+ // строчного литерала. При таком подходе литерал не может быть изменён.
+ // (например "foo"[0] = 'a' вызовет ошибку!)
+
+ const char *my_str = "This is my very own string literal";
+ printf("%c\n", *my_str); // => 'T'
+
+ // Это не работает, если строка является массивом
+ // (потенциально задаваемой с помощью строкового литерала)
+ // который находиться в перезаписываемой части памяти:
+
+ char foo[] = "foo";
+ foo[0] = 'a'; // это выполнится и строка теперь "aoo"
+
+ void function_1()
+} // конец функции main()
+
+///////////////////////////////////////
+// Функции
+///////////////////////////////////////
+
+// Синтаксис объявления функции:
+// <возвращаемый тип> <имя функции>(аргументы)
+
+int add_two_ints(int x1, int x2) {
+ return x1 + x2; // Используйте return для возврата значения
+}
+
+/*
+Данные в функцию передаются "по значению", но никто не мешает
+вам передавать в функцию указатели и менять данные по указателям.
+
+Например: инвертировать строку прямо в функции
+*/
+
+// void означает, что функция ничего не возвращает
+void str_reverse(char *str_in) {
+ char tmp;
+ int ii = 0;
+ size_t len = strlen(str_in); // `strlen()` является частью стандартной библиотеки
+ for (ii = 0; ii < len / 2; ii++) {
+ tmp = str_in[ii];
+ str_in[ii] = str_in[len - ii - 1]; // ii-тый символ с конца
+ str_in[len - ii - 1] = tmp;
+ }
+}
+
+char c[] = "This is a test.";
+str_reverse(c);
+printf("%s\n", c); // => Выведет ".tset a si sihT"
+
+///////////////////////////////////////
+// Типы и структуры определяемые пользователем
+///////////////////////////////////////
+
+// typedef используется для задания стандартным типам своих названий
+typedef int my_type;
+my_type my_type_var = 0;
+
+// Структуры это просто коллекция данных, память выделяется последовательно,
+// в том порядке в котором записаны данные.
+struct rectangle {
+ int width;
+ int height;
+};
+
+// sizeof(struct rectangle) == sizeof(int) + sizeof(int) – не всегда верно
+// из-за особенностей компиляции (необычное поведение при отступах)[1].
+
+void function_1() {
+ struct rectangle my_rec;
+
+ // Доступ к структурам через точку
+ my_rec.width = 10;
+ my_rec.height = 20;
+
+ // Вы можете объявить указатель на структуру
+ struct rectangle *my_rec_ptr = &my_rec;
+
+ // Можно доступаться к структуре и через указатель
+ (*my_rec_ptr).width = 30;
+
+ // ... или ещё лучше: используйте оператор -> для лучшей читабельночти
+ my_rec_ptr->height = 10; // то же что и "(*my_rec_ptr).height = 10;"
+}
+
+// Вы можете применить typedef к структуре, для удобства.
+typedef struct rectangle rect;
+
+int area(rect r) {
+ return r.width * r.height;
+}
+
+// Если вы имеете большую структуру, можно доступаться к ней "по указателю",
+// чтобы избежать копирования всей структуры.
+int area(const rect *r) {
+ return r->width * r->height;
+}
+
+///////////////////////////////////////
+// Указатели на функции
+///////////////////////////////////////
+
+/*
+Во время исполнения функции находятся по известным адресам в памяти.
+Указатель на функцию может быть использован для непосредственного вызова функции.
+Однако синтаксис может сбивать с толку.
+
+Пример: использование str_reverse по указателю
+*/
+
+void str_reverse_through_pointer(char *str_in) {
+ // Определение функции через указатель.
+ void (*f)(char *); // Сигнатура должна полность совпадать с целевой функцией.
+ f = &str_reverse; // Присвоить фактический адрес (во время исполнения)
+ // "f = str_reverse;" тоже будет работать.
+ //Имя функции (как и массива) возвращает указатель на начало.
+ (*f)(str_in); // Просто вызываем функцию через указатель.
+ // "f(str_in);" или вот так
+}
+```
+
+## На почитать
+
+Лучше всего найдите копию [K&R, aka "The C Programming Language"](https://en.wikipedia.org/wiki/The_C_Programming_Language)
+Это **книга** написанная создателями Си. Но будьте осторожны, она содержит идеи которые больше не считаются хорошими.
+
+Другой хороший ресурс: [Learn C the hard way](http://c.learncodethehardway.org/book/).
+
+Если у вас появился вопрос, почитайте [compl.lang.c Frequently Asked Questions](http://c-faq.com).
+
+Очень важно использовать правильные отступы и ставить пробелы в нужных местах.
+Читаемый код лучше чем красивый или быстрый код.
+Чтобы научиться писать хороший код, почитайте [Linux kernel coding stlye](https://www.kernel.org/doc/Documentation/CodingStyle).
+
+Также не забывайте, что [Google](http://google.com) и [Яндекс](http://yandex.ru) – ваши хорошие друзья.
+
+[1] http://stackoverflow.com/questions/119123/why-isnt-sizeof-for-a-struct-equal-to-the-sum-of-sizeof-of-each-member \ No newline at end of file
diff --git a/ru-ru/clojure-ru.html.markdown b/ru-ru/clojure-ru.html.markdown
index e1d68e5a..2f508a00 100644
--- a/ru-ru/clojure-ru.html.markdown
+++ b/ru-ru/clojure-ru.html.markdown
@@ -3,6 +3,7 @@ language: clojure
filename: learnclojure-ru.clj
contributors:
- ["Adam Bard", "http://adambard.com/"]
+translators:
- ["Alexey Pirogov", "http://twitter.com/alex_pir"]
lang: ru-ru
---
diff --git a/ru-ru/erlang-ru.html.markdown b/ru-ru/erlang-ru.html.markdown
new file mode 100644
index 00000000..99ea79ee
--- /dev/null
+++ b/ru-ru/erlang-ru.html.markdown
@@ -0,0 +1,256 @@
+---
+language: erlang
+contributors:
+ - ["Giovanni Cappellotto", "http://www.focustheweb.com/"]
+translators:
+ - ["Nikita Kalashnikov", "https://root.yuuzukiyo.net/"]
+filename: learnerlang-ru.erl
+lang: ru-ru
+---
+
+```erlang
+% Символ процента предваряет однострочный комментарий.
+
+%% Два символа процента обычно используются для комментариев к функциям.
+
+%%% Три символа процента используются для комментариев к модулям.
+
+% Пунктуационные знаки, используемые в Erlang:
+% Запятая (`,`) разделяет аргументы в вызовах функций, структурах данных и
+% образцах.
+% Точка (`.`) (с пробелом после них) разделяет функции и выражения в
+% оболочке.
+% Точка с запятой (`;`) разделяет выражения в следующих контекстах:
+% формулы функций, выражения `case`, `if`, `try..catch` и `receive`.
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% 1. Переменные и сопоставление с образцом.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+Num = 42. % Все названия переменных начинаются с большой буквы.
+
+% Erlang использует единичное присваивание переменным. Если вы попытаетесь
+% присвоить другое значение переменной `Num`, вы получите ошибку.
+Num = 43. % ** exception error: no match of right hand side value 43
+
+% В большинстве языков `=` обозначает операцию присвоения. В отличие от них, в
+% Erlang `=` — операция сопоставления с образцом. `Lhs = Rhs` на самом
+% деле подразумевает «вычисли правую часть выражения (Rhs) и затем сопоставь
+% результат с образцом слева (Lhs)».
+Num = 7 * 6.
+
+% Числа с плавающей точкой.
+Pi = 3.14159.
+
+% Атомы используются для представления различных нечисловых констант. Названия
+% атомов начинаются с буквы в нижнем регистре, за которой могут следовать другие
+% буквы английского алфавита, цифры, символ подчёркивания (`_`) или «собака»
+% (`@`).
+Hello = hello.
+OtherNode = example@node.
+
+% Если в имени атома нужно использовать другие символы, кроме допустимых,
+% имя атома необходимо взять в одинарные кавычки (`'`).
+AtomWithSpace = 'some atom with space'.
+
+% Кортежы подобны структурам в языке C.
+Point = {point, 10, 45}.
+
+% Если нужно извлечь определённые данные из кортежа, используется оператор
+% сопоставления с образцом — `=`.
+{point, X, Y} = Point. % X = 10, Y = 45
+
+% Символ `_` может использоваться как «заполнитель» для переменных, значения
+% которых в текущем выражении нас не интересуют. Он называется анонимной
+% переменной. В отличие от остальных переменных, множественные использования
+% `_` в одном образце не требуют, чтобы все значения, присваевыемые этой
+% переменной, были идентичными.
+Person = {person, {name, {first, joe}, {last, armstrong}}, {footsize, 42}}.
+{_, {_, {_, Who}, _}, _} = Person. % Who = joe
+
+% Список создаётся путём заключения его элементов в квадратные скобки и
+% разделения их запятыми. Отдельные элементы списка могут быть любого типа.
+% Первый элемент списка называется головой списка. Список, получающийся в
+% результате отделения головы, называется хвостом списка.
+ThingsToBuy = [{apples, 10}, {pears, 6}, {milk, 3}].
+
+% Если `T` — список, то `[H|T]` — тоже список, где `H` является головой, а `T` —
+% хвостом. Вертикальная черта (`|`) разделяет голову и хвост списка.
+% `[]` — пустой список.
+% Мы можем извлекать элементы из списка с помощью сопоставления с образцом.
+% Если у нас есть непустой список `L`, тогда выражение `[X|Y] = L`, где `X` и
+% `Y` — свободные (не связанные с другими значениям) переменные, извлечёт голову
+% списка в `X` и его хвост в `Y`.
+[FirstThing|OtherThingsToBuy] = ThingsToBuy.
+% FirstThing = {apples, 10}
+% OtherThingsToBuy = {pears, 6}, {milk, 3}
+
+% В Erlang нет строк как отдельного типа. Все используемые в программах строки
+% являются обычным списком целых чисел. Строковые значения всегда должны быть в
+% двойных кавычках (`"`).
+Name = "Hello".
+[72, 101, 108, 108, 111] = "Hello".
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% 2. Последовательное программирование.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+% Модуль — основная единица кода в Erlang. В них пишутся и сохраняются все
+% функции. Модули хранятся в файлах с расширением `.erl`.
+% Модули должны быть скомпилированы перед тем, как использовать код из них.
+% Скомпилированный файл модуля имеет разрешение `.beam`.
+-module(geometry).
+-export([area/1]). % список функций, экспортируемых из модуля.
+
+% Функция `area` состоит из двух формул (clauses). Формулы отделяются друг от
+% друга точкой с запятой, после последнего определения должна стоять точка с
+% пробелом после неё.
+% Каждое определение имеет заголовок и тело. Заголовок состоит из названия
+% функции и образца (в скобках); тело состоит из последовательных выражений,
+% вычисляемых, когда аргументы функции совпадают с образцом в заголовке.
+% Сопоставление с образцами в заголовках происходит в том порядке, в котором
+% они перечислены в определении функции.
+area({rectangle, Width, Ht}) -> Width * Ht;
+area({circle, R}) -> 3.14159 * R * R.
+
+% Компиляция файла с исходным кодом geometry.erl.
+c(geometry). % {ok,geometry}
+
+% Необходимо указывать имя модуля вместе с именем функции для определения, какую
+% именно фукнцию мы хотим вызвать.
+geometry:area({rectangle, 10, 5}). % 50
+geometry:area({circle, 1.4}). % 6.15752
+
+% В Erlang две функции с разной арностью (числом аргументов) в пределах одного
+% модуля представляются как две разные функции.
+-module(lib_misc).
+-export([sum/1]). % экспорт функции `sum` с арностью 1, принимающую один аргумент.
+sum(L) -> sum(L, 0).
+sum([], N) -> N;
+sum([H|T], N) -> sum(T, H+N).
+
+% Fun'ы — анонимные функции, называемые так по причине отсутствия имени. Зато
+% их можно присваивать переменным.
+Double = fun(X) -> 2*X end. % `Double` указывает на анонимную функцию с идентификатором: #Fun<erl_eval.6.17052888>
+Double(2). % 4
+
+% Функции могут принимать fun'ы как параметры и возвращать их в качестве
+% результата вычислений.
+Mult = fun(Times) -> ( fun(X) -> X * Times end ) end.
+Triple = Mult(3).
+Triple(5). % 15
+
+% Выделения списоков (list comprehensions) — выражения, создающие списки без
+% применения анонимных функций, фильтров или map'ов.
+% Запись `[F(X) || X <- L]` значит «список `F(X)`, где `X` последовательно
+% выбирается из списка `L`».
+L = [1,2,3,4,5].
+[2*X || X <- L]. % [2,4,6,8,10]
+% В выделениях списков могут быть генераторы и фильтры для отделения подмножеств
+% генерируемых значений.
+EvenNumbers = [N || N <- [1, 2, 3, 4], N rem 2 == 0]. % [2, 4]
+
+% Охранные выражения используются для простых проверок переменных в образцах,
+% что значительно расширяет возможности сопоставления. Они могут использоваться
+% в заголовках определений функций, предварённые ключевым словом `when`, а также
+% в условных конструкциях.
+max(X, Y) when X > Y -> X;
+max(X, Y) -> Y.
+
+% Охранные выражения можно группировать, разделяя запятой.
+% Последовательность `GuardExpr1, GuardExpr2, ..., GuardExprN` является истинной
+% только в том случае, когда все выражения, которые она содержат, являются
+% истинными.
+is_cat(A) when is_atom(A), A =:= cat -> true;
+is_cat(A) -> false.
+is_dog(A) when is_atom(A), A =:= dog -> true;
+is_dog(A) -> false.
+
+% Последовательность охранных выражений, разделённых точками с запятой, является
+% истинной в том случае, если хотя бы одно выражение из списка `G1; G2; ...; Gn`
+% является истинным.
+is_pet(A) when is_dog(A); is_cat(A) -> true;
+is_pet(A) -> false.
+
+% Записи предоставляют возможность именования определённых элементов в кортежах.
+% Определения записей могут быть включены в исходный код модулей Erlang или же
+% в заголовочные файлы с расширением `.hrl`.
+-record(todo, {
+ status = reminder, % Значение по умолчанию.
+ who = joe,
+ text
+}).
+
+% Для чтения определений записей из файлов в оболочке можно использовать команду
+% `rr`.
+rr("records.hrl"). % [todo]
+
+% Создание и изменение записей.
+X = #todo{}.
+% #todo{status = reminder, who = joe, text = undefined}
+X1 = #todo{status = urgent, text = "Fix errata in book"}.
+% #todo{status = urgent, who = joe, text = "Fix errata in book"}
+X2 = X1#todo{status = done}.
+% #todo{status = done,who = joe,text = "Fix errata in book"}
+
+% Условное выражение `case`.
+% Функция `filter` возвращет список всех элементов `X` из списка `L`, для
+% которых выражение `P(X)` является истинным.
+filter(P, [H|T]) ->
+ case P(H) of
+ true -> [H|filter(P, T)];
+ false -> filter(P, T)
+ end;
+filter(P, []) -> [].
+filter(fun(X) -> X rem 2 == 0 end, [1, 2, 3, 4]). % [2, 4]
+
+% Условное выражение `if`.
+max(X, Y) ->
+ if
+ X > Y -> X;
+ X < Y -> Y;
+ true -> nil;
+ end.
+
+% Внимание: в выражении `if` должно быть как минимум одно охранное выраженние,
+% вычисляющееся в true, иначе возникнет исключение.
+
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% 3. Обработка исключений.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+% Исключения возникают в случае внутренних ошибок системы или вызываются
+% непосредственно из кода программы с помощью вызовов `throw(Exception)`,
+% `exit(Exception)` или `erlang:error(Exception)`.
+generate_exception(1) -> a;
+generate_exception(2) -> throw(a);
+generate_exception(3) -> exit(a);
+generate_exception(4) -> {'EXIT', a};
+generate_exception(5) -> erlang:error(a).
+
+% В Erlang есть два способа обработки исключений. Первый заключается в
+% использовании выражения `try..catch` в функции, в которой возможен выброс
+% исключения.
+catcher(N) ->
+ try generate_exception(N) of
+ Val -> {N, normal, Val}
+ catch
+ throw:X -> {N, caught, thrown, X};
+ exit:X -> {N, caught, exited, X};
+ error:X -> {N, caught, error, X}
+ end.
+
+% Второй способ заключается в использовании `catch`. Во время поимки исключения
+% оно преобразуется в кортеж с информацией об ошибке.
+catcher(N) -> catch generate_exception(N).
+
+```
+
+## Ссылки:
+
+* ["Learn You Some Erlang for great good!"](http://learnyousomeerlang.com/)
+* ["Programming Erlang: Software for a Concurrent World" by Joe Armstrong](http://pragprog.com/book/jaerlang/programming-erlang)
+* [Erlang/OTP Reference Documentation](http://www.erlang.org/doc/)
+* [Erlang - Programming Rules and Conventions](http://www.erlang.se/doc/programming_rules.shtml)
diff --git a/ru-ru/go-ru.html.markdown b/ru-ru/go-ru.html.markdown
new file mode 100644
index 00000000..27b5d894
--- /dev/null
+++ b/ru-ru/go-ru.html.markdown
@@ -0,0 +1,306 @@
+---
+language: Go
+filename: learngo-ru.go
+contributors:
+ - ["Sonia Keys", "https://github.com/soniakeys"]
+translators:
+ - ["Artem Medeusheyev", "https://github.com/armed"]
+lang: ru-ru
+---
+
+Go - это язык общего назначения, целью которого является удобство, простота,
+конкуррентность. Это не тренд в компьютерных науках, а новейший и быстрый
+способ решать насущные проблемы.
+
+Концепции Go схожи с другими императивными статически типизированными языками.
+Быстро компилируется и быстро исполняется, имеет легкие в понимании конструкции
+для создания масштабируемых и многопоточных программ.
+
+Может похвастаться отличной стандартной библиотекой и большим комьюнити, полным
+энтузиазтов.
+
+```go
+// Однострочный комментарий
+/* Многострочный
+ комментарий */
+
+// Ключевое слово package присутствует в начале каждого файла.
+// Main это специальное имя, обозначающее исполняемый файл, нежели библиотеку.
+package main
+
+// Import предназначен для указания зависимостей этого файла.
+import (
+ "fmt" // Пакет в стандартной библиотеке Go
+ "net/http" // Да, это web server!
+ "strconv" // Конвертирование типов в строки и обратно
+)
+
+// Объявление функции. Main это специальная функция, служащая точкой входа для
+// исполняемой программы. Нравится вам или нет, но Go использует фигурные
+// скобки.
+func main() {
+ // Println выводит строку в stdout.
+ // В данном случае фигурирует вызов функции из пакета fmt.
+ fmt.Println("Hello world!")
+
+ // Вызов другой функции из текущего пакета.
+ beyondHello()
+}
+
+// Функции содержат входные параметры в круглых скобках.
+// Пустые скобки все равно обязательны, даже если параметров нет.
+func beyondHello() {
+ var x int // Переменные должны быть объявлены до их использования.
+ x = 3 // Присвоение значения переменной.
+ // Краткое определение := позволяет объявить перменную с автоматической
+ // подстановкой типа из значения.
+ y := 4
+ sum, prod := learnMultiple(x, y) // функция возвращает два значения
+ fmt.Println("sum:", sum, "prod:", prod) // простой вывод
+ learnTypes() // < y minutes, learn more!
+}
+
+// Функция имеющая входные параметры и возврат нескольких значений.
+func learnMultiple(x, y int) (sum, prod int) {
+ return x + y, x * y // возврат двух результатов
+}
+
+// Некотрые встроенные типы и литералы.
+func learnTypes() {
+ // Краткое определение переменной говорит само за себя.
+ s := "Learn Go!" // тип string
+
+ s2 := `"Чистый" строковой литерал
+может содержать переносы строк` // тоже тип данных string
+
+ // символ не из ASCII. Исходный код Go в кодировке UTF-8.
+ g := 'Σ' // тип rune, это алиас для типа uint32, содержит юникод символ
+
+ f := 3.14195 // float64, 64-х битное число с плавающей точкой (IEEE-754)
+ c := 3 + 4i // complex128, внутри себя содержит два float64
+
+ // Синтаксис var с инициализациями
+ var u uint = 7 // беззнаковое, но размер зависит от реализации, как и у int
+ var pi float32 = 22. / 7
+
+ // Синтаксис приведения типа с кратким определением
+ n := byte('\n') // byte алиас для uint8
+
+ // Массивы (Array) имеют фиксированный размер на момент компиляции.
+ var a4 [4]int // массив из 4-х int, проинициализирован нулями
+ a3 := [...]int{3, 1, 5} // массив из 3-х int, ручная инициализация
+
+ // Slice имеют динамическую длину. И массивы и slice-ы имеют каждый свои
+ // преимущества, но slice-ы используются гораздо чаще.
+ s3 := []int{4, 5, 9} // по сравнению с a3 тут нет троеточия
+ s4 := make([]int, 4) // выделение памяти для slice из 4-х int (нули)
+ var d2 [][]float64 // только объявление, память не выделяется
+ bs := []byte("a slice") // конвертирование строки в slice байтов
+
+ p, q := learnMemory() // объявление p и q как указателей на int.
+ fmt.Println(*p, *q) // * извлекает указатель. Печатает два int-а.
+
+ // Map как словарь или хеш теблица из других языков является ассоциативным
+ // массивом с динамически изменяемым размером.
+ m := map[string]int{"three": 3, "four": 4}
+ m["one"] = 1
+
+ delete(m, "three") // встроенная функция, удаляет элемент из map-а.
+
+ // Неиспользуемые переменные в Go являются ошибкой.
+ // Нижнее подчеркивание позволяет игнорировать такие переменные.
+ _, _, _, _, _, _, _, _, _ = s2, g, f, u, pi, n, a3, s4, bs
+ // Вывод считается использованием переменной.
+ fmt.Println(s, c, a4, s3, d2, m)
+
+ learnFlowControl() // идем далее
+}
+
+// У Go есть полноценный сборщик мусора. В нем есть указатели но нет арифметики
+// указатеей. Вы можете допустить ошибку с указателем на nil, но не с его
+// инкрементацией.
+func learnMemory() (p, q *int) {
+ // Именованные возвращаемые значения p и q являются указателями на int.
+ p = new(int) // встроенная функция new выделяет память.
+ // Выделенный int проинициализирован нулем, p больше не содержит nil.
+ s := make([]int, 20) // Выделение единого блока памяти под 20 int-ов,
+ s[3] = 7 // назначение одному из них,
+ r := -2 // опредление еще одной локальной переменной,
+ return &s[3], &r // амперсанд обозначает получение адреса переменной.
+}
+
+func expensiveComputation() int {
+ return 1e6
+}
+
+func learnFlowControl() {
+ // If-ы всегда требуют наличине фигурных скобок, но круглые скобки
+ // необязательны.
+ if true {
+ fmt.Println("told ya")
+ }
+ // Форматирование кода стандартизировано утилитой "go fmt".
+ if false {
+ // все тлен
+ } else {
+ // жизнь прекрасна
+ }
+ // Использоване switch на замену нескольким if-else
+ x := 1
+ switch x {
+ case 0:
+ case 1:
+ // case-ы в Go не проваливаются, т.е. break по умолчанию
+ case 2:
+ // не выполнится
+ }
+ // For, как и if не требует круглых скобок
+ for x := 0; x < 3; x++ { // ++ это операция
+ fmt.Println("итерация", x)
+ }
+ // тут x == 1.
+
+ // For это единственный цикл в Go, но у него несколько форм.
+ for { // бесконечный цикл
+ break // не такой уж и бесконечный
+ continue // не выполнится
+ }
+ // Как и в for, := в if-е означает объявление и присвоение значения y,
+ // затем проверка y > x.
+ if y := expensiveComputation(); y > x {
+ x = y
+ }
+ // Функции являются замыканиями.
+ xBig := func() bool {
+ return x > 100 // ссылается на x, объявленый выше switch.
+ }
+ fmt.Println("xBig:", xBig()) // true (т.к. мы присвоили x = 1e6)
+ x /= 1e5 // тут х == 10
+ fmt.Println("xBig:", xBig()) // теперь false
+
+ // Метки, куда же без них, их все любят.
+ goto love
+love:
+
+ learnInterfaces() // О! Интерфейсы, идем далее.
+}
+
+// Объявление Stringer как интерфейса с одним мметодом, String.
+type Stringer interface {
+ String() string
+}
+
+// Объявление pair как структуры с двумя полями x и y типа int.
+type pair struct {
+ x, y int
+}
+
+// Объявление метода для типа pair. Теперь pair реализует интерфейс Stringer.
+func (p pair) String() string { // p в данном случае называют receiver-ом
+ // Sprintf - еще одна функция из пакета fmt.
+ // Обращение к полям p через точку.
+ return fmt.Sprintf("(%d, %d)", p.x, p.y)
+}
+
+func learnInterfaces() {
+ // Синтаксис с фигурными скобками это "литерал структуры". Он возвращает
+ // проинициализированную структуру, а оператор := присваивает ее в p.
+ p := pair{3, 4}
+ fmt.Println(p.String()) // вызов метода String у p, типа pair.
+ var i Stringer // объявление i как типа с интерфейсом Stringer.
+ i = p // валидно, т.к. pair реализует Stringer.
+ // Вызов метода String у i, типа Stringer. Вывод такой же что и выше.
+ fmt.Println(i.String())
+
+ // Функции в пакете fmt сами всегда вызывают метод String у объектов для
+ // получения строкового представления о них.
+ fmt.Println(p) // Вывод такой же что и выше. Println вызывает метод String.
+ fmt.Println(i) // тоже самое
+
+ learnErrorHandling()
+}
+
+func learnErrorHandling() {
+ // Идиома ", ok" служит для обозначения сработало что-то или нет.
+ m := map[int]string{3: "three", 4: "four"}
+ if x, ok := m[1]; !ok { // ok будет false, потому что 1 нет в map-е.
+ fmt.Println("тут никого")
+ } else {
+ fmt.Print(x) // x содержал бы значение, если бы 1 был в map-е.
+ }
+ // Идиома ", err" служит для обозначения была ли ошибка или нет.
+ if _, err := strconv.Atoi("non-int"); err != nil { // _ игнорирует значение
+ // выведет "strconv.ParseInt: parsing "non-int": invalid syntax"
+ fmt.Println(err)
+ }
+ // Мы еще обратимся к интерфейсам чуть позже, а пока...
+ learnConcurrency()
+}
+
+// c это тип данных channel (канал), объект для конкуррентного взаимодействия.
+func inc(i int, c chan int) {
+ c <- i + 1 // когда channel слева, <- являтся оператором "отправки".
+}
+
+// Будем использовать функцию inc для конкуррентной инкрементации чисел.
+func learnConcurrency() {
+ // Тот же make, что и в случае со slice. Он предназначен для выделения
+ // памяти и инициализации типов slice, map и channel.
+ c := make(chan int)
+ // Старт трех конкуррентных goroutine. Числа будут инкрементированы
+ // конкуррентно и, может быть параллельно, если машина правильно
+ // сконфигурирована и позволяет это делать. Все они будут отправлены в один
+ // и тот же канал.
+ go inc(0, c) // go начинает новую горутину.
+ go inc(10, c)
+ go inc(-805, c)
+ // Считывание всех трех результатов из канала и вывод на экран.
+ // Нет никакой гарантии в каком порядке они будут выведены.
+ fmt.Println(<-c, <-c, <-c) // канал справа, <- обозначает "получение".
+
+ cs := make(chan string) // другой канал, содержит строки.
+ cc := make(chan chan string) // канал каналов со строками.
+ go func() { c <- 84 }() // пуск новой горутины для отправки значения
+ go func() { cs <- "wordy" }() // еще раз, теперь для cs
+ // Select тоже что и switch, но работает с каналами. Он случайно выбирает
+ // готовый для взаимодействия канал.
+ select {
+ case i := <-c: // полученное значение можно присвоить переменной
+ fmt.Printf("это %T", i)
+ case <-cs: // либо значение можно игнорировать
+ fmt.Println("это строка")
+ case <-cc: // пустой канал, не готов для коммуникации.
+ fmt.Println("это не выполнится.")
+ }
+ // В этой точке значение будет получено из c или cs. Одна горутина будет
+ // завершена, другая останется заблокированной.
+
+ learnWebProgramming() // Да, Go это может.
+}
+
+// Всего одна функция из пакета http запускает web-сервер.
+func learnWebProgramming() {
+ // У ListenAndServe первый параметр это TCP адрес, который нужно слушать.
+ // Второй параметр это интерфейс типа http.Handler.
+ err := http.ListenAndServe(":8080", pair{})
+ fmt.Println(err) // не игнорируйте сообщения об ошибках
+}
+
+// Реализация интерфейса http.Handler для pair, только один метод ServeHTTP.
+func (p pair) ServeHTTP(w http.ResponseWriter, r *http.Request) {
+ // Обработка запроса и отправка данных методом из http.ResponseWriter
+ w.Write([]byte("You learned Go in Y minutes!"))
+}
+```
+
+## Что дальше
+
+Основа всех основ в Go это [официальный веб сайт](http://golang.org/).
+Там можно пройти туториал, поиграться с интерактивной средой Go и почитать
+объемную документацию.
+
+Для живого ознакомления рекомендуется почитать исходные коды [стандартной
+библиотеки Go](http://golang.org/src/pkg/). Отлично задокументированая, она
+является лучшим источником для чтения и понимания Go, его стиля и идиом. Либо
+можно, кликнув на имени функции в [документации](http://golang.org/pkg/),
+перейти к ее исходным кодам.
diff --git a/ru-ru/objective-c-ru.html.markdown b/ru-ru/objective-c-ru.html.markdown
new file mode 100644
index 00000000..72e3b9e0
--- /dev/null
+++ b/ru-ru/objective-c-ru.html.markdown
@@ -0,0 +1,317 @@
+---
+language: Objective-C
+filename: LearnObjectiveC.m
+contributors:
+ - ["Eugene Yagrushkin", "www.about.me/yagrushkin"]
+ - ["Yannick Loriot", "https://github.com/YannickL"]
+translators:
+ - ["Evlogy Sutormin", "http://evlogii.com"]
+lang: ru-ru
+---
+
+Objective-C — компилируемый объектно-ориентированный язык программирования, используемый корпорацией Apple,
+построенный на основе языка Си и парадигм Smalltalk.
+В частности, объектная модель построена в стиле Smalltalk — то есть объектам посылаются сообщения.
+
+```cpp
+// Однострочный комментарий
+
+/*
+Многострочный
+комментарий
+*/
+
+// Импорт файлов фреймворка Foundation с помощью #import
+#import <Foundation/Foundation.h>
+#import "MyClass.h"
+
+// Точка входа в программу это функция main,
+// которая возвращает целый тип integer
+int main (int argc, const char * argv[])
+{
+ // Создание autorelease pool для управления памятью
+ NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
+
+ // Используйте NSLog для печати в консоль
+ NSLog(@"Hello World!"); // Напечатает строку "Hello World!"
+
+ ///////////////////////////////////////
+ // Типы и переменные
+ ///////////////////////////////////////
+
+ // Простое объявление
+ int myPrimitive1 = 1;
+ long myPrimitive2 = 234554664565;
+
+ // Помещайте * в начало названия объекта для строго типизированного объявления
+ MyClass *myObject1 = nil; // Строгая типизация
+ id myObject2 = nil; // Слабая типизация
+
+ NSLog(@"%@ and %@", myObject1, [myObject2 description]); // напечатает "(null) and (null)"
+ // %@ – это объект
+ // 'description' это общий для всех объектов метод вывода данных
+
+ // Строка
+ NSString *worldString = @"World";
+ NSLog(@"Hello %@!", worldString); // напечатает "Hello World!"
+
+ // Символьные литералы
+ NSNumber *theLetterZNumber = @'Z';
+ char theLetterZ = [theLetterZNumber charValue];
+ NSLog(@"%c", theLetterZ);
+
+ // Целочисленный литералы
+ NSNumber *fortyTwoNumber = @42;
+ int fortyTwo = [fortyTwoNumber intValue];
+ NSLog(@"%i", fortyTwo);
+
+ // Беззнаковый целочисленный литерал
+ NSNumber *fortyTwoUnsignedNumber = @42U;
+ unsigned int fortyTwoUnsigned = [fortyTwoUnsignedNumber unsignedIntValue];
+ NSLog(@"%u", fortyTwoUnsigned);
+
+ NSNumber *fortyTwoShortNumber = [NSNumber numberWithShort:42];
+ short fortyTwoShort = [fortyTwoShortNumber shortValue];
+ NSLog(@"%hi", fortyTwoShort);
+
+ NSNumber *fortyTwoLongNumber = @42L;
+ long fortyTwoLong = [fortyTwoLongNumber longValue];
+ NSLog(@"%li", fortyTwoLong);
+
+ // Вещественный литерал
+ NSNumber *piFloatNumber = @3.141592654F;
+ float piFloat = [piFloatNumber floatValue];
+ NSLog(@"%f", piFloat);
+
+ NSNumber *piDoubleNumber = @3.1415926535;
+ double piDouble = [piDoubleNumber doubleValue];
+ NSLog(@"%f", piDouble);
+
+ // BOOL (булевый) литерал
+ NSNumber *yesNumber = @YES;
+ NSNumber *noNumber = @NO;
+
+ // Массив
+ NSArray *anArray = @[@1, @2, @3, @4];
+ NSNumber *thirdNumber = anArray[2];
+ NSLog(@"Third number = %@", thirdNumber); // Print "Third number = 3"
+
+ // Словарь
+ NSDictionary *aDictionary = @{ @"key1" : @"value1", @"key2" : @"value2" };
+ NSObject *valueObject = aDictionary[@"A Key"];
+ NSLog(@"Object = %@", valueObject); // Напечатает "Object = (null)"
+
+ ///////////////////////////////////////
+ // Операторы
+ ///////////////////////////////////////
+
+ // Операторы работают также как в Си.
+ // Например:
+ 2 + 5; // => 7
+ 4.2f + 5.1f; // => 9.3f
+ 3 == 2; // => 0 (НЕТ)
+ 3 != 2; // => 1 (ДА)
+ 1 && 1; // => 1 (логическое И)
+ 0 || 1; // => 1 (логическое ИЛИ)
+ ~0x0F; // => 0xF0 (побитовое отрицание)
+ 0x0F & 0xF0; // => 0x00 (побитовое И)
+ 0x01 << 1; // => 0x02 (побитовый сдвиг влево (на 1))
+
+ ///////////////////////////////////////
+ // Структуры ветвления
+ ///////////////////////////////////////
+
+ // Условный оператор
+ if (NO)
+ {
+ NSLog(@"I am never run");
+ } else if (0)
+ {
+ NSLog(@"I am also never run");
+ } else
+ {
+ NSLog(@"I print");
+ }
+
+ // Ветвление с множественным выбором
+ switch (2)
+ {
+ case 0:
+ {
+ NSLog(@"I am never run");
+ } break;
+ case 1:
+ {
+ NSLog(@"I am also never run");
+ } break;
+ default:
+ {
+ NSLog(@"I print");
+ } break;
+ }
+
+ // Цикл с предусловием
+ int ii = 0;
+ while (ii < 4)
+ {
+ NSLog(@"%d,", ii++); // ii++ инкрементирует ii после передачи значения
+ } // => напечатает "0,"
+ // "1,"
+ // "2,"
+ // "3,"
+
+ // Цикл со счётчиком
+ int jj;
+ for (jj=0; jj < 4; jj++)
+ {
+ NSLog(@"%d,", jj);
+ } // => напечатает "0,"
+ // "1,"
+ // "2,"
+ // "3,"
+
+ // // Цикл просмотра
+ NSArray *values = @[@0, @1, @2, @3];
+ for (NSNumber *value in values)
+ {
+ NSLog(@"%@,", value);
+ } // => напечатает "0,"
+ // "1,"
+ // "2,"
+ // "3,"
+
+ // Обработка исключений
+ @try
+ {
+ // Ваше исключение здесь
+ @throw [NSException exceptionWithName:@"FileNotFoundException"
+ reason:@"File Not Found on System" userInfo:nil];
+ } @catch (NSException * e)
+ {
+ NSLog(@"Exception: %@", e);
+ } @finally
+ {
+ NSLog(@"Finally");
+ } // => напечатает "Exception: File Not Found on System"
+ // "Finally"
+
+ ///////////////////////////////////////
+ // Объекты
+ ///////////////////////////////////////
+
+ // Создание объектов через выделение памяти и инициализацию.
+ // Объект не является полнофункциональным пока обе части не выполнятся.
+ MyClass *myObject = [[MyClass alloc] init];
+
+ // В Objective-C можель ООП базируется на передаче сообщений.
+ // В Objective-C Вы не просто вызваете метод; вы посылаете сообщение.
+ [myObject instanceMethodWithParameter:@"Steve Jobs"];
+
+ // Очищайте память, перед завершением работы программы.
+ [pool drain];
+
+ // Конец программы.
+ return 0;
+}
+
+///////////////////////////////////////
+// Классы и функции
+///////////////////////////////////////
+
+// Объявляйте свой класс в файле МойКласс.h
+// Синтаксис объявления:
+// @interface ИмяКласса : ИмяКлассаРодителя <ИмплементируемыеПротоколы>
+// {
+// Объявление переменных;
+// }
+// -/+ (тип) Объявление метода(ов).
+// @end
+
+
+@interface MyClass : NSObject <MyProtocol>
+{
+ int count;
+ id data;
+ NSString *name;
+}
+// При объявлении свойств сразу генерируются геттер и сеттер
+@property int count;
+@property (copy) NSString *name; // Скопировать объект в ходе присвоения.
+@property (readonly) id data; // Генерация только геттера
+
+// Методы
++/- (return type)methodSignature:(Parameter Type *)parameterName;
+
+// + для методов класса
++ (NSString *)classMethod;
+
+// - для метода объекта
+- (NSString *)instanceMethodWithParameter:(NSString *)string;
+- (NSNumber *)methodAParameterAsString:(NSString*)string andAParameterAsNumber:(NSNumber *)number;
+
+@end
+
+// Имплементируйте методы в файле МойКласс.m:
+
+@implementation MyClass
+
+// Вызывается при высвобождении памяти под объектом
+- (void)dealloc
+{
+}
+
+// Конструкторы – это способ осздания объектов класса.
+// Это обычный конструктор вызываемый при создании объекта клсааа.
+- (id)init
+{
+ if ((self = [super init]))
+ {
+ self.count = 1;
+ }
+ return self;
+}
+
++ (NSString *)classMethod
+{
+ return [[self alloc] init];
+}
+
+- (NSString *)instanceMethodWithParameter:(NSString *)string
+{
+ return @"New string";
+}
+
+- (NSNumber *)methodAParameterAsString:(NSString*)string andAParameterAsNumber:(NSNumber *)number
+{
+ return @42;
+}
+
+// Методы объявленные в МyProtocol (см. далее)
+- (void)myProtocolMethod
+{
+ // имплементация
+}
+
+@end
+
+/*
+ * Протокол объявляет методы которые должны быть имплементированы
+ * Протокол не является классом. Он просто определяет интерфейс,
+ * который должен быть имплементирован.
+ */
+
+@protocol MyProtocol
+ - (void)myProtocolMethod;
+@end
+```
+## На почитать
+
+[Wikipedia Objective-C](http://en.wikipedia.org/wiki/Objective-C)
+
+[Learning Objective-C](http://developer.apple.com/library/ios/referencelibrary/GettingStarted/Learning_Objective-C_A_Primer/)
+
+[iOS For High School Students: Getting Started](http://www.raywenderlich.com/5600/ios-for-high-school-students-getting-started)
+
+[iOS разработчик: Обзор книг для новичка](http://habrahabr.ru/post/166213/)
+
+[Хочешь быть iOS разработчиком? Будь им!](http://www.pvsm.ru/ios/12662/print/)
diff --git a/ru-ru/php-ru.html.markdown b/ru-ru/php-ru.html.markdown
index 9133ecca..edcac4dd 100644
--- a/ru-ru/php-ru.html.markdown
+++ b/ru-ru/php-ru.html.markdown
@@ -3,6 +3,7 @@ language: php
contributors:
- ["Malcolm Fell", "http://emarref.net/"]
- ["Trismegiste", "https://github.com/Trismegiste"]
+translators:
- ["SlaF", "https://github.com/SlaF"]
lang: ru-ru
filename: learnphp-ru.php
diff --git a/ru-ru/python-ru.html.markdown b/ru-ru/python-ru.html.markdown
index 9163c8aa..df4a38a8 100644
--- a/ru-ru/python-ru.html.markdown
+++ b/ru-ru/python-ru.html.markdown
@@ -2,16 +2,18 @@
language: python
lang: ru-ru
contributors:
+ - ["Louie Dinh", "http://ldinh.ca"]
+translators:
- ["Yury Timofeev", "http://twitter.com/gagar1n"]
filename: learnpython-ru.py
---
-Язык Python был создан Гвидо ван Россумом в ранние 90-е. Сегодня это один из самых популярных
-языков. Я влюбился в него благодаря его понятному и доходчивому синтаксису - это почти что исполняемый псевдокод.
+Язык Python был создан Гвидо ван Россумом в начале 90-х. Сейчас это один из самых популярных
+языков. Я люблю его за его понятный и доходчивый синтаксис - это почти что исполняемый псевдокод.
-Обратная связь будет высоко оценена! Вы можете связаться со мной: [@louiedinh](http://twitter.com/louiedinh) или louiedinh [at] [google's email service]
+С благодарностью жду ваших отзывов: [@louiedinh](http://twitter.com/louiedinh) или louiedinh [at] [google's email service]
-Замечание: Эта статья относится к Python 2.7, но должна быть применима к Python 2.x. Скоро ожидается версия и для Python 3!
+Замечание: Эта статья относится к Python 2.7, но должно работать и в Python 2.x. Скоро будет версия и для Python 3!
```python
# Однострочные комментарии начинаются с hash-символа.
@@ -21,25 +23,25 @@ filename: learnpython-ru.py
"""
####################################################
-## 1. Примитивные типы данных и операторв
+## 1. Примитивные типы данных и операторов
####################################################
# У вас есть числа
3 #=> 3
-# Математика работает так, как вы и думаете
+# Математика работает вполне ожидаемо
1 + 1 #=> 2
8 - 1 #=> 7
10 * 2 #=> 20
35 / 5 #=> 7
-# Деление немного сложнее. Это деление целых чисел и результат
-# автоматически округляется в меньшую сторону.
+# А вот деление немного сложнее. В этом случае происходит деление
+№ целых чисел и результат автоматически округляется в меньшую сторону.
5 / 2 #=> 2
# Чтобы научиться делить, сначала нужно немного узнать о дробных числах.
-2.0 # Это дробное число.
-11.0 / 4.0 #=> 2.75 вооот... гораздо лучше
+2.0 # Это дробное число
+11.0 / 4.0 #=> 2.75 Вооот... Так гораздо лучше
# Приоритет операций указывается скобками
(1 + 3) * 2 #=> 8
@@ -60,7 +62,7 @@ not False #=> True
1 != 1 #=> False
2 != 1 #=> True
-# Больше сравнений
+# Еще немного сравнений
1 < 10 #=> True
1 > 10 #=> False
2 <= 2 #=> True
@@ -70,36 +72,36 @@ not False #=> True
1 < 2 < 3 #=> True
2 < 3 < 2 #=> False
-# Строки создаются при символом " или '
+# Строки определяются символом " или '
"Это строка."
'Это тоже строка.'
-# Строки тоже могут складываться!
+# И строки тоже могут складываться!
"Привет " + "мир!" #=> "Привет мир!"
-# Со строкой можно работать как со списком символов
+# Со строкой можно работать, как со списком символов
"Это строка"[0] #=> 'Э'
-# % используется для форматирования строк, например:
+# Символ % используется для форматирования строк, например:
"%s могут быть %s" % ("строки", "интерполированы")
# Новый метод форматирования строк - использование метода format.
# Это предпочитаемый способ.
"{0} могут быть {1}".format("строки", "форматированы")
-# Вы можете использовать ключевые слова, если не хотите считать.
+# Если вы не хотите считать, можете использовать ключевые слова.
"{name} хочет есть {food}".format(name="Боб", food="лазанью")
# None является объектом
None #=> None
-# Не используйте оператор равенства `==` для сравнения
-# объектов с None. Используйте для этого `is`
+# Не используйте оператор равенства '=='' для сравнения
+# объектов с None. Используйте для этого 'is'
"etc" is None #=> False
None is None #=> True
# Оператор 'is' проверяет идентичность объектов. Он не
# очень полезен при работе с примитивными типами, но
-# очень полезен при работе с объектами.
+# зато просто незаменим при работе с объектами.
# None, 0, и пустые строки/списки равны False.
# Все остальные значения равны True
@@ -111,15 +113,15 @@ None is None #=> True
## 2. Переменные и коллекции
####################################################
-# Печать довольно проста
+# Печатать довольно просто
print "Я Python. Приятно познакомиться!"
-# Необязательно объявлять переменные перед присваиванием им значения.
+# Необязательно объявлять переменные перед их инициализацией.
some_var = 5 # По соглашению используется нижний_регистр_с_подчеркиваниями
some_var #=> 5
-# При попытке доступа к переменной, которой не было ранее присвоено значение,
+# При попытке доступа к неинициализированной переменной,
# выбрасывается исключение.
# См. раздел "Поток управления" для информации об исключениях.
some_other_var # Выбрасывает ошибку именования
@@ -133,25 +135,25 @@ li = []
other_li = [4, 5, 6]
# Объекты добавляются в конец списка методом append
-li.append(1) #li содержит [1]
-li.append(2) #li содержит [1, 2]
-li.append(4) #li содержит [1, 2, 4]
-li.append(3) #li содержит [1, 2, 4, 3]
-# Удаляются с конца методом pop
-li.pop() #=> 3 и li содержит [1, 2, 4]
-# Положим его обратно
-li.append(3) # li содержит [1, 2, 4, 3] опять.
+li.append(1) # [1]
+li.append(2) # [1, 2]
+li.append(4) # [1, 2, 4]
+li.append(3) # [1, 2, 4, 3]
+# И удаляются с конца методом pop
+li.pop() #=> возвращает 3 и li становится равен [1, 2, 4]
+# Положим элемент обратно
+li.append(3) # [1, 2, 4, 3].
# Обращайтесь со списком, как с обычным массивом
li[0] #=> 1
-# Посмотрим на последний элемент
+# Обратимся к последнему элементу
li[-1] #=> 3
-# Попытка выйти за границы массива приводит к IndexError
+# Попытка выйти за границы массива приведет к IndexError
li[4] # Выдает IndexError
# Можно обращаться к диапазону, используя "кусочный синтаксис" (slice syntax)
-# (Для тех из вас, кто любит математику, это замкнуто/открытый интервал.)
+# (Для тех, кто любит математику, это называется замкнуто/открытый интервал.)
li[1:3] #=> [2, 4]
# Опускаем начало
li[2:] #=> [4, 3]
@@ -159,38 +161,38 @@ li[2:] #=> [4, 3]
li[:3] #=> [1, 2, 4]
# Удаляем произвольные элементы из списка оператором del
-del li[2] # li содержит [1, 2, 3]
+del li[2] # [1, 2, 3]
# Вы можете складывать списки
-li + other_li #=> [1, 2, 3, 4, 5, 6] - ЗАмечание: li и other_li остаются нетронутыми
+li + other_li #=> [1, 2, 3, 4, 5, 6] - Замечание: li и other_li остаются нетронутыми
# Конкатенировать списки можно методом extend
li.extend(other_li) # Теперь li содержит [1, 2, 3, 4, 5, 6]
-# Проверять элемент на вхождение на список оператором in
+# Проверить элемент на вхождение в список можно оператором in
1 in li #=> True
-# Длина списка вычисляется при помощи len
+# Длина списка вычисляется функцией len
len(li) #=> 6
-# Кортежи - это как списки, только неизменяемые
+# Кортежи - это такие списки, только неизменяемые
tup = (1, 2, 3)
tup[0] #=> 1
tup[0] = 3 # Выдает TypeError
-# Все те же штуки можно делать и с кортежами
+# Все то же самое можно делать и с кортежами
len(tup) #=> 3
tup + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6)
tup[:2] #=> (1, 2)
2 in tup #=> True
# Вы можете распаковывать кортежи (или списки) в переменные
-a, b, c = (1, 2, 3) # a теперь равно 1, b равно 2 и c равно 3
+a, b, c = (1, 2, 3) # a == 1, b == 2 и c == 3
# Кортежи создаются по умолчанию, если опущены скобки
d, e, f = 4, 5, 6
# Обратите внимание, как легко поменять местами значения двух переменных
-e, d = d, e # d теперь равно 5 and e равно 4
+e, d = d, e # теперь d == 5, а e == 4
# Словари содержат ассоциативные массивы
@@ -208,7 +210,7 @@ filled_dict.keys() #=> ["three", "two", "one"]
# Можно получить и все значения в виде списка
filled_dict.values() #=> [3, 2, 1]
-# Замечание - то же самое, что и выше, насчет порядка ключей
+# То же самое замечание насчет порядка ключей справедливо и здесь
# При помощи оператора in можно проверять ключи на вхождение в словарь
"one" in filled_dict #=> True
@@ -260,7 +262,7 @@ filled_set | other_set #=> {1, 2, 3, 4, 5, 6}
## 3. Поток управления
####################################################
-# Давайте заведем переменную
+# Для начала заведем переменную
some_var = 5
# Так выглядит выражение if. Отступы в python очень важны!
@@ -274,8 +276,9 @@ else: # Это тоже необязательно.
"""
-Циклы For проходят по циклам
-результат:
+Циклы For проходят по спискам
+
+Результат:
собака это млекопитающее
кошка это млекопитающее
мышь это млекопитающее
@@ -287,7 +290,7 @@ for animal in ["собака", "кошка", "мышь"]:
"""
`range(number)` возвращает список чисел
от нуля до заданного числа
-результат:
+Результат:
0
1
2
@@ -298,7 +301,7 @@ for i in range(4):
"""
Циклы while продолжаются до тех пор, пока указанное условие не станет ложным.
-результат:
+Результат:
0
1
2
@@ -422,10 +425,10 @@ class Human(object):
# Инстанцирование класса
i = Human(name="Иван")
-print i.say("привет") # выводит "Иван: привет"
+print i.say("привет") # "Иван: привет"
j = Human("Петр")
-print j.say("Привет") #выводит "Петр: привет"
+print j.say("Привет") # "Петр: привет"
# Вызов метода класса
i.get_species() #=> "H. sapiens"
@@ -453,7 +456,7 @@ print ceil(3.7) #=> 4.0
print floor(3.7) #=> 3.0
# Можете импортировать все функции модуля.
-# Предупреждение: не рекомендуется
+# (Хотя это и не рекомендуется)
from math import *
# Можете сокращать имена модулей
@@ -472,7 +475,7 @@ dir(math)
```
-## Хочется большего?
+## Хотите еще?
### Бесплатные онлайн-материалы
@@ -482,7 +485,7 @@ dir(math)
* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)
* [Python Module of the Week](http://pymotw.com/2/)
-### Готовьте деньги
+### Платные
* [Programming Python](http://www.amazon.com/gp/product/0596158106/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0596158106&linkCode=as2&tag=homebits04-20)
* [Dive Into Python](http://www.amazon.com/gp/product/1441413022/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1441413022&linkCode=as2&tag=homebits04-20)
diff --git a/ru-ru/ruby-ru.html.markdown b/ru-ru/ruby-ru.html.markdown
index 0a8fbb09..318e0e09 100644
--- a/ru-ru/ruby-ru.html.markdown
+++ b/ru-ru/ruby-ru.html.markdown
@@ -8,6 +8,7 @@ contributors:
- ["Luke Holder", "http://twitter.com/lukeholder"]
- ["Tristan Hume", "http://thume.ca/"]
- ["Nick LaMuro", "https://github.com/NickLaMuro"]
+translators:
- ["Alexey Makarov", "https://github.com/Anakros"]
---
@@ -42,7 +43,7 @@ contributors:
# Логические величины -- это объекты
nil # Здесь ничего нет
-true # правда
+true # истина
false # ложь
nil.class #=> NilClass
@@ -78,7 +79,8 @@ false.class #=> FalseClass
placeholder = "использовать интерполяцию строк"
"Я могу #{placeholder}, когда создаю строку с двойными кавычками"
-#=> "Я могу использовать интерполяцию строк, когда создаю строку с двойными кавычками"
+#=> "Я могу использовать интерполяцию строк,
+# когда создаю строку с двойными кавычками"
# печатать в стандартный вывод
@@ -106,10 +108,10 @@ path = '/bad/name/'
# Идентификаторы (тоже объекты)
# Идентификаторы -- это неизменяемые, многоразовые константы.
-# Для каждого идентификатора (кроме текста) сохраняется цифровой хэш. При последующем
-# использовании идентификатора, заместо создания нового объекта, будет найден уже
-# существующий по цифровому хэшу. Они часто используются вместо строк
-# для ускорения работы приложений
+# Для каждого идентификатора (кроме текста) сохраняется цифровой хэш.
+# При последующем использовании идентификатора, заместо создания нового объекта,
+# будет найден уже существующий по цифровому хэшу.
+# Они часто используются вместо строк для ускорения работы приложений
:pending.class #=> Symbol
@@ -177,15 +179,15 @@ new_hash.keys #=> [:defcon, :action]
# Управление ходом выполнения (Управляющие структуры)
if true
- "if условие"
+ "Если истина"
elsif false
- "else if, условие"
+ "Иначе, если ложь (опционально)"
else
- "else, условие"
+ "Во всех других случаях"
end
for counter in 1..5
- puts "#итерация {counter}"
+ puts "итерация #{counter}"
end
#=> итерация 1
#=> итерация 2
@@ -196,10 +198,11 @@ end
# Однако, никто не использует "for" для циклов.
# Вместо него Вы должны использовать метод "each" вместе с блоком кода.
#
-# Блок кода -- это один из вариантов создания замыканий (лямбды, анонимные функции).
+# Блок кода -- это один из вариантов создания замыканий (лямбды,
+# анонимные функции).
# Блок может только передаваться методу, сам по себе он существовать не может.
# "for" не имеет своей области видимости и все переменные, объявленные в нём
-# будут доступны отовсюду. "each" вместе с блоком создаёт свою область видимости.
+# будут доступны отовсюду. "each" вместе с блоком создаёт свою область видимости
# Метод "each" для диапазона значений запускает блок кода один раз
# для каждого из значений диапазона
@@ -218,7 +221,7 @@ end
# Вы также можете ограничивать блоки фигурными скобками:
(1..5).each {|counter| puts "итерация #{counter}"}
-# Содержимое управляющих структур также можно перебирать используя "each":
+# Содержимое структурных данных также можно перебирать используя "each":
array.each do |element|
puts "#{element} -- часть массива"
end
@@ -349,10 +352,27 @@ dwight.name #=> "Dwight K. Schrute"
# Вызов метода класса
Human.say("Hi") #=> "Hi"
-# Класс тоже объект в Ruby. Потому класс может иметь переменные экземпляра.
+# Область видимости переменной определяется тем, как мы даём имя переменной.
+# Переменные, имя которых начинается с "$" имеют глобальную область видимости
+$var = "I'm a global var"
+defined? $var #=> "global-variable"
+
+# Переменная экземпляра класса, она видна только в экземпляре
+@var = "I'm an instance var"
+defined? @var #=> "instance-variable"
+
+# Переменная класса, видна для всех экземпляров этого класса и в самом классе
+@@var = "I'm a class var"
+defined? @@var #=> "class variable"
+
+# Имена переменных с большой буквы используются для создания констант
+Var = "I'm a constant"
+defined? Var #=> "constant"
+
+# Класс тоже объект в Ruby. Класс может иметь переменные экземпляра.
# Переменная класса доступна в классе, его экземплярах и его потомках.
-# Базовый класс
+# Пример класса
class Human
@@foo = 0
@@ -395,4 +415,54 @@ end
Human.bar # 0
Doctor.bar # nil
+module ModuleExample
+ def foo
+ 'foo'
+ end
+end
+
+# Включение модулей в класс добавляет их методы в экземпляр класса
+# Или в сам класс, зависит только от метода подключения
+class Person
+ include ModuleExample
+end
+
+class Book
+ extend ModuleExample
+end
+
+Person.foo # => NoMethodError: undefined method `foo' for Person:Class
+Person.new.foo # => 'foo'
+Book.foo # => 'foo'
+Book.new.foo # => NoMethodError: undefined method `foo'
+
+# Коллбэки при подключении модуля
+
+module ConcernExample
+ def self.included(base)
+ base.extend(ClassMethods)
+ base.send(:include, InstanceMethods)
+ end
+
+ module ClassMethods
+ def bar
+ 'bar'
+ end
+ end
+
+ module InstanceMethods
+ def qux
+ 'qux'
+ end
+ end
+end
+
+class Something
+ include ConcernExample
+end
+
+Something.bar # => 'bar'
+Something.qux # => NoMethodError: undefined method `qux'
+Something.new.bar # => NoMethodError: undefined method `bar'
+Something.new.qux # => 'qux'
```