summaryrefslogtreecommitdiffhomepage
path: root/cairo.html.markdown
blob: dd3ca03614ea1545e7815e6816644d1b87e7ece4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
---
language: Cairo
filename: learnCairo.sol
contributors:
    - ["Darlington Nnam", "https://github.com/Darlington02"]
---

# Cairo

Cairo is a Turing-complete language that allows you write provable programs
(where one party can prove to another that a certain computation was executed
correctly) on StarkNet.

## StarkNet

StarkNet is a decentralized ZK-rollup that operates as an Ethereum layer 2
chain.

In this document, we are going to be going in-depth into understanding Cairo's
syntax and how you could create and deploy a Cairo smart contract on StarkNet.

**NB: As at the time of this writing, StarkNet is still at v0.10.3, with Cairo
1.0 coming soon. The ecosystem is young and evolving very fast, so you might
want to check the [official docs](https://www.cairo-lang.org/docs) to confirm
this document is still up-to-date. Pull requests are welcome!**

## Setting Up A Development Environment

Before we get started writing codes, we will need to setup a Cairo development
environment, for writing, compiling and deploying our contracts to StarkNet.
For the purpose of this tutorial we are going to be using the
[Protostar Framework](https://github.com/software-mansion/protostar).
Installation steps can be found in the docs
[here](https://docs.swmansion.com/protostar/docs/tutorials/installation).
Note that Protostar supports just Mac and Linux OS, Windows users might need to
use WSL, or go for other alternatives such as the Official
[StarkNet CLI](https://www.cairo-lang.org/docs/quickstart.html) or
[Nile from Openzeppelin](https://github.com/OpenZeppelin/nile)

Once you're done with the installations, run the command `protostar -v` to
confirm your installation was successful. If successful, you should see your
Protostar version displayed on the screen.

## Initializing a new project

Protostar similar to Truffle for solidity development can be installed once and
used for multiple projects. To initialize a new Protostar project, run the
following command:

```
protostar init
```

It would then request the project's name and the library's directory name,
you'd need to fill in this, and a new project will be initialized successfully.

## Compiling, Declaring, Deploying and Interacting with StarkNet Contracts

Within the `src` folder you'll find a boilerplate contract that comes with
initializing a new Protostar project, `main.cairo`. We are going to be
compiling, declaring and deploying this contract.

### Compiling Contracts

To compile a Cairo contract using Protostar, ensure a path to the contract is
specified in the `[contracts]` section of the `protostar.toml` file. Once
you've done that, open your terminal and run the command:

```
protostar build
```

And you should get an output similar to what you see below, with a `main.json`
and `main_abi.json` files created in the `build` folder.
<img src="./images/cairo/build.png" alt="building your contract">

### Declaring Contracts

With the recent StarkNet update to 0.10.3, the DEPLOY transaction was
deprecated and no longer works. To deploy a transaction, you must first declare
a Contract to obtain the class hash, then deploy the declared contract using the
[Universal Deployer Contract](https://community.starknet.io/t/universal-deployer-contract-proposal/1864).

Before declaring or deploying your contract using Protostar, you should set the
private key associated with the specified account address in a file, or in the
terminal. To set your private key in the terminal, run the command:

```
export PROTOSTAR_ACCOUNT_PRIVATE_KEY=[YOUR PRIVATE KEY HERE]
```

Then to declare our contract using Protostar run the following command (for
visual clarity, the backslash sign symbolizes the continuing line):

```
protostar declare ./build/main.json \
  --network testnet \
  --account 0x0691622bBFD29e835bA4004e7425A4e9630840EbD11c5269DE51C16774585b16 \
  --max-fee auto
```

where `network` specifies the network we are deploying to, `account` specifies
account whose private key we are using, `max-fee` specifies the maximum fee to
be paid for the transaction. You should get the class hash outputted as seen
below:
<img src="./images/cairo/declare.png" alt="declaring your contract">

### Deploying Contracts

After obtaining our class hash from declaring, we can now deploy using the
command below:

```
protostar \
  deploy 0x02a5de1b145e18dfeb31c7cd7ff403714ededf5f3fdf75f8b0ac96f2017541bc \
  --network testnet \
  --account 0x0691622bBFD29e835bA4004e7425A4e9630840EbD11c5269DE51C16774585b16 \
  --max-fee auto
```

where `0x02a5de1b145e18dfeb31c7cd7ff403714ededf5f3fdf75f8b0ac96f2017541bc` is
the class hash of our contract.
<img src="./images/cairo/deploy.png" alt="deploying your contract">

### Interacting with Contracts

To interact with your deployed contract, we will be using `Argent X`
(alternative: `Braavos`), and `Starkscan` (alternative: `Voyager`). To install
and setup `Argent X`, see this
[guide](https://www.argent.xyz/learn/how-to-create-an-argent-x-wallet/).

Copy your contract address, displayed on screen from the previous step, and
head over to [Starkscan](https://testnet.starkscan.co/) to search for the
contract. Once found, you can make write calls to the contract in the following
sequence:

+ click on the "connect wallet" button,
  <img src="./images/cairo/connect.png" alt="connect wallet">
+ select `Argent X` and approve the connection
  <img src="./images/cairo/connect2.png" alt="connect to argentX">
+ you can now make read and write calls easily.

## Let's learn Cairo

First let's look at a default contract that comes with Protostar which allows
you to set balance on deployment, increase, and get the balance.

```
// Language directive - instructs compiler its a StarkNet contract
%lang starknet

// Library imports from the Cairo-lang library
from starkware.cairo.common.math import assert_nn
from starkware.cairo.common.cairo_builtins import HashBuiltin

// @dev Storage variable that stores the balance of a user.
// @storage_var is a decorator that instructs the compiler the function
//   below it is a storage variable.
@storage_var
func balance() -> (res: felt) {}

// @dev Constructor writes the balance variable to 0 on deployment
// Constructors sets storage variables on deployment. Can accept arguments too.
@constructor
func constructor{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}() {
  balance.write(0); 
  return();
}

// @dev increase_balance updates the balance variable
// @param amount the amount you want to add to balance
// @external is a decorator that specifies the func below it is an external
//   function.
@external
func increase_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(amount: felt){
  with_attr error_message("Amount must be positive. Got: {amount}.") {
    assert_nn(amount);
  }

  let (res) = balance.read();
  balance.write(res + amount);
  return ();
}

// @dev returns the balance variable
// @view is a decorator that specifies the func below it is a view function.
@view
func get_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}() -> (res: felt) {
  let (res) = balance.read();
  return (res,);
}
```

Before proceeding to the main lessons, try to build, deploy and interact with
this contract.
NB: You should be at `main.cairo` if you are using Protostar.

### 1. The Felt data type

Unlike solidity, where you have access to various data types, Cairo comes with
just a single data type `..felts`. Felts stands for Field elements, and are a
252 bit integer in the range `0<=x<=P` where `P` is a prime number. You can
create a `Uint256` in Cairo by utlizing a struct of two 128 bits felts.

```
struct Uint256 {
  low: felt, // The low 128 bits of the value.
  high: felt, // The high 128 bits of the value.
}
```

To avoid running into issues with divisions, it's safer to work with the
`unsigned_div_rem` method from Cairo-lang's library.

### 2. Lang Directive and Imports

To get started with writing a StarkNet contract, you must specify the directive:

```
%lang starknet
```

This directive informs the compiler you are writing a contract and not a
program. The difference between both is contracts have access to StarkNet's
storage, programs don't and as such are stateless.

There are important functions you might need to import from the official
Cairo-lang library or Openzeppelin's, e.g.

```
from starkware.cairo.common.cairo_builtins import HashBuiltin
from cairo_contracts.src.openzeppelin.token.erc20.library import ERC20
from starkware.cairo.common.uint256 import Uint256
from starkware.cairo.common.bool import TRUE
```

### 3. Data Structures

+ Storage variables: Cairo's storage is a map with `2^251` slots, where each
  slot is a felt which is initialized to `0`. You create one using the
  `@storage_var` decorator.

  ```
  @storage_var
  func names() -> (name: felt) {}
  ```

+ Storage mappings: Unlike Solidity where mappings have a separate keyword, in
  Cairo you create mappings using storage variables.

  ```
  @storage_var
  func names(address: felt) -> (name: felt) {}
  ```

+ Structs: are a means to create custom data types in Cairo. A `struct` has a
  size, which is the sum of the sizes of its members. The size can be
  retrieved using `MyStruct.SIZE`. You create a struct in Cairo using the
  `struct` keyword.

  ```
  struct Person {
    name: felt,
    age: felt,
    address: felt,
  }
  ```

+ Constants: Constants are fixed and as such can't be altered after being set.
  They evaluate to an integer (field element) at compile time. To create a
  constant in Cairo, you use the `const` keyword. It's proper practice to
  capitalize constant names.

  ```
  const USER = 0x01C6cfC1DB2ae90dACEA243F0a8C2F4e32560F7cDD398e4dA2Cc56B733774E9b
  ```

+ Arrays: Arrays can be defined as a `pointer(felt*)` to the first element of
  the array. As an array is populated, its elements take up contigous memory
  cells. The `alloc` keyword can be used to dynamically allocate a new memory
  segment, which can be used to store an array:

  ```
  let (myArray: felt*) = alloc ();
  assert myArray[0] = 1;
  assert myArray[1] = 2;
  assert myArray[3] = 3;
  ```

  You can also use the `new` operator to create fixed-size arrays using
  tuples. The new operator is useful as it enables you allocate memory and
  initialize the object in one instruction

  ```
  func foo() {
    tempvar arr: felt* = new (1, 1, 2, 3, 5);
    assert arr[4] = 5;
    return ();
  }
  ```

+ Tuples: A tuple is a finite, ordered, unchangeable list of elements. It is
  represented as a comma-separated list of elements enclosed by parentheses.
  Their elements may be of any combination of valid types.

  ```
  local tuple0: (felt, felt, felt) = (7, 9, 13);
  ```

+ Events: Events allows a contract emit information during the course of its
  execution, that can be used outside of StarkNet. An event can be created,
  subsequently emitted:

  ```
  @event
  func name_stored(address, name) {}

  name_stored.emit(address, name);
  ```

### 4. Constructors, External and View functions

+ Constructors: Constructors are a way to intialize state variables on
  contract deployment. You create a constructor using the `@constructor`
  decorator.

  ```
  @constructor
  func constructor{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
  range_check_ptr}(_name: felt) {
    let (caller) = get_caller_address();
    names.write(caller, _name);
    return ();
  }
  ```

+ External functions: External functions are functions that modifies the state
  of the network. You create an external function using the `@external`
  decorator:

  ```
  @external
  func store_name{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
  range_check_ptr}(_name: felt){
    let (caller) = get_caller_address();
    names.write(caller, _name);
    stored_name.emit(caller, _name);
    return ();
  }
  ```

+ View functions: View functions do not modify the state of the blockchain.
  You can create a view function using the `@view` decorator.

  ```
  @view
  func get_name{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
  range_check_ptr}(_address: felt) -> (name: felt){
    let (name) = names.read(_address);
    return (name,);
  }
  ```

    NB: Unlike Solidity, Cairo supports just External and View function types.
    You can alternatively also create an internal function by not adding any
    decorator to the function.

### 5. Decorators

All functions in Cairo are specified by the `func` keyword, which can be
confusing. Decorators are used by the compiler to distinguish between these
functions.

Here are the most common decorators you'll encounter in Cairo:

+ `@storage_var` — used for specifying state variables.
+ `@constructor` — used for specifying constructors.
+ `@external` — used for specifying functions that write to a state variable.
+ `@event` — used for specifying events
+ `@view` — used to specify functions reading from a state variable
+ `@contract_interface` — used for specifying function interfaces.
+ `@l1_handler` — used for specifying functions that processes message sent from
  an L1 contract in a messaging bridge.

### 6. BUILTINS, HINTS & IMPLICIT Arguments

+ `BUILTINS` are predefined optimized low-level execution units, which are
  added to Cairo’s CPU board. They help perform predefined computations like
  pedersen hashing, bitwise operations etc, which are expensive to perform in
  Vanilla Cairo. Each builtin in Cairo is assigned a separate memory location,
  accessible through regular Cairo memory calls using implicit parameters. You
  specify them using the `%builtins` directive

  Here is a list of available builtins in Cairo:

    + `output` — the output builtin is used for writing program outputs
    + `pedersen` — the pedersen builtin is used for pedersen hashing
      computations
    + `range_check` — This builtin is mostly used for integer comparisons,
      and facilitates check to confirm that a field element is within a range
      `[0, 2^128)`
    + `ecdsa` — the ecdsa builtin is used for verifying ECDSA signatures
    + `bitwise` — the bitwise builtin is used for carrying out bitwise
      operations on felts

+ `HINTS` are pieces of Python codes, which contains instructions that only
  the prover sees and executes. From the point of view of the verifier these
  hints do not exist. To specify a hint in Cairo, you need to encapsulate it
  within `%{` and `%}`. It is good practice to avoid using hints as much as
  you can in your contracts, as hints are not added to the bytecode, and thus
  do not count in the total number of execution steps.

  ```
  %{
    # Python hint goes here
  %}
  ```

+ `IMPLICIT ARGUMENTS` are not restricted to the function body, but can be
  inherited by other functions calls that require them. Implicit arguments are
  passed in between curly bracelets, like you can see below:

  ```
  func store_name{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
  range_check_ptr}(_name: felt){
    let (caller) = get_caller_address();
    names.write(caller, _name);
    stored_name.emit(caller, _name);
    return ();
  }
  ```

### 7. Error Messages and Access Controls

You can create custom errors in Cairo which is outputted to the user upon failed
execution. This can be very useful for implementing checks and proper access
control mechanisms. An example is preventing a user to call a function except
user is `admin`.

```
// imports
from starkware.starknet.common.syscalls import get_caller_address

// create an admin constant
const ADMIN = 0x01C6cfC1DB2ae90dACEA243F0a8C2F4e32560F7cDD398e4dA2Cc56B733774E9b

// implement access control
with_attr error_message("You do not have access to make this action!"){
  let (caller) = get_caller_address();
  assert ADMIN = caller;
}

// using an assert statement throws if condition is not true, thus
// returning the specified error.
```

### 8. Contract Interfaces

Contract interfaces provide a means for one contract to invoke or call the
external function of another contract. To create a contract interface, you use
the `@contract_interface` keyword:

```
@contract_interface
  namespace IENS {
    func store_name(_name: felt) {
    }

    func get_name(_address: felt) -> (name: felt) {
    }
  }
```

Once a contract interface is specified, any contract can make calls to that
contract passing in the contract address as the first parameter like this:

```
IENS.store_name(contract_address, _name);
```

Note that Interfaces exclude the function body/logic and the implicit
arguments.

### 9. Recursions

Due to the unavailability of loops, Recursion is the go-to for similar
operations. In simple terms, a recursive function is one which calls itself
repeatedly.

A good example to demonstrate this is writing a function for getting the nth
fibonacci number:

```
@external
func fibonacci{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(n : felt) -> (result : felt){
  alloc_locals;
  if (n == 0){
    return (0);
  }
  if (n == 1){
    return (1);
  }
  let (local x) = fibonacci(n - 1);
  let (local y) = fibonacci(n - 2);
  return (result=(x + y));
}
```

The nth fibonacci term is the sum of the `nth - 1` and the `nth - 2` numbers,
that's why we get these two as `(x,y)` using recursion.

NB: when implementing recursive functions, always remember to implement a base
case (`n==0`, `n==1` in our case), to prevent stack overflows.

### 10. Registers

Registers holds values that may change over time. There are 3 major types of
registers:

+ `ap` (allocation pointer) points to a yet unused memory. Temporary variables
   created using `let`, `tempvar` are held here, and thus susceptible to being
   revoked.
+ `fp` (frame pointer) points to the frame of the current function. The address
  of all the function arguments and local variables are relative to this
  register and as such can never be revoked.
+ `pc` (program counter) points to the current instruction.

### 11. Revoked References

Revoked references occur when there is a call instruction to another function,
between the definition of a reference variable that depends on `ap` (temp
variables) and its usage. This occurs as the compiler may not be able to compute
the change of `ap` (as one may jump to the label from another place in the
program, or call a function that might change ap in an unknown way).

Here is an example to demonstrate what I mean:

```
@external
func get_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}() -> (res: felt) {
  return (res=100);
}

@external
func double_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}() -> (res: felt) {
  let multiplier = 2;
  let (balance) = get_balance();
  let new_balance = balance * multiplier;
  return (res=new_balance);
}
```

If you run that code, you'll run into the revoked reference error as we are
trying to access the `multiplier` variable after calling the `get_balance`
function.

In simple cases you can resolve revoked references by adding the keyword
`alloc_locals` within function scopes. In more complex cases you might need to
create a local variable to resolve it.

```
// resolving the `double_balance` function:
@external
func double_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}() -> (res: felt) {
  alloc_locals;
  let multiplier = 2;
  let (balance) = get_balance();
  let new_balance = balance * multiplier;
  return (res=new_balance);
}
```

### 12. Understanding Cairo's Punctuations

+ `;` (semicolon). Used at the end of each instruction
+ `()` (parentheses). Used in a function declaration, if statements, and in a
  tuple declaration
+ `{}` (curly braces). Used in a declaration of implicit arguments and to define
  code blocks.
+ `[]` (square brackets). Standalone brackets represent the value at a
  particular address location (such as the allocation pointer, `[ap]`). Brackets
  following a pointer or a tuple act as a subscript operator, where `x[2]`
  represents the element with index `2` in `x`.
+ `*` (single asterisk). Refers to the pointer of an expression.
+ `%` (percent sign). Appears at the start of a directive, such as `%builtins`
  or `%lang`.
+ `%{` and `%}` represent Python hints.
+ `_` (underscore). A placeholder to handle values that are not used, such as an
  unused function return value.

## Full Contract Example

Below is a simple automated market maker contract example that implements most
of what we just learnt! Re-write, deploy, have fun!

```
%lang starknet

from starkware.cairo.common.cairo_builtins import HashBuiltin
from starkware.cairo.common.hash import hash2
from starkware.cairo.common.alloc import alloc
from starkware.cairo.common.math import (assert_le, assert_nn_le,
  unsigned_div_rem)
from starkware.starknet.common.syscalls import (get_caller_address,
  storage_read, storage_write)


// CONSTANTS
//
// @dev the maximum amount of each token that belongs to the AMM
const BALANCE_UPPER_BOUND = 2 ** 64;

const TOKEN_TYPE_A = 1;
const TOKEN_TYPE_B = 2;

// @dev Ensure the user's balances are much smaller than the pool's balance
const POOL_UPPER_BOUND = 2 ** 30;
const ACCOUNT_BALANCE_BOUND = 1073741; // (2 ** 30 / 1000)


// STORAGE VARIABLES
//
// @dev A map from account and token type to corresponding balance
@storage_var
func account_balance(account_id: felt, token_type: felt) -> (balance: felt) {}

// @dev a map from token type to corresponding pool balance
@storage_var
func pool_balance(token_type: felt) -> (balance: felt) {}


// GETTERS
//
// @dev returns account balance for a given token
// @param account_id Account to be queried
// @param token_type Token to be queried
@view
func get_account_token_balance{syscall_ptr: felt*, pedersen_ptr:
HashBuiltin*, range_check_ptr}(
  account_id: felt, token_type: felt
  ) -> (balance: felt) {
  return account_balance.read(account_id, token_type);
}

// @dev return the pool's balance
// @param token_type Token type to get pool balance
@view
func get_pool_token_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(
  token_type: felt
  ) -> (balance: felt) {
  return pool_balance.read(token_type);
}


// EXTERNALS
//
// @dev set pool balance for a given token
// @param token_type Token whose balance is to be set
// @param balance Amount to be set as balance
@external
func set_pool_token_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(
  token_type: felt, balance: felt
  ) {
  with_attr error_message("exceeds maximum allowed tokens!"){
    assert_nn_le(balance, BALANCE_UPPER_BOUND - 1);
  }

  pool_balance.write(token_type, balance);
  return ();
}

// @dev add demo token to the given account
// @param token_a_amount amount of token a to be added
// @param token_b_amount amount of token b to be added
@external
func add_demo_token{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(
    token_a_amount: felt, token_b_amount: felt
  ) {
  alloc_locals;
  let (account_id) = get_caller_address();

  modify_account_balance(account_id=account_id, token_type=TOKEN_TYPE_A,
    amount=token_a_amount);
  modify_account_balance(account_id=account_id, token_type=TOKEN_TYPE_B,
    amount=token_b_amount);

  return ();
}

// @dev intialize AMM
// @param token_a amount of token a to be set in pool
// @param token_b amount of token b to be set in pool
@external
func init_pool{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(
  token_a: felt, token_b: felt
  ) {
  with_attr error_message("exceeds maximum allowed tokens!"){
    assert_nn_le(token_a, POOL_UPPER_BOUND - 1);
    assert_nn_le(token_b, POOL_UPPER_BOUND - 1);
  }

  set_pool_token_balance(token_type=TOKEN_TYPE_A, balance=token_a);
  set_pool_token_balance(token_type=TOKEN_TYPE_B, balance=token_b);

  return ();
}


// @dev swaps token between the given account and the pool
// @param token_from token to be swapped
// @param amount_from amount of token to be swapped
// @return amount_to the token swapped to
@external
func swap{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
  token_from: felt, amount_from: felt
  ) -> (amount_to: felt) {
  alloc_locals;
  let (account_id) = get_caller_address();

  // verify token_from is TOKEN_TYPE_A or TOKEN_TYPE_B
  with_attr error_message("token not allowed in pool!"){
    assert (token_from - TOKEN_TYPE_A) * (token_from - TOKEN_TYPE_B) = 0;
    }

  // check requested amount_from is valid
  with_attr error_message("exceeds maximum allowed tokens!"){
    assert_nn_le(amount_from, BALANCE_UPPER_BOUND - 1);
    }

  // check user has enough funds
  let (account_from_balance) =
    get_account_token_balance(account_id=account_id, token_type=token_from);
  with_attr error_message("insufficient balance!"){
    assert_le(amount_from, account_from_balance);
    }

  let (token_to) = get_opposite_token(token_type=token_from);
  let (amount_to) = do_swap(account_id=account_id, token_from=token_from,
    token_to=token_to, amount_from=amount_from);

  return (amount_to=amount_to);
}


// INTERNALS
//
// @dev internal function that updates account balance for a given token
// @param account_id Account whose balance is to be modified
// @param token_type Token type to be modified
// @param amount Amount Amount to be added
func modify_account_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(
  account_id: felt, token_type: felt, amount: felt
  ) {
  let (current_balance) = account_balance.read(account_id, token_type);
  tempvar new_balance = current_balance + amount;

  with_attr error_message("exceeds maximum allowed tokens!"){
    assert_nn_le(new_balance, BALANCE_UPPER_BOUND - 1);
    }

  account_balance.write(account_id=account_id, token_type=token_type,
    value=new_balance);
  return ();
}

// @dev internal function that swaps tokens between the given account and
// the pool
// @param account_id Account whose tokens are to be swapped
// @param token_from Token type to be swapped from
// @param token_to Token type to be swapped to
// @param amount_from Amount to be swapped
func do_swap{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*,
range_check_ptr}(
  account_id: felt, token_from: felt, token_to: felt, amount_from: felt
  ) -> (amount_to: felt) {
  alloc_locals;

  // get pool balance
  let (local amm_from_balance) = get_pool_token_balance(token_type =
    token_from);
  let (local amm_to_balance) = get_pool_token_balance(token_type=token_to);

  // calculate swap amount
  let (local amount_to, _) = unsigned_div_rem((amm_to_balance *
    amount_from), (amm_from_balance + amount_from));

  // update token_from balances
  modify_account_balance(account_id=account_id, token_type=token_from,
    amount=-amount_from);
  set_pool_token_balance(token_type=token_from, balance=(amm_from_balance
    + amount_from));

  // update token_to balances
  modify_account_balance(account_id=account_id, token_type=token_to,
    amount=amount_to);
  set_pool_token_balance(token_type=token_to, balance=(amm_to_balance -
    amount_to));

  return (amount_to=amount_to);
}


// @dev internal function to get the opposite token type
// @param token_type Token whose opposite pair needs to be gotten
func get_opposite_token(token_type: felt) -> (t: felt) {
  if(token_type == TOKEN_TYPE_A) {
    return (t=TOKEN_TYPE_B);
  } else {
    return (t=TOKEN_TYPE_A);
  }
}
```

## Additional Resources

+ [Official documentation](https://www.cairo-lang.org/docs/)
+ [Starknet EDU](https://medium.com/starknet-edu)
+ [Journey through Cairo](https://medium.com/@darlingtonnnam/journey-through-cairo-i-setting-up-protostar-and-argentx-for-local-development-ba40ae6c5524)
+ [Demystifying Cairo whitepaper](https://medium.com/@pban/demystifying-cairo-white-paper-part-i-b71976ad0108)
+ [Learn about StarkNet with Argent](https://www.argent.xyz/learn/tag/starknet/)

## Development Frameworks

+ [Protostar](https://docs.swmansion.com/protostar/docs/tutorials/installation)
+ [Nile](https://github.com/OpenZeppelin/nile)
+ [StarkNet CLI](https://www.cairo-lang.org/docs/quickstart.html)

## Helpful Libraries

+ [Cairo-lang](https://github.com/starkware-libs/cairo-lang)
+ [Openzeppelin](https://github.com/OpenZeppelin/cairo-contracts)

## Educational Repos

+ [StarkNet Cairo 101](https://github.com/starknet-edu/starknet-cairo-101)
+ [StarkNet ERC721](https://github.com/starknet-edu/starknet-erc721)
+ [StarkNet ERC20](https://github.com/starknet-edu/starknet-erc20)
+ [L1 -> L2 Messaging](https://github.com/starknet-edu/starknet-messaging-bridge)
+ [StarkNet Debug](https://github.com/starknet-edu/starknet-debug)
+ [StarkNet Accounts](https://github.com/starknet-edu/starknet-accounts)
+ [Min-Starknet](https://github.com/Darlington02/min-starknet)

## Security

+ [Amarna static analysis for Cairo programs](https://blog.trailofbits.com/2022/04/20/amarna-static-analysis-for-cairo-programs/)
+ [Cairo and StarkNet security by Ctrl03](https://ctrlc03.github.io/)
+ [How to hack almost any Cairo smart contract](https://medium.com/ginger-security/how-to-hack-almost-any-starknet-cairo-smart-contract-67b4681ac0f6)
+ [Analyzing Cairo code using Armana](https://dic0de.substack.com/p/analyzing-cairo-code-using-amarna?sd=pf)

## Future TO-DOs

Update tutorial to fit Cairo 1.0