summaryrefslogtreecommitdiffhomepage
path: root/cairo.html.markdown
blob: 25ef91aa44ad692c75b8621e82882172903185b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
---
language: Cairo
filename: learnCairo.sol
contributors:
  - ["Darlington Nnam", "https://github.com/Darlington02"]
---

# Cairo
Cairo is StarkNet's native language and the first Turing-complete language for scripting provable programs (where one party can prove to another that a certain computation was executed correctly) for general computations.
# StarkNet
StarkNet is a decentralized ZK-rollup that operates as an Ethereum layer 2 chain. StarkNet enables Decentralized applications to achieve unlimited scale for their computation - without compromising Ethereum's decentralization and security, thereby solving the Scalability Trilemma.

In this document, we are going to be going in-depth into understanding Cairo's syntax and how you could create and deploy a Cairo smart contract on StarkNet.

**NB: As at the time of this writing, StarkNet is still at v0.10.3, with Cairo 1.0 coming soon. The ecosystem is young and evolving very fast, so you might want to check the [official docs](https://www.cairo-lang.org/docs) to confirm this document is still up-to-date. Pull requests are welcome!**

# Setting Up A Development Environment
Before we get started writing codes, we will need to setup a Cairo development environment, for writing, compiling and deploying our contracts to StarkNet. 
For the purpose of this tutorial we are going to be using the [Protostar Framework](https://github.com/software-mansion/protostar). Installation steps can be found in the docs [here](https://docs.swmansion.com/protostar/docs/tutorials/installation).
Note that Protostar supports just Mac and Linux OS, Windows users might need to use WSL, or go for other alternatives such as the Official [StarkNet CLI](https://www.cairo-lang.org/docs/quickstart.html) or [Nile from Openzeppelin](https://github.com/OpenZeppelin/nile)

Once you're done with the installations, run the command `protostar -v` to confirm your installation was successful. If successful, you should see your Protostar version displayed on the screen. 

## Initializing a new project
Protostar similar to Truffle for solidity development can be installed once and used for multiple projects.
To initialize a new Protostar project, run the following command:
```
protostar init
```

2. It would then request the project's name and the library's directory name, you'd need to fill in this, and a new project will be initialized successfully.

# Compiling, Declaring, Deploying And Interacting With StarkNet Contracts
For the purpose of this tutorial, head over to this [github repo](https://github.com/Darlington02/CairoLearnXinYminutes) and clone locally.

Within the `src` folder you'll find a boilerplate contract that comes with initializing a new Protostar project, `main.cairo`. We are going to be compiling, declaring and deploying this contract.

## Compiling Contracts
To compile a Cairo contract using Protostar, ensure a path to the contract is specified in the `[contracts]` section of the `protostar.toml` file. Once you've done that, open your terminal and run the command:
```
protostar build
```
And you should get an output similar to what you see below, with a `main.json` and `main_abi.json` files created in the `build` folder.
<img src="./cairo_assets/build.png" alt="building your contract">

## Declaring Contracts
With the recent StarkNet update to 0.10.3, the DEPLOY transaction was deprecated and no longer works. To deploy a transaction, you must first declare a Contract to obtain the class hash, then deploy the declared contract using the [Universal Deployer Contract](https://community.starknet.io/t/universal-deployer-contract-proposal/1864).

Before declaring or deploying your contract using Protostar, you should set the private key associated with the specified account address in a file, or in the terminal. To set your private key in the terminal, run the command:

```
export PROTOSTAR_ACCOUNT_PRIVATE_KEY=[YOUR PRIVATE KEY HERE]
```

Then to declare our contract using Protostar run the following command:
```
protostar declare ./build/main.json --network testnet --account 0x0691622bBFD29e835bA4004e7425A4e9630840EbD11c5269DE51C16774585b16 --max-fee auto
```

where `network` specifies the network we are deploying to, `account` specifies account whose private key we are using, `max-fee` specifies the maximum fee to be paid for the transaction. You should get the class hash outputted as seen below:
<img src="./cairo_assets/declare.png" alt="declaring your contract">

## Deploying Contracts
After obtaining our class hash from declaring, we can now deploy using the below command:
```
protostar deploy 0x02a5de1b145e18dfeb31c7cd7ff403714ededf5f3fdf75f8b0ac96f2017541bc --network testnet --account 0x0691622bBFD29e835bA4004e7425A4e9630840EbD11c5269DE51C16774585b16 --max-fee auto
```

where `0x02a5de1b145e18dfeb31c7cd7ff403714ededf5f3fdf75f8b0ac96f2017541bc` is the class hash of our contract.
<img src="./cairo_assets/deploy.png" alt="deploying your contract">

## Interacting With Contracts
To interact with your deployed contract, we will be using Argent X (alternative - Braavos), and Starkscan (alternative - Voyager). To install and setup Argent X, check out this [guide](https://www.argent.xyz/learn/how-to-create-an-argent-x-wallet/).

Copy your contract address, displayed on screen from the previous step, and head over to [Starkscan](https://testnet.starkscan.co/) to search for the contract. Once found, you can make write calls to the contract by following the steps below:
1. Click on the "connect wallet" button
<img src="./cairo_assets/connect.png" alt="connect wallet">
2. Select Argent X and approve the connection
<img src="./cairo_assets/connect2.png" alt="connect to argentX">
3. You can now make read and write calls easily.

# Let's learn Cairo
First let's look at a default contract that comes with Protostar
```
    // Allows you to set balanace on deployment, increase, and get the balance.

    // Language directive - instructs compiler its a StarkNet contract
    %lang starknet

    // Library imports from the Cairo-lang library
    from starkware.cairo.common.math import assert_nn
    from starkware.cairo.common.cairo_builtins import HashBuiltin

    // @dev Storage variable that stores the balance of a user. 
    // @storage_var is a decorator that instructs the compiler the function below it is a storage variable.
    @storage_var
    func balance() -> (res: felt) {
    }

    // @dev Constructor writes the balance variable to 0 on deployment
    // Constructors sets storage variables on deployment. Can accept arguments too.
    @constructor
    func constructor{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}() {
        balance.write(0);
        return ();
    }

    // @dev increase_balance updates the balance variable
    // @param amount the amount you want to add to balance
    // @external is a decorator that specifies the func below it is an external function.
    @external
    func increase_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
        amount: felt
    ) {
        with_attr error_message("Amount must be positive. Got: {amount}.") {
            assert_nn(amount);
        }

        let (res) = balance.read();
        balance.write(res + amount);
        return ();
    }

    // @dev returns the balance variable
    // @view is a decorator that specifies the func below it is a view function. 
    @view
    func get_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}() -> (res: felt) {
        let (res) = balance.read();
        return (res,);
    }

    // before proceeding, try to build, deploy and interact with this contract! 
    // NB: Should be at main.cairo if you are using Protostar.

```
Now unto the main lessons

### 1. THE FELT DATA TYPE
```
    // Unlike solidity, where you have access to various data types, Cairo comes with just a single data type..felts
    // Felts stands for Field elements, and are a 252 bit integer in the range 0<=x<=P where P is a prime number.
    // You can create a Uint256 in Cairo by utlizing a struct of two 128 bits felts.

    struct Uint256 {
        low: felt, // The low 128 bits of the value.
        high: felt, // The high 128 bits of the value.
    }

    // To avoid running into issues with divisions, it's safer to work with the unsigned_div_rem method from Cairo-lang's library.
```

### 2. LANG DIRECTIVE AND IMPORTS
```
    // To get started with writing a StarkNet contract, you must specify the directive:

    %lang starknet

    // This directive informs the compiler you are writing a contract and not a program. 
    // The difference between both is contracts have access to StarkNet's storage, programs don't and as such are stateless.

    // There are important functions you might need to import from the official Cairo-lang library or Openzeppelin's. e.g.
    
    from starkware.cairo.common.cairo_builtins import HashBuiltin
    from cairo_contracts.src.openzeppelin.token.erc20.library import ERC20
    from starkware.cairo.common.uint256 import Uint256
    from starkware.cairo.common.bool import TRUE
```

### 3. DATA STRUCTURES
```
    // A. STORAGE VARIABLES
    // Cairo's storage is a map with 2^251 slots, where each slot is a felt which is initialized to 0.
    // You create one using the @storage_var decorator

        @storage_var
        func names() -> (name: felt){
        }

    // B. STORAGE MAPPINGS
    // Unlike soldity where mappings have a separate keyword, in Cairo you create mappings using storage variables.

        @storage_var
        func names(address: felt) -> (name: felt){
        }

    // C. STRUCTS
    // Structs are a means to create custom data types in Cairo.
    // A Struct has a size, which is the sum of the sizes of its members. The size can be retrieved using MyStruct.SIZE.
    // You create a struct in Cairo using the `struct` keyword.

        struct Person {
            name: felt,
            age: felt,
            address: felt,
        }

    // D. CONSTANTS
    // Constants are fixed and as such can't be altered after being set.
    // They evaluate to an integer (field element) at compile time.
    // To create a constant in Cairo, you use the `const` keyword.
    // Its proper practice to capitalize constant names.

        const USER = 0x01C6cfC1DB2ae90dACEA243F0a8C2F4e32560F7cDD398e4dA2Cc56B733774E9b

    // E. ARRAYS
    // Arrays can be defined as a pointer(felt*) to the first element of the array.
    // As an array is populated, its elements take up contigous memory cells.
    // The `alloc` keyword can be used to dynamically allocate a new memory segment, which can be used to store an array

        let (myArray: felt*) = alloc ();
        assert myArray[0] = 1;
        assert myArray[1] = 2;
        assert myArray[3] = 3;

    // You can also use the `new` operator to create fixed-size arrays using tuples
    // The new operator is useful as it enables you allocate memory and initialize the object in one instruction

        func foo() {
            tempvar arr: felt* = new (1, 1, 2, 3, 5);
            assert arr[4] = 5;
            return ();
        }

    // F. TUPLES
    // A tuple is a finite, ordered, unchangeable list of elements
    // It is represented as a comma-separated list of elements enclosed by parentheses
    // Their elements may be of any combination of valid types.

        local tuple0: (felt, felt, felt) = (7, 9, 13);

    // G. EVENTS
    // Events allows a contract emit information during the course of its execution, that can be used outside of StarkNet.
    // To create an event:

        @event
        func name_stored(address, name) {
        }

    // To emit an event:

        name_stored.emit(address, name);
```

### 4. CONSTRUCTORS, EXTERNAL AND VIEW FUNCTIONS
```
    // A. CONSTRUCTORS
    // Constructors are a way to intialize state variables on contract deployment
    // You create a constructor using the @constructor decorator

        @constructor
        func constructor{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(_name: felt) {
            let (caller) = get_caller_address();
            names.write(caller, _name);
            return ();
        }
    
    // B. EXTERNAL FUNCTIONS
    // External functions are functions that modifies the state of the network
    // You create an external function using the @external decorator

        @external
        func store_name{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(_name: felt){
            let (caller) = get_caller_address();
            names.write(caller, _name);
            stored_name.emit(caller, _name);
            return ();
        }

    // C. VIEW FUNCTIONS
    // View functions do not modify the state of the blockchain
    // You can create a view function using the @view decorator

        @view
        func get_name{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(_address: felt) -> (name: felt){
            let (name) = names.read(_address);
            return (name,);
        }

    // NB: Unlike Solidity, Cairo supports just External and View function types. 
    // You can alternatively also create an internal function by not adding any decorator to the function.
```

### 5. DECORATORS
```
    // All functions in Cairo are specified by the `func` keyword, which can be confusing.
    // Decorators are used by the compiler to distinguish between these functions.

    // Here are the most common decorators you'll encounter in Cairo:

    // 1. @storage_var — used for specifying state variables.
    // 2. @constructor — used for specifying constructors.
    // 3. @external — used for specifying functions that write to a state variable.
    // 4. @event — used for specifying events
    // 5. @view — used for specifying functions that reads from a state variable.
    // 6. @contract_interface - used for specifying function interfaces.
    // 7. @l1_handler — used for specifying functions that processes message sent from an L1 contract in a messaging bridge.
```

### 6. BUILTINS, HINTS & IMPLICIT ARGUMENTS
```
    // A. BUILTINS
    // Builtins are predefined optimized low-level execution units, which are added to Cairo’s CPU board.
    // They help perform predefined computations like pedersen hashing, bitwise operations etc, which are expensive to perform in Vanilla Cairo.
    // Each builtin in Cairo, is assigned a separate memory location, accessible through regular Cairo memory calls using implicit parameters.
    // You specify them using the %builtins directive

    // Here is a list of available builtins in Cairo:
    // 1. output — the output builtin is used for writing program outputs
    // 2. pedersen — the pedersen builtin is used for pedersen hashing computations
    // 3. range_check — This builtin is mostly used for integer comparisons, and facilitates check to confirm that a field element is within a range [0, 2^128)
    // 4. ecdsa — the ecdsa builtin is used for verifying ECDSA signatures
    // 5. bitwise — the bitwise builtin is used for carrying out bitwise operations on felts

    // B. HINTS
    // Hints are pieces of Python codes, which contains instructions that only the prover sees and executes
    // From the point of view of the verifier these hints do not exist
    // To specify a hint in Cairo, you need to encapsulate it within %{ and%}
    // Its good practice to avoid using hints as much as you can in your contracts, as hints are not added to the bytecode, and thus do not count in the total number of execution steps.

        %{ 
            # Python hint goes here 
        %}

    // C. IMPLICIT ARGUMENTS
    // Implicit arguments are not restricted to the function body, but can be inherited by other functions calls that require them.
    // Implicit arguments are passed in between curly bracelets, like you can see below:

        func store_name{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(_name: felt){
            let (caller) = get_caller_address();
            names.write(caller, _name);
            stored_name.emit(caller, _name);
            return ();
        }
```

### 7. ERROR MESSAGES & ACCESS CONTROLS
```
    // You can create custom errors in Cairo which is outputted to the user upon failed execution.
    // This can be very useful for implementing checks and proper access control mechanisms.
    // An example is preventing a user to call a function except user is admin.

    // imports
    from starkware.starknet.common.syscalls import get_caller_address

    // create an admin constant
    const ADMIN = 0x01C6cfC1DB2ae90dACEA243F0a8C2F4e32560F7cDD398e4dA2Cc56B733774E9b

    // implement access control
    with_attr error_message("You do not have access to make this action!"){
        let (caller) = get_caller_address();
        assert ADMIN = caller;
    }

    // using an assert statement throws if condition is not true, thus returning the specified error.
```

### 8. CONTRACT INTERFACES
```
    // Contract interfaces provide a means for one contract to invoke or call the external function of another contract.
    // To create a contract interface, you use the @contract_interface keyword

        @contract_interface
        namespace IENS {
            func store_name(_name: felt) {
            }

            func get_name(_address: felt) -> (name: felt) {
            }
        }

    // Once a contract interface is specified, any contract can make calls to that contract passing in the contract address as the first parameter like this:

        IENS.store_name(contract_address, _name);

    // Note that Interfaces excludes the function body/logic and the implicit arguments.
```

### 9. RECURSIONS
```
    // Due to the unavailability of loops, Recursions are the go-to for similar operations.
    // In simple terms, a recursive function is one which calls itself repeatedly.

    // A good example to demonstrate this is writing a function for getting the nth fibonacci number:

        @external
        func fibonacci{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(n : felt) -> (result : felt){
            alloc_locals;
            if (n == 0){
                return (0);
            }
            if (n == 1){
                return (1);
            }
            let (local x) = fibonacci(n - 1);
            let (local y) = fibonacci(n - 2);
            return (result=(x + y));
        }

    // The nth fibonacci term is the sum of the nth - 1 and the nth - 2 numbers, that's why we get these two as (x, y) using recursion.
    // NB: when implementing recursive functions, always remember to implement a base case (n==0, n==1 in our case), to prevent stack overflow.
```

Some low-level stuffs

### 10. REGISTERS
```
    // Registers holds values that may change over time.

    // There are 3 major types of Registers:
    // 1. ap (allocation pointer) points to a yet unused memory. Temporary variables created using `let`, `tempvar` are held here, and thus susceptible to being revoked
    // 2. fp (frame pointer) points to the frame of the current function. The address of all the function arguments and local variables are relative to this register and as such can never be revoked
    // 3. pc (program counter) points to the current instruction
```

### 11. REVOKED REFERENCES
```
    // Revoked references occurs when there is a call instruction to another function, between the definition of a reference variable that depends on `ap`(temp variables) and its usage. This occurs as the compiler may not be able to compute the change of `ap` (as one may jump to the label from another place in the program, or call a function that might change ap in an unknown way).

    // Here is an example to demonstrate what I mean:

        @external
        func get_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}() -> (res: felt) {
            return (res=100);
        }

        @external
        func double_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}() -> (res: felt) {
            let multiplier = 2;
            let (balance) = get_balance();
            let new_balance = balance * multiplier;
            return (res=new_balance);
        }
    
    // If you run that code, you'll run into the revoked reference error as we are trying to access the `multiplier` variable after calling the get_balance function;

    // To solve revoked references, In simple cases you can resolve this issue, by adding the keyword, `alloc_locals` within function scopes, but in most complex cases you might need to create a local variable to resolve it.

    // resolving the `double_balance` function:
        @external
        func double_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}() -> (res: felt) {
            alloc_locals;
            let multiplier = 2;
            let (balance) = get_balance();
            let new_balance = balance * multiplier;
            return (res=new_balance);
        }
```

Miscellaneous

### 12. Understanding Cairo's punctuations
```
    // ; (semicolon). Used at the end of each instruction

    // ( ) (parentheses). Used in a function declaration, if statements, and in a tuple declaration

    // { } (curly brackets). Used in a declaration of implicit arguments and to define code blocks.

    // [ ] (square brackets). Standalone brackets represent the value at a particular address location (such as the allocation pointer, [ap]). Brackets following a pointer or a tuple act as a subscript operator, where x[2] represents the element with index 2 in x.

    // * Single asterisk. Refers to the pointer of an expression.

    // % Percent sign. Appears at the start of a directive, such as %builtins or %lang.

    // %{ %} Represents Python hints.

    // _ (underscore). A placeholder to handle values that are not used, such as an unused function return value.
```

# FULL CONTRACT EXAMPLE
Below is a simple automated market maker contract example that implements most of what we just learnt! Re-write, deploy, have fun!
```
    %lang starknet

    from starkware.cairo.common.cairo_builtins import HashBuiltin
    from starkware.cairo.common.hash import hash2
    from starkware.cairo.common.alloc import alloc
    from starkware.cairo.common.math import (assert_le, assert_nn_le, unsigned_div_rem)
    from starkware.starknet.common.syscalls import (get_caller_address, storage_read, storage_write)

    // 
    // CONSTANTS
    // 


    // @dev the maximum amount of each token that belongs to the AMM
    const BALANCE_UPPER_BOUND = 2 ** 64;

    const TOKEN_TYPE_A = 1;
    const TOKEN_TYPE_B = 2;

    // @dev Ensure the user's balances are much smaller than the pool's balance
    const POOL_UPPER_BOUND = 2 ** 30;
    const ACCOUNT_BALANCE_BOUND = 1073741; // (2 ** 30 / 1000)

    // 
    // STORAGE VARIABLES
    // 

    // @dev A map from account and token type to corresponding balance
    @storage_var
    func account_balance(account_id: felt, token_type: felt) -> (balance: felt) {
    }

    // @dev a map from token type to corresponding pool balance
    @storage_var
    func pool_balance(token_type: felt) -> (balance: felt) {
    }

    // 
    // GETTERS
    // 

    // @dev returns account balance for a given token
    // @param account_id Account to be queried
    // @param token_type Token to be queried
    @view
    func get_account_token_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
        account_id: felt, token_type: felt
    ) -> (balance: felt) {
        return account_balance.read(account_id, token_type);
    }

    // @dev return the pool's balance
    // @param token_type Token type to get pool balance
    @view
    func get_pool_token_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
        token_type: felt
    ) -> (balance: felt) {
        return pool_balance.read(token_type);
    }

    // 
    // EXTERNALS
    // 

    // @dev set pool balance for a given token
    // @param token_type Token whose balance is to be set
    // @param balance Amount to be set as balance
    @external
    func set_pool_token_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
        token_type: felt, balance: felt
    ) {
        with_attr error_message("exceeds maximum allowed tokens!"){
            assert_nn_le(balance, BALANCE_UPPER_BOUND - 1);
        }

        pool_balance.write(token_type, balance);
        return ();
    }

    // @dev add demo token to the given account
    // @param token_a_amount amount of token a to be added
    // @param token_b_amount amount of token b to be added
    @external
    func add_demo_token{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
        token_a_amount: felt, token_b_amount: felt
    ) {
        alloc_locals;
        let (account_id) = get_caller_address();

        modify_account_balance(account_id=account_id, token_type=TOKEN_TYPE_A, amount=token_a_amount);
        modify_account_balance(account_id=account_id, token_type=TOKEN_TYPE_B, amount=token_b_amount);

        return ();
    }

    // @dev intialize AMM
    // @param token_a amount of token a to be set in pool
    // @param token_b amount of token b to be set in pool
    @external
    func init_pool{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
        token_a: felt, token_b: felt
    ) {
        with_attr error_message("exceeds maximum allowed tokens!"){
            assert_nn_le(token_a, POOL_UPPER_BOUND - 1);
            assert_nn_le(token_b, POOL_UPPER_BOUND - 1);
        }

        set_pool_token_balance(token_type=TOKEN_TYPE_A, balance=token_a);
        set_pool_token_balance(token_type=TOKEN_TYPE_B, balance=token_b);

        return ();
    }


    // @dev swaps token between the given account and the pool
    // @param token_from token to be swapped
    // @param amount_from amount of token to be swapped
    // @return amount_to the token swapped to
    @external
    func swap{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
        token_from: felt, amount_from: felt
    ) -> (amount_to: felt) {
        alloc_locals;
        let (account_id) = get_caller_address();

        // verify token_from is TOKEN_TYPE_A or TOKEN_TYPE_B
        with_attr error_message("token not allowed in pool!"){
            assert (token_from - TOKEN_TYPE_A) * (token_from - TOKEN_TYPE_B) = 0;
        }

        // check requested amount_from is valid
        with_attr error_message("exceeds maximum allowed tokens!"){
            assert_nn_le(amount_from, BALANCE_UPPER_BOUND - 1);
        }

        // check user has enough funds
        let (account_from_balance) = get_account_token_balance(account_id=account_id, token_type=token_from);
        with_attr error_message("insufficient balance!"){
            assert_le(amount_from, account_from_balance);
        }

        let (token_to) = get_opposite_token(token_type=token_from);
        let (amount_to) = do_swap(account_id=account_id, token_from=token_from, token_to=token_to, amount_from=amount_from);

        return (amount_to=amount_to);
    }


    // 
    // INTERNALS
    // 

    // @dev internal function that updates account balance for a given token
    // @param account_id Account whose balance is to be modified
    // @param token_type Token type to be modified
    // @param amount Amount Amount to be added
    func modify_account_balance{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
        account_id: felt, token_type: felt, amount: felt
    ) {
        let (current_balance) = account_balance.read(account_id, token_type);
        tempvar new_balance = current_balance + amount;

        with_attr error_message("exceeds maximum allowed tokens!"){
            assert_nn_le(new_balance, BALANCE_UPPER_BOUND - 1);
        }

        account_balance.write(account_id=account_id, token_type=token_type, value=new_balance);
        return ();
    }

    // @dev internal function that swaps tokens between the given account and the pool
    // @param account_id Account whose tokens are to be swapped
    // @param token_from Token type to be swapped from
    // @param token_to Token type to be swapped to
    // @param amount_from Amount to be swapped
    func do_swap{syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr}(
        account_id: felt, token_from: felt, token_to: felt, amount_from: felt
    ) -> (amount_to: felt) {
        alloc_locals;

        // get pool balance
        let (local amm_from_balance) = get_pool_token_balance(token_type = token_from);
        let (local amm_to_balance) = get_pool_token_balance(token_type=token_to);

        // calculate swap amount
        let (local amount_to, _) = unsigned_div_rem((amm_to_balance * amount_from), (amm_from_balance + amount_from));

        // update token_from balances
        modify_account_balance(account_id=account_id, token_type=token_from, amount=-amount_from);
        set_pool_token_balance(token_type=token_from, balance=(amm_from_balance + amount_from));

        // update token_to balances
        modify_account_balance(account_id=account_id, token_type=token_to, amount=amount_to);
        set_pool_token_balance(token_type=token_to, balance=(amm_to_balance - amount_to));

        return (amount_to=amount_to);
    }

    // @dev internal function to get the opposite token type
    // @param token_type Token whose opposite pair needs to be gotten
    func get_opposite_token(token_type: felt) -> (t: felt) {
        if(token_type == TOKEN_TYPE_A) {
            return (t=TOKEN_TYPE_B);
        } else {
            return (t=TOKEN_TYPE_A);
        }
    }
```

# Additional Resources
1. [Official documentation](https://www.cairo-lang.org/docs/)
2. [Starknet EDU](https://medium.com/starknet-edu)
3. [Journey through Cairo](https://medium.com/@darlingtonnnam/journey-through-cairo-i-setting-up-protostar-and-argentx-for-local-development-ba40ae6c5524)
4. [Demystifying Cairo whitepaper](https://medium.com/@pban/demystifying-cairo-white-paper-part-i-b71976ad0108)
5. [Learn about StarkNet with Argent](https://www.argent.xyz/learn/tag/starknet/)

# Development Frameworks
1. [Protostar](https://docs.swmansion.com/protostar/docs/tutorials/installation)
2. [Nile](https://github.com/OpenZeppelin/nile)
3. [StarkNet CLI](https://www.cairo-lang.org/docs/quickstart.html)

# Helpful Libraries
1. [Cairo-lang](https://github.com/starkware-libs/cairo-lang)
2. [Openzeppelin](https://github.com/OpenZeppelin/cairo-contracts)

# Educational Repos
1. [StarkNet Cairo 101](https://github.com/starknet-edu/starknet-cairo-101)
2. [StarkNet ERC721](https://github.com/starknet-edu/starknet-erc721)
3. [StarkNet ERC20](https://github.com/starknet-edu/starknet-erc20)
4. [L1 -> L2 Messaging](https://github.com/starknet-edu/starknet-messaging-bridge)
5. [StarkNet Debug](https://github.com/starknet-edu/starknet-debug)
6. [StarkNet Accounts](https://github.com/starknet-edu/starknet-accounts)
7. [Min-Starknet](https://github.com/Darlington02/min-starknet)

# Security 
1. [Amarna static analysis for Cairo programs](https://blog.trailofbits.com/2022/04/20/amarna-static-analysis-for-cairo-programs/)
2. [Cairo and StarkNet security by Ctrl03](https://ctrlc03.github.io/)
3. [How to hack almost any Cairo smart contract](https://medium.com/ginger-security/how-to-hack-almost-any-starknet-cairo-smart-contract-67b4681ac0f6)
4. [Analyzing Cairo code using Armana](https://dic0de.substack.com/p/analyzing-cairo-code-using-amarna?sd=pf)

# Future TO-DOs
Update tutorial to fit Cairo 1.0