summaryrefslogtreecommitdiffhomepage
path: root/forth.html.markdown
blob: ab0c4c3b1c3edfe0dc50c07370408e2c2c149251 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
language: forth
contributors:
    - ["Horse M.D.", "http://github.com/HorseMD/"]
filename: learnforth.fs
---

Forth was created by Charles H. Moore in the 70s. It is an imperative,
stack-based language and programming environment, being used in projects
such as Open Firmware. It's also used by NASA.

Note: This article focuses predominantly on the Gforth implementation of
Forth, but most of what is written here should work elsewhere.

```forth
\ This is a comment
( This is also a comment but it's only used when defining words )

\ --------------------------------- Precursor ----------------------------------

\ All programming in Forth is done by manipulating the parameter stack (more
\ commonly just referred to as "the stack").
5 2 3 56 76 23 65    \ ok

\ Those numbers get added to the stack, from left to right.
.s    \ <7> 5 2 3 56 76 23 65 ok

\ In Forth, everything is either a word or a number.

\ ------------------------------ Basic Arithmetic ------------------------------

\ Arithmetic (in fact most words requiring data) works by manipulating data on
\ the stack.
5 4 +    \ ok

\ `.` pops the top result from the stack:
.    \ 9 ok

\ More examples of arithmetic:
6 7 * .        \ 42 ok
1360 23 - .    \ 1337 ok
12 12 / .      \ 1 ok
13 2 mod .     \ 1 ok

99 negate .    \ -99 ok
-99 abs .      \ 99 ok
52 23 max .    \ 52 ok
52 23 min .    \ 23 ok

\ ----------------------------- Stack Manipulation -----------------------------

\ Naturally, as we work with the stack, we'll want some useful methods:

3 dup -          \ duplicate the top item (1st now equals 2nd): 3 - 3
2 5 swap /       \ swap the top with the second element:        5 / 2
6 4 5 rot .s     \ rotate the top 3 elements:                   4 5 6
4 0 drop 2 /     \ remove the top item (don't print to screen):  4 / 2
1 2 3 nip .s     \ remove the second item (similar to drop):    1 3

\ ---------------------- More Advanced Stack Manipulation ----------------------

1 2 3 4 tuck   \ duplicate the top item below the second slot:      1 2 4 3 4 ok
1 2 3 4 over   \ duplicate the second item to the top:             1 2 3 4 3 ok
1 2 3 4 2 roll \ *move* the item at that position to the top:      1 3 4 2 ok
1 2 3 4 2 pick \ *duplicate* the item at that position to the top: 1 2 3 4 2 ok

\ When referring to stack indexes, they are zero-based.

\ ------------------------------ Creating Words --------------------------------

\ The `:` word sets Forth into compile mode until it sees the `;` word.
: square ( n -- n ) dup * ;    \ ok
5 square .                     \ 25 ok

\ We can view what a word does too:
see square     \ : square dup * ; ok

\ -------------------------------- Conditionals --------------------------------

\ -1 == true, 0 == false. However, any non-zero value is usually treated as
\ being true:
42 42 =    \ -1 ok
12 53 =    \ 0 ok

\ `if` is a compile-only word. `if` <stuff to do> `then` <rest of program>.
: ?>64 ( n -- n ) dup 64 > if ." Greater than 64!" then ; \ ok
100 ?>64                                                  \ Greater than 64! ok

\ Else:
: ?>64 ( n -- n ) dup 64 > if ." Greater than 64!" else ." Less than 64!" then ;
100 ?>64    \ Greater than 64! ok
20 ?>64     \ Less than 64! ok

\ ------------------------------------ Loops -----------------------------------

\ `do` is also a compile-only word.
: myloop ( -- ) 5 0 do cr ." Hello!" loop ; \ ok
myloop
\ Hello!
\ Hello!
\ Hello!
\ Hello!
\ Hello! ok

\ `do` expects two numbers on the stack: the end number and the start number.

\ We can get the value of the index as we loop with `i`:
: one-to-12 ( -- ) 12 0 do i . loop ;     \ ok
one-to-12                                 \ 0 1 2 3 4 5 6 7 8 9 10 11 ok

\ `?do` works similarly, except it will skip the loop if the end and start
\ numbers are equal.
: squares ( n -- ) 0 ?do i square . loop ;   \ ok
10 squares                                   \ 0 1 4 9 16 25 36 49 64 81 ok

\ Change the "step" with `+loop`:
: threes ( n n -- ) ?do i . 3 +loop ;    \ ok
15 0 threes                             \ 0 3 6 9 12 ok

\ Indefinite loops with `begin` <stuff to do> <flag> `until`:
: death ( -- ) begin ." Are we there yet?" 0 until ;    \ ok

\ ---------------------------- Variables and Memory ----------------------------

\ Use `variable` to declare `age` to be a variable.
variable age    \ ok

\ Then we write 21 to age with the word `!`.
21 age !    \ ok

\ Finally we can print our variable using the "read" word `@`, which adds the
\ value to the stack, or use `?` that reads and prints it in one go.
age @ .    \ 21 ok
age ?      \ 21 ok

\ Constants are quite similar, except we don't bother with memory addresses:
100 constant WATER-BOILING-POINT    \ ok
WATER-BOILING-POINT .               \ 100 ok

\ ----------------------------------- Arrays -----------------------------------

\ Creating arrays is similar to variables, except we need to allocate more
\ memory to them.

\ You can use `2 cells allot` to create an array that's 3 cells long:
variable mynumbers 2 cells allot    \ ok

\ Initialize all the values to 0
mynumbers 3 cells erase    \ ok

\ Alternatively we could use `fill`:
mynumbers 3 cells 0 fill

\ or we can just skip all the above and initialize with specific values:
create mynumbers 64 , 9001 , 1337 , \ ok (the last `,` is important!)

\ ...which is equivalent to:

\ Manually writing values to each index:
64 mynumbers 0 cells + !      \ ok
9001 mynumbers 1 cells + !    \ ok
1337 mynumbers 2 cells + !    \ ok

\ Reading values at certain array indexes:
0 cells mynumbers + ?    \ 64 ok
1 cells mynumbers + ?    \ 9001 ok

\ We can simplify it a little by making a helper word for manipulating arrays:
: of-arr ( n n -- n ) cells + ;    \ ok
mynumbers 2 of-arr ?               \ 1337 ok

\ Which we can use for writing too:
20 mynumbers 1 of-arr !    \ ok
mynumbers 1 of-arr ?       \ 20 ok

\ ------------------------------ The Return Stack ------------------------------

\ The return stack is used to the hold pointers to things when words are
\ executing other words, e.g. loops.

\ We've already seen one use of it: `i`, which duplicates the top of the return
\ stack. `i` is equivalent to `r@`.
: myloop ( -- ) 5 0 do r@ . loop ;    \ ok

\ As well as reading, we can add to the return stack and remove from it:
5 6 4 >r swap r> .s    \ 6 5 4 ok

\ NOTE: Because Forth uses the return stack for word pointers,  `>r` should
\ always be followed by `r>`.

\ ------------------------- Floating Point Operations --------------------------

\ Most Forths tend to eschew the use of floating point operations.
8.3e 0.8e f+ f.    \ 9.1 ok

\ Usually we simply prepend words with 'f' when dealing with floats:
variable myfloatingvar    \ ok
4.4e myfloatingvar f!     \ ok
myfloatingvar f@ f.       \ 4.4 ok

\ --------------------------------- Final Notes --------------------------------

\ Typing a non-existent word will empty the stack. However, there's also a word
\ specifically for that:
clearstack

\ Clear the screen:
page

\ Loading Forth files:
\ s" forthfile.fs" included

\ You can list every word that's in Forth's dictionary (but it's a huge list!):
\ words

\ Exiting Gforth:
\ bye

```

##Ready For More?

* [Starting Forth](http://www.forth.com/starting-forth/)
* [Simple Forth](http://www.murphywong.net/hello/simple.htm)
* [Thinking Forth](http://thinking-forth.sourceforge.net/)