summaryrefslogtreecommitdiffhomepage
path: root/fortran.html.markdown
blob: 83074073c5291b5807be4b3cffcbbfa7885b063e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
---
language: Fortran
contributors:
    - ["Robert Steed", "https://github.com/robochat"]
filename: learnfortran.f90
---

Fortran is one of the oldest computer languages. It was developed in the 1950s
by IBM for numeric calculations (Fortran is an abbreviation of "Formula
Translation"). Despite its age, it is still used for high-performance computing
such as weather prediction. However, the language has changed considerably over
the years, although mostly maintaining backwards compatibility; well known
versions are FORTRAN 77, Fortran 90, Fortran 95, Fortran 2003, Fortran 2008,
Fortran 2018 and Fortran 2023.

This overview will discuss the features of Fortran 2008 since it is the most
widely implemented of the more recent specifications and the later versions are
largely similar (by comparison FORTRAN 77 is a very different language).

```fortran
! This is a comment.

program example         ! declare a program called example.

    ! Code can only exist inside programs, functions, subroutines or modules.
    ! Using indentation is not required but it is recommended.

    ! Declaring Variables
    ! ===================

    ! All declarations must come before statements and expressions.

    implicit none       ! prevents dynamic declaration of variables (recommended!)
    ! Implicit none must be redeclared in every function/program/module...

    ! IMPORTANT - Fortran is case insensitive.
    real z
    REAL Z2

    real :: v, x        ! WARNING: default initial values are compiler dependent!
    real :: a = 3, b = 2E12, c = 0.01
    integer :: i, j, k = 1, m
    real, parameter :: PI = 3.1415926535897931    ! declare a constant.
    logical :: y = .TRUE., n = .FALSE.            ! boolean type.
    complex :: w = (0, 1)                         ! sqrt(-1)
    character(len=3) :: month                     ! string of 3 characters.

    real :: array(6)                              ! declare an array of 6 reals.
    real, dimension(4) :: arrayb                  ! another way to declare an array.
    integer :: arrayc(-10:10)                     ! an array with a custom index.
    real :: array2d(3, 2)                         ! multidimensional array.

    ! The '::' separators are not always necessary but are recommended.

    ! many other variable attributes also exist:
    real, pointer :: p                            ! declare a pointer.

    integer, parameter :: LP = selected_real_kind(20)
    real(kind=LP) :: d                            ! long precision variable.

    ! WARNING: initialising variables during declaration causes problems
    ! in functions since this automatically implies the 'save' attribute
    ! whereby values are saved between function calls. In general, separate
    ! declaration and initialisation code except for constants!

    ! Strings
    ! =======

    character :: a_char = 'i'
    character(len=6) :: a_str = "qwerty"
    character(len=30) :: str_b
    character(len=*), parameter :: a_long_str = "This is a long string."
    !can have automatic counting of length using (len=*) but only for constants.

    str_b = a_str//" keyboard"      ! concatenate strings using // operator.

    ! Assignment & Arithmetic
    ! =======================

    Z = 1                           ! assign to variable z declared above (case insensitive).
    j = 10 + 2 - 3
    a = 11.54/(2.3*3.1)
    b = 2**3                        ! exponentiation

    ! Control Flow Statements & Operators
    ! ===================================

    ! Single-line if statement
    if (z == a) b = 4               ! condition always need surrounding parentheses.

    if (z /= a) then                ! z not equal to a
        ! Other symbolic comparisons are < > <= >= == /=
        b = 4
    else if (z .GT. a) then         ! z greater than a
        ! Text equivalents to symbol operators are .LT. .GT. .LE. .GE. .EQ. .NE.
        b = 6
    else if (z < a) then            ! 'then' must be on this line.
        b = 5                       ! execution block must be on a new line.
    else
        b = 10
    end if                          ! end statement needs the 'if' (or can use 'endif').

    if (.NOT. (x < c .AND. v >= a .OR. z == z)) then    ! boolean operators.
        inner: if (.TRUE.) then     ! can name if-construct.
            b = 1
        end if inner                ! then must name endif statement.
    end if

    i = 20
    select case (i)
    case (0, 1)                     ! cases i == 0 or i == 1
        j = 0
    case (2:10)                     ! cases i is 2 to 10 inclusive.
        j = 1
    case (11:)                      ! all cases where i>=11
        j = 2
    case default
        j = 3
    end select

    month = 'jan'
    ! Condition can be integer, logical or character type.
    ! Select constructions can also be named.
    monthly:select case(month)
    case ("jan")
        j = 0
    case default
        j = -1
    end select monthly

    do i = 2, 10, 2             ! loops from 2 to 10 (inclusive) in increments of 2.
        innerloop: do j = 1, 3  ! loops can be named too.
            exit                ! quits the loop.
        end do innerloop
        cycle                   ! jump to next loop iteration.
    end do

    ! Goto statement exists but it is heavily discouraged though.
    goto 10
    stop 1                      ! stops code immediately (returning specified condition code).
10  j = 201                     ! this line is labeled as line 10

    ! Arrays
    ! ======
    array = (/1, 2, 3, 4, 5, 6/)
    array = [1, 2, 3, 4, 5, 6]  ! using Fortran 2003 notation.
    arrayb = [10.2, 3e3, 0.41, 4e-5]
    array2d = reshape([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], [3, 2])

    ! Fortran array indexing starts from 1.
    ! (by default but can be defined differently for specific arrays).
    v = array(1)                ! take first element of array.
    v = array2d(2, 2)

    print *, array(3:5)         ! print all elements from 3rd to 5th (inclusive).
    print *, array2d(1, :)      ! print first column of 2d array.

    array = array*3 + 2         ! can apply mathematical expressions to arrays.
    array = array*array         ! array operations occur element-wise.
    ! array = array*array2d     ! these arrays would not be compatible.

    ! There are many built-in functions that operate on arrays.
    c = dot_product(array, array)   ! this is the dot product.
    ! Use matmul() for matrix maths.
    c = sum(array)
    c = maxval(array)
    print *, minloc(array)
    c = size(array)
    print *, shape(array)
    m = count(array > 0)

    ! Loop over an array (could have used Product() function normally).
    v = 1
    do i = 1, size(array)
        v = v*array(i)
    end do

    ! Conditionally execute element-wise assignments.
    array = [1, 2, 3, 4, 5, 6]
    where (array > 3)
        array = array + 1
    elsewhere(array == 2)
        array = 1
    elsewhere
        array = 0
    end where

    ! Implied-DO loops are a compact way to create arrays.
    array = [(i, i=1, 6)]       ! creates an array of [1,2,3,4,5,6]
    array = [(i, i=1, 12, 2)]   ! creates an array of [1,3,5,7,9,11]
    array = [(i**2, i=1, 6)]    ! creates an array of [1,4,9,16,25,36]
    array = [(4, 5, i=1, 3)]    ! creates an array of [4,5,4,5,4,5]

    ! Input/Output
    ! ============

    print *, b                  ! print the variable 'b' to the command line

    ! We can format our printed output.
    print "(I6)", 320           ! prints '   320'
    print "(I6.4)", 3           ! prints '  0003'
    print "(F6.3)", 4.32        ! prints ' 4.320'

    ! The letter indicates the expected type and the number afterwards gives
    ! the number of characters to use for printing the value.
    ! Letters can be I (integer), F (real), E (engineering format),
    ! L (logical), A (characters) ...
    print "(I3)", 3200          ! print '***' since the number doesn't fit.

    ! we can have multiple format specifications.
    print "(I5,F6.2,E6.2)", 120, 43.41, 43.41
    print "(3I5)", 10, 20, 30                       ! 3 repeats of integers (field width = 5).
    print "(2(I5,F6.2))", 120, 43.42, 340, 65.3     ! repeated grouping of formats.

    ! We can also read input from the terminal.
    read (*, *) v
    read (*, "(2F6.2)") v, x                        ! read two numbers

    ! To write a file.
    open (unit=12, file="records.txt", status="replace")
    ! The file is referred to by a 'unit number', an integer that you pick in
    ! the range 9:99. Status can be one of {'old','replace','new'}.
    write (12, "(F10.2,F10.2,F10.2)") c, b, a
    close (12)

    ! To read a file.
    open (newunit=m, file="records.txt", status="old")
    ! The file is referred to by a 'new unit number', an integer that the compiler
    ! picks for you.
    read (unit=m, fmt="(3F10.2)") a, b, c
    close (m)

    ! There are more features available than discussed here and alternative
    ! variants due to backwards compatibility with older Fortran versions.

    ! Built-in Functions
    ! ==================

    ! Fortran has around 200 functions/subroutines intrinsic to the language.
    ! Examples -
    call cpu_time(v)        ! sets 'v' to a time in seconds.
    k = ior(i, j)           ! bitwise OR of 2 integers.
    v = log10(x)            ! log base 10.
    i = floor(b)            ! returns the closest integer less than or equal to x.
    v = aimag(w)            ! imaginary part of a complex number.

    ! Functions & Subroutines
    ! =======================

    ! A subroutine runs some code on some input values and can cause
    ! side-effects or modify the input values.

    call routine(a, c, v)   ! subroutine call.

    ! A function takes a list of input parameters and returns a single value.
    ! However the input parameters may still be modified and side effects
    ! executed.

    m = func(3, 2, k)       ! function call.

    ! Function calls can also be evoked within expressions.
    print *, func2(3, 2, k)

    ! A pure function is a function that doesn't modify its input parameters
    ! or cause any side-effects.
    m = func3(3, 2, k)

contains                    ! Zone for defining sub-programs internal to the program.

    ! Fortran has a couple of slightly different ways to define functions.

    integer function func(a, b, c)      ! a function returning an integer value.
        ! implicit none                 ! subvariable fields can no longer declare implicit none
        integer, intent(in) :: a, b, c  ! type of input parameters defined inside the function.

        if (a >= 2) then
            func = a + b + c            ! the return variable defaults to the function name.
            return                      ! can return the current value from the function at any time.
        end if
        func = a + c

        ! Don't need a return statement at the end of a function.
    end function func

    function func2(a, b, c) result(f)   ! return variable declared to be 'f'.
        integer, intent(in) :: a, b     ! can declare and enforce that variables
        !are not modified by the function.
        integer, intent(inout) :: c
        integer :: f                    ! function return type declared inside the function.
        integer :: cnt = 0              ! GOTCHA - initialisation implies variable is
        !saved between function calls.

        f = a + b - c
        c = 4                           ! altering the value of an input variable.
        cnt = cnt + 1                   ! count number of function calls.

    end function func2

    pure function func3(a, b, c)        ! a pure function can have no side-effects.
        integer, intent(in) :: a, b, c
        integer :: func3

        func3 = a*b*c

    end function func3

    subroutine routine(d, e, f)
        real, intent(inout) :: f
        real, intent(in) :: d, e

        f = 2*d + 3*e + f

    end subroutine routine

end program example                     ! End of Program Definition -----------------------

! Functions and Subroutines declared externally to the program listing need
! to be declared to the program using an Interface declaration (even if they
! are in the same source file!) (see below). It is easier to define them within
! the 'contains' section of a module or program.

elemental real function func4(a) result(res)
! An elemental function is a Pure function that takes a scalar input variable
! but can also be used on an array where it will be separately applied to all
! of the elements of an array and return a new array.
    real, intent(in) :: a

    res = a**2 + 1.0

end function func4

! Modules
! =======

! A module is a useful way to collect related declarations, functions and
! subroutines together for reusability.

module fruit

    real :: apple
    real :: pear
    real :: orange

end module fruit

module fruity
    ! Declarations must be in the order: modules, interfaces, variables.
    ! (can declare modules and interfaces in programs too).

    use fruit, only: apple, pear    ! use apple and pear from fruit module.
    implicit none                   ! comes after module imports.

    private                         ! make things private to the module (default is public).
    ! Declare some variables/functions explicitly public.
    public :: apple, mycar, create_mycar
    ! Declare some variables/functions private to the module (redundant here).
    private :: func4

    ! Interfaces
    ! ==========
    ! Explicitly declare an external function/procedure within the module
    ! (better in general to put functions/procedures in the 'contains' section).
    interface
        elemental real function func4(a) result(res)
            real, intent(in) :: a
        end function func4
    end interface

    ! Overloaded functions can be defined using named interfaces.
    interface myabs
        ! Can use 'module procedure' keyword to include functions already
        ! defined within the module.
        module procedure real_abs, complex_abs
    end interface

    ! Derived Data Types
    ! ==================
    ! Can create custom structured data collections.
    type car
        character(len=100) :: model
        real :: weight              ! (kg)
        real :: dimensions(3)       ! i.e. length-width-height (metres).
        character :: colour
    contains
        procedure :: info           ! bind a procedure to a type.
    end type car

    type(car) :: mycar              ! declare a variable of your custom type.
    ! See create_mycar() routine for usage.

    ! Note: There are no executable statements in modules.

contains

    subroutine create_mycar(mycar)
        ! Demonstrates usage of a derived data type.
        type(car), intent(out) :: mycar

        ! Access type elements using '%' operator.
        mycar%model = "Ford Prefect"
        mycar%colour = 'r'
        mycar%weight = 1400
        mycar%dimensions(1) = 5.0   ! default indexing starts from 1!
        mycar%dimensions(2) = 3.0
        mycar%dimensions(3) = 1.5

    end subroutine create_mycar

    subroutine info(self)
        class(car), intent(in) :: self
        ! 'class' keyword used to bind a procedure to a type here.

        print *, "Model     : ", self%model
        print *, "Colour    : ", self%colour
        print *, "Weight    : ", self%weight
        print *, "Dimensions: ", self%dimensions

    end subroutine info

    real pure function real_abs(x)
        real, intent(in) :: x

        if (x < 0) then
            real_abs = -x
        else
            real_abs = x
        end if

    end function real_abs

    real pure function complex_abs(z)
        complex, intent(in) :: z
        ! long lines can be continued using the continuation character '&'

        complex_abs = sqrt(real(z)**2 + &
                           aimag(z)**2)

    end function complex_abs

end module fruity

! ISO Standard Fortran 2008 introduced the DO CONCURRENT construct to allow you
! to express loop-level parallelism

integer :: i
real :: array(100)

DO CONCURRENT (i = 1:size(array))
    array(i) = sqrt(i**i)
END DO


! Only calls to pure functions are allowed inside the loop and we can declare
! multiple indices:

integer :: x, y
real :: array(8, 16)

do concurrent (x = 1:size(array, 1), y = 1:size(array, 2))
    array(x, y) = real(x)
end do

! loop indices can also declared inside the contruct:

real :: array(8, 16)

do concurrent (integer :: x = 1:size(array, 1), y = 1:size(array, 2))
    array(x, y) = real(x)
end do
```

### More Resources

For more information on Fortran:

+ [wikipedia](https://en.wikipedia.org/wiki/Fortran)
+ [Fortran-lang Organization](https://fortran-lang.org/)
+ [Fortran_95_language_features](https://en.wikipedia.org/wiki/Fortran_95_language_features)
+ [fortranwiki.org](http://fortranwiki.org)
+ [www.fortran90.org/](http://www.fortran90.org)
+ [list of Fortran 95 tutorials](http://www.dmoz.org/Computers/Programming/Languages/Fortran/FAQs%2C_Help%2C_and_Tutorials/Fortran_90_and_95/)
+ [Fortran wikibook](https://en.wikibooks.org/wiki/Fortran)
+ [Fortran resources](http://www.fortranplus.co.uk/resources/fortran_resources.pdf)
+ [Mistakes in Fortran 90 Programs That Might Surprise You](http://www.cs.rpi.edu/~szymansk/OOF90/bugs.html)