1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
|
---
language: kdb+
contributors:
- ["Matt Doherty", "https://github.com/picodoc"]
- ["Jonny Press", "https://github.com/jonnypress"]
filename: learnkdb.q
---
The q language and its database component kdb+ were developed by Arthur Whitney
and released by Kx systems in 2003. q is a descendant of APL and as such is
very terse and a little strange looking for anyone from a "C heritage" language
background. Its expressiveness and vector oriented nature make it well suited
to performing complex calculations on large amounts of data (while also
encouraging some amount of [code golf](https://en.wikipedia.org/wiki/Code_golf)).
The fundamental structure in the language is not the object but instead the list,
and tables are built as collections of lists. This means - unlike most traditional
RDBMS systems - tables are column oriented. The language has both an in-memory
and on-disk database built in, giving a large amount of flexibility. kdb+ is most
widely used in the world of finance to store, analyze, process and retrieve large
time-series data sets.
The terms *q* and *kdb+* are usually used interchangeably, as the two are not
separable so this distinction is not really useful.
To learn more about kdb+ you can join the
[KX Community forums](https://learninghub.kx.com/forums/) or
the [TorQ kdb+](https://groups.google.com/forum/#!forum/kdbtorq) group.
```q
/ Single line comments start with a forward-slash
/ These can also be used in-line, so long as at least one whitespace character
/ separates it from text to the left
/
A forward-slash on a line by itself starts a multiline comment
and a backward-slash on a line by itself terminates it
\
/ Run this file in an empty directory
////////////////////////////////////
// Basic Operators and Datatypes //
////////////////////////////////////
/ We have integers, which are 8 byte by default
3 / => 3
/ And floats, also 8 byte as standard. Trailing f distinguishes from int
3.0 / => 3f
/ 4 byte numerical types can also be specified with trailing chars
3i / => 3i
3.0e / => 3e
/ Math is mostly what you would expect
1+1 / => 2
8-1 / => 7
10*2 / => 20
/ Except division, which uses percent (%) instead of forward-slash (/)
35%5 / => 7f (the result of division is always a float)
/ For integer division we have the keyword div
4 div 3 / => 1
/ Modulo also uses a keyword, since percent (%) is taken
4 mod 3 / => 1
/ And exponentiation...
2 xexp 4 / => 16
/ ...and truncating...
floor 3.14159 / => 3
/ ...getting the absolute value...
abs -3.14159 / => 3.14159
/ ...and many other things
/ see http://code.kx.com/q/ref/card/ for more
/ q has no operator precedence, everything is evaluated right to left
/ so results like this might take some getting used to
2*1+1 / => 4 / (no operator precedence tables to remember!)
/ Precedence can be modified with parentheses (restoring the 'normal' result)
(2*1)+1 / => 3
/ Assignment uses colon (:) instead of equals (=)
/ No need to declare variables before assignment
a:3
a / => 3
/ Variables can also be assigned in-line
/ this does not affect the value passed on
c:3+b:2+a:1 / (data "flows" from right to left)
a / => 1
b / => 3
c / => 6
/ In-place operations are also as you might expect
a+:2
a / => 3
/ There are no "true" or "false" keywords in q
/ boolean values are indicated by the bit value followed by b
1b / => true value
0b / => false value
/ Equality comparisons use equals (=) (since we don't need it for assignment)
1=1 / => 1b
2=1 / => 0b
/ Inequality uses <>
1<>1 / => 0b
2<>1 / => 1b
/ The other comparisons are as you might expect
1<2 / => 1b
1>2 / => 0b
2<=2 / => 1b
2>=2 / => 1b
/ Comparison is not strict with regard to types...
42=42.0 / => 1b
/ ...unless we use the match operator (~)
/ which only returns true if entities are identical
42~42.0 / => 0b
/ The not operator returns true if the underlying value is zero
not 0b / => 1b
not 1b / => 0b
not 42 / => 0b
not 0.0 / => 1b
/ The max operator (|) reduces to logical "or" for bools
42|2.0 / => 42f
1b|0b / => 1b
/ The min operator (&) reduces to logical "and" for bools
42&2.0 / => 2f
1b&0b / => 0b
/ q provides two ways to store character data
/ Chars in q are stored in a single byte and use double-quotes (")
ch:"a"
/ Strings are simply lists of char (more on lists later)
str:"This is a string"
/ Escape characters work as normal
str:"This is a string with \"quotes\""
/ Char data can also be stored as symbols using backtick (`)
symbol:`sym
/ Symbols are NOT LISTS, they are an enumeration
/ the q process stores internally a vector of strings
/ symbols are enumerated against this vector
/ this can be more space and speed efficient as these are constant width
/ The string function converts to strings
string `symbol / => "symbol"
string 1.2345 / => "1.2345"
/ q has a time type...
t:01:00:00.000
/ date type...
d:2015.12.25
/ and a datetime type (among other time types)
dt:2015.12.25D12:00:00.000000000
/ These support some arithmetic for easy manipulation
dt + t / => 2015.12.25D13:00:00.000000000
t - 00:10:00.000 / => 00:50:00.000
/ and can be decomposed using dot notation
d.year / => 2015i
d.mm / => 12i
d.dd / => 25i
/ see http://code.kx.com/q4m3/2_Basic_Data_Types_Atoms/#25-temporal-data for more
/ q also has an infinity value so div by zero will not throw an error
1%0 / => 0w
-1%0 / => -0w
/ And null types for representing missing values
0N / => null int
0n / => null float
/ see http://code.kx.com/q4m3/2_Basic_Data_Types_Atoms/#27-nulls for more
/ q has standard control structures
/ if is as you might expect (; separates the condition and instructions)
if[1=1;a:"hi"]
a / => "hi"
/ if-else uses $ (and unlike if, returns a value)
$[1=0;a:"hi";a:"bye"] / => "bye"
a / => "bye"
/ if-else can be extended to multiple clauses by adding args separated by ;
$[1=0;a:"hi";0=1;a:"bye";a:"hello again"]
a / => "hello again"
////////////////////////////////////
//// Data Structures ////
////////////////////////////////////
/ q is not an object oriented language
/ instead complexity is built through ordered lists
/ and mapping them into higher order structures: dictionaries and tables
/ Lists (or arrays if you prefer) are simple ordered collections
/ they are defined using parentheses () and semi-colons (;)
(1;2;3) / => 1 2 3
(-10.0;3.14159e;1b;`abc;"c")
/ => -10f
/ => 3.14159e
/ => 1b
/ => `abc
/ => "c" (mixed type lists are displayed on multiple lines)
((1;2;3);(4;5;6);(7;8;9))
/ => 1 2 3
/ => 4 5 6
/ => 7 8 9
/ Lists of uniform type can also be defined more concisely
1 2 3 / => 1 2 3
`list`of`syms / => `list`of`syms
`list`of`syms ~ (`list;`of;`syms) / => 1b
/ List length
count (1;2;3) / => 3
count "I am a string" / => 13 (string are lists of char)
/ Empty lists are defined with parentheses
l:()
count l / => 0
/ Simple variables and single item lists are not equivalent
/ parentheses syntax cannot create a single item list (they indicate precedence)
(1)~1 / => 1b
/ single item lists can be created using enlist
singleton:enlist 1
/ or appending to an empty list
singleton:(),1
1~(),1 / => 0b
/ Speaking of appending, comma (,) is used for this, not plus (+)
1 2 3,4 5 6 / => 1 2 3 4 5 6
"hello ","there" / => "hello there"
/ Indexing uses square brackets []
l:1 2 3 4
l[0] / => 1
l[1] / => 2
/ indexing out of bounds returns a null value rather than an error
l[5] / => 0N
/ and indexed assignment
l[0]:5
l / => 5 2 3 4
/ Lists can also be used for indexing and indexed assignment
l[1 3] / => 2 4
l[1 3]: 1 3
l / => 5 1 3 3
/ Lists can be untyped/mixed type
l:(1;2;`hi)
/ but once they are uniformly typed, q will enforce this
l[2]:3
l / => 1 2 3
l[2]:`hi / throws a type error
/ this makes sense in the context of lists as table columns (more later)
/ For a nested list we can index at depth
l:((1;2;3);(4;5;6);(7;8;9))
l[1;1] / => 5
/ We can elide the indexes to return entire rows or columns
l[;1] / => 2 5 8
l[1;] / => 4 5 6
/ All the functions mentioned in the previous section work on lists natively
1+(1;2;3) / => 2 3 4 (single variable and list)
(1;2;3) - (3;2;1) / => -2 0 2 (list and list)
/ And there are many more that are designed specifically for lists
avg 1 2 3 / => 2f
sum 1 2 3 / => 6
sums 1 2 3 / => 1 3 6 (running sum)
last 1 2 3 / => 3
1 rotate 1 2 3 / => 2 3 1
/ etc.
/ Using and combining these functions to manipulate lists is where much of the
/ power and expressiveness of the language comes from
/ Take (#), drop (_) and find (?) are also useful working with lists
l:1 2 3 4 5 6 7 8 9
l:1+til 9 / til is a useful shortcut for generating ranges
/ take the first 5 elements
5#l / => 1 2 3 4 5
/ drop the first 5
5_l / => 6 7 8 9
/ take the last 5
-5#l / => 5 6 7 8 9
/ drop the last 5
-5_l / => 1 2 3 4
/ find the first occurrence of 4
l?4 / => 3
l[3] / => 4
/ Dictionaries in q are a generalization of lists
/ they map a list to another list (of equal length)
/ the bang (!) symbol is used for defining a dictionary
d:(`a;`b;`c)!(1;2;3)
/ or more simply with concise list syntax
d:`a`b`c!1 2 3
/ the keyword key returns the first list
key d / => `a`b`c
/ and value the second
value d / => 1 2 3
/ Indexing is identical to lists
/ with the first list as a key instead of the position
d[`a] / => 1
d[`b] / => 2
/ As is assignment
d[`c]:4
d
/ => a| 1
/ => b| 2
/ => c| 4
/ Arithmetic and comparison work natively, just like lists
e:(`a;`b;`c)!(2;3;4)
d+e
/ => a| 3
/ => b| 5
/ => c| 8
d-2
/ => a| -1
/ => b| 0
/ => c| 2
d > (1;1;1)
/ => a| 0
/ => b| 1
/ => c| 1
/ And the take, drop and find operators are remarkably similar too
`a`b#d
/ => a| 1
/ => b| 2
`a`b _ d
/ => c| 4
d?2
/ => `b
/ Tables in q are basically a subset of dictionaries
/ a table is a dictionary where all values must be lists of the same length
/ as such tables in q are column oriented (unlike most RDBMS)
/ the flip keyword is used to convert a dictionary to a table
/ i.e. flip the indices
flip `c1`c2`c3!(1 2 3;4 5 6;7 8 9)
/ => c1 c2 c3
/ => --------
/ => 1 4 7
/ => 2 5 8
/ => 3 6 9
/ we can also define tables using this syntax
t:([]c1:1 2 3;c2:4 5 6;c3:7 8 9)
t
/ => c1 c2 c3
/ => --------
/ => 1 4 7
/ => 2 5 8
/ => 3 6 9
/ Tables can be indexed and manipulated in a similar way to dicts and lists
t[`c1]
/ => 1 2 3
/ table rows are returned as dictionaries
t[1]
/ => c1| 2
/ => c2| 5
/ => c3| 8
/ meta returns table type information
meta t
/ => c | t f a
/ => --| -----
/ => c1| j
/ => c2| j
/ => c3| j
/ now we see why type is enforced in lists (to protect column types)
t[1;`c1]:3
t[1;`c1]:3.0 / throws a type error
/ Most traditional databases have primary key columns
/ in q we have keyed tables, where one table containing key columns
/ is mapped to another table using bang (!)
k:([]id:1 2 3)
k!t
/ => id| c1 c2 c3
/ => --| --------
/ => 1 | 1 4 7
/ => 2 | 3 5 8
/ => 3 | 3 6 9
/ We can also use this shortcut for defining keyed tables
kt:([id:1 2 3]c1:1 2 3;c2:4 5 6;c3:7 8 9)
/ Records can then be retrieved based on this key
kt[1]
/ => c1| 1
/ => c2| 4
/ => c3| 7
kt[`id!1]
/ => c1| 1
/ => c2| 4
/ => c3| 7
////////////////////////////////////
//////// Functions ////////
////////////////////////////////////
/ In q the function is similar to a mathematical map, mapping inputs to outputs
/ curly braces {} are used for function definition
/ and square brackets [] for calling functions (just like list indexing)
/ a very minimal function
f:{x+x}
f[2] / => 4
/ Functions can be anonymous and called at point of definition
{x+x}[2] / => 4
/ By default the last expression is returned
/ colon (:) can be used to specify return
{x+x}[2] / => 4
{:x+x}[2] / => 4
/ semi-colon (;) separates expressions
{r:x+x;:r}[2] / => 4
/ Function arguments can be specified explicitly (separated by ;)
{[arg1;arg2] arg1+arg2}[1;2] / => 3
/ or if omitted will default to x, y and z
{x+y+z}[1;2;3] / => 6
/ Built in functions are no different, and can be called the same way (with [])
+[1;2] / => 3
<[1;2] / => 1b
/ Functions are first class in q, so can be returned, stored in lists etc.
{:{x+y}}[] / => {x+y}
(1;"hi";{x+y})
/ => 1
/ => "hi"
/ => {x+y}
/ There is no overloading and no keyword arguments for custom q functions
/ however using a dictionary as a single argument can overcome this
/ allows for optional arguments or differing functionality
d:`arg1`arg2`arg3!(1.0;2;"my function argument")
{x[`arg1]+x[`arg2]}[d] / => 3f
/ Functions in q see the global scope
a:1
{:a}[] / => 1
/ However local scope obscures this
a:1
{a:2;:a}[] / => 2
a / => 1
/ Functions cannot see nested scopes (only local and global)
{local:1;{:local}[]}[] / throws error as local is not defined in inner function
/ A function can have one or more of its arguments fixed (projection)
f:+[4]
f[4] / => 8
f[5] / => 9
f[6] / => 10
////////////////////////////////////
////////// q-sql //////////
////////////////////////////////////
/ q has its own syntax for manipulating tables, similar to standard SQL
/ This contains the usual suspects of select, insert, update etc.
/ and some new functionality not typically available
/ q-sql has two significant differences (other than syntax) to normal SQL:
/ - q tables have well defined record orders
/ - tables are stored as a collection of columns
/ (so vectorized column operations are fast)
/ a full description of q-sql is a little beyond the scope of this intro
/ so we will just cover enough of the basics to get you going
/ First define ourselves a table
t:([]name:`Arthur`Thomas`Polly;age:35 32 52;height:180 175 160;sex:`m`m`f)
/ equivalent of SELECT * FROM t
select from t / (must be lower case, and the wildcard is not necessary)
/ => name age height sex
/ => ---------------------
/ => Arthur 35 180 m
/ => Thomas 32 175 m
/ => Polly 52 160 f
/ Select specific columns
select name,age from t
/ => name age
/ => ----------
/ => Arthur 35
/ => Thomas 32
/ => Polly 52
/ And name them (equivalent of using AS in standard SQL)
select charactername:name, currentage:age from t
/ => charactername currentage
/ => ------------------------
/ => Arthur 35
/ => Thomas 32
/ => Polly 52
/ This SQL syntax is integrated with the q language
/ so q can be used seamlessly in SQL statements
select name, feet:floor height*0.032, inches:12*(height*0.032) mod 1 from t
/ => name feet inches
/ => ------------------
/ => Arthur 5 9.12
/ => Thomas 5 7.2
/ => Polly 5 1.44
/ Including custom functions
select name, growth:{[h;a]h%a}[height;age] from t
/ => name growth
/ => ---------------
/ => Arthur 5.142857
/ => Thomas 5.46875
/ => Polly 3.076923
/ The where clause can contain multiple statements separated by commas
select from t where age>33,height>175
/ => name age height sex
/ => ---------------------
/ => Arthur 35 180 m
/ The where statements are executed sequentially (not the same as logical AND)
select from t where age<40,height=min height
/ => name age height sex
/ => ---------------------
/ => Thomas 32 175 m
select from t where (age<40)&(height=min height)
/ => name age height sex
/ => -------------------
/ The by clause falls between select and from
/ and is equivalent to SQL's GROUP BY
select avg height by sex from t
/ => sex| height
/ => ---| ------
/ => f | 160
/ => m | 177.5
/ If no aggregation function is specified, last is assumed
select by sex from t
/ => sex| name age height
/ => ---| -----------------
/ => f | Polly 52 160
/ => m | Thomas 32 175
/ Update has the same basic form as select
update sex:`male from t where sex=`m
/ => name age height sex
/ => ----------------------
/ => Arthur 35 180 male
/ => Thomas 32 175 male
/ => Polly 52 160 f
/ As does delete
delete from t where sex=`m
/ => name age height sex
/ => --------------------
/ => Polly 52 160 f
/ None of these sql operations are carried out in place
t
/ => name age height sex
/ => ---------------------
/ => Arthur 35 180 m
/ => Thomas 32 175 m
/ => Polly 52 160 f
/ Insert however is in place, it takes a table name, and new data
`t insert (`John;25;178;`m) / => ,3
t
/ => name age height sex
/ => ---------------------
/ => Arthur 35 180 m
/ => Thomas 32 175 m
/ => Polly 52 160 f
/ => John 25 178 m
/ Upsert is similar (but doesn't have to be in-place)
t upsert (`Chester;58;179;`m)
/ => name age height sex
/ => ----------------------
/ => Arthur 35 180 m
/ => Thomas 32 175 m
/ => Polly 52 160 f
/ => John 25 178 m
/ => Chester 58 179 m
/ it will also upsert dicts or tables
t upsert `name`age`height`sex!(`Chester;58;179;`m)
t upsert (`Chester;58;179;`m)
/ => name age height sex
/ => ----------------------
/ => Arthur 35 180 m
/ => Thomas 32 175 m
/ => Polly 52 160 f
/ => John 25 178 m
/ => Chester 58 179 m
/ And if our table is keyed
kt:`name xkey t
/ upsert will replace records where required
kt upsert ([]name:`Thomas`Chester;age:33 58;height:175 179;sex:`f`m)
/ => name | age height sex
/ => -------| --------------
/ => Arthur | 35 180 m
/ => Thomas | 33 175 f
/ => Polly | 52 160 f
/ => John | 25 178 m
/ => Chester| 58 179 m
/ There is no ORDER BY clause in q-sql, instead use xasc/xdesc
`name xasc t
/ => name age height sex
/ => ---------------------
/ => Arthur 35 180 m
/ => John 25 178 m
/ => Polly 52 160 f
/ => Thomas 32 175 m
/ Most of the standard SQL joins are present in q-sql, plus a few new friends
/ see http://code.kx.com/q4m3/9_Queries_q-sql/#99-joins
/ the two most important (commonly used) are lj and aj
/ lj is basically the same as SQL LEFT JOIN
/ where the join is carried out on the key columns of the left table
le:([sex:`m`f]lifeexpectancy:78 85)
t lj le
/ => name age height sex lifeexpectancy
/ => ------------------------------------
/ => Arthur 35 180 m 78
/ => Thomas 32 175 m 78
/ => Polly 52 160 f 85
/ => John 25 178 m 78
/ aj is an asof join. This is not a standard SQL join, and can be very powerful
/ The canonical example of this is joining financial trades and quotes tables
trades:([]time:10:01:01 10:01:03 10:01:04;sym:`msft`ibm`ge;qty:100 200 150)
quotes:([]time:10:01:00 10:01:01 10:01:01 10:01:03;
sym:`ibm`msft`msft`ibm; px:100 99 101 98)
aj[`time`sym;trades;quotes]
/ => time sym qty px
/ => ---------------------
/ => 10:01:01 msft 100 101
/ => 10:01:03 ibm 200 98
/ => 10:01:04 ge 150
/ for each row in the trade table, the last (prevailing) quote (px) for that sym
/ is joined on.
/ see http://code.kx.com/q4m3/9_Queries_q-sql/#998-as-of-joins
////////////////////////////////////
///// Extra/Advanced //////
////////////////////////////////////
////// Adverbs //////
/ You may have noticed the total lack of loops to this point
/ This is not a mistake!
/ q is a vector language so explicit loops (for, while etc.) are not encouraged
/ where possible functionality should be vectorized (i.e. operations on lists)
/ adverbs supplement this, modifying the behaviour of functions
/ and providing loop type functionality when required
/ (in q functions are sometimes referred to as verbs, hence adverbs)
/ the "each" adverb modifies a function to treat a list as individual variables
first each (1 2 3;4 5 6;7 8 9)
/ => 1 4 7
/ each-left (\:) and each-right (/:) modify a two-argument function
/ to treat one of the arguments and individual variables instead of a list
1 2 3 +\: 11 22 33
/ => 12 23 34
/ => 13 24 35
/ => 14 25 36
1 2 3 +/: 11 22 33
/ => 12 13 14
/ => 23 24 25
/ => 34 35 36
/ The true alternatives to loops in q are the adverbs scan (\) and over (/)
/ their behaviour differs based on the number of arguments the function they
/ are modifying receives. Here I'll summarise some of the most useful cases
/ a single argument function modified by scan given 2 args behaves like "do"
{x * 2}\[5;1] / => 1 2 4 8 16 32 (i.e. multiply by 2, 5 times)
{x * 2}/[5;1] / => 32 (using over only the final result is shown)
/ If the first argument is a function, we have the equivalent of "while"
{x * 2}\[{x<100};1] / => 1 2 4 8 16 32 64 128 (iterates until returns 0b)
{x * 2}/[{x<100};1] / => 128 (again returns only the final result)
/ If the function takes two arguments, and we pass a list, we have "for"
/ where the result of the previous execution is passed back into the next loop
/ along with the next member of the list
{x + y}\[1 2 3 4 5] / => 1 3 6 10 15 (i.e. the running sum)
{x + y}/[1 2 3 4 5] / => 15 (only the final result)
/ There are other adverbs and uses, this is only intended as quick overview
/ http://code.kx.com/q4m3/6_Functions/#67-adverbs
////// Scripts //////
/ q scripts can be loaded from a q session using the "\l" command
/ for example "\l learnkdb.q" will load this script
/ or from the command prompt passing the script as an argument
/ for example "q learnkdb.q"
////// On-disk data //////
/ Tables can be persisted to disk in several formats
/ the two most fundamental are serialized and splayed
t:([]a:1 2 3;b:1 2 3f)
`:serialized set t / saves the table as a single serialized file
`:splayed/ set t / saves the table splayed into a directory
/ the dir structure will now look something like:
/ db/
/ ├── serialized
/ └── splayed
/ ├── a
/ └── b
/ Loading this directory (as if it was as script, see above)
/ loads these tables into the q session
\l .
/ the serialized table will be loaded into memory
/ however the splayed table will only be mapped, not loaded
/ both tables can be queried using q-sql
select from serialized
/ => a b
/ => ---
/ => 1 1
/ => 2 2
/ => 3 3
select from splayed / (the columns are read from disk on request)
/ => a b
/ => ---
/ => 1 1
/ => 2 2
/ => 3 3
/ see http://code.kx.com/q4m3/14_Introduction_to_Kdb+/ for more
////// Frameworks //////
/ kdb+ is typically used for data capture and analysis.
/ This involves using an architecture with multiple processes
/ working together. kdb+ frameworks are available to streamline the setup
/ and configuration of this architecture and add additional functionality
/ such as disaster recovery, logging, access, load balancing etc.
/ https://github.com/DataIntellectTech/TorQ
```
## Want to know more?
* [*q for mortals* q language tutorial](http://code.kx.com/q4m3/)
* [*Introduction to Kdb+* on disk data tutorial](http://code.kx.com/q4m3/14_Introduction_to_Kdb+/)
* [q language reference](https://code.kx.com/q/ref/)
* [TorQ production framework](https://github.com/DataIntellectTech/TorQ)
|