summaryrefslogtreecommitdiffhomepage
path: root/lambda-calculus.html.markdown
blob: 775907c21644e011b50d7d212f0d78b5bf47434c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
---
category: Algorithms & Data Structures
name: Lambda Calculus
contributors:
    - ["Max Sun", "http://github.com/maxsun"]
    - ["Yan Hui Hang", "http://github.com/yanhh0"]
---

# Lambda Calculus

Lambda calculus (λ-calculus), originally created by 
[Alonzo Church](https://en.wikipedia.org/wiki/Alonzo_Church),
is the world's smallest programming language.
Despite not having numbers, strings, booleans, or any non-function datatype,
lambda calculus can be used to represent any Turing Machine!

Lambda calculus is composed of 3 elements: **variables**, **functions**, and
**applications**.


| Name        | Syntax                             | Example   | Explanation                                   |
|-------------|------------------------------------|-----------|-----------------------------------------------|
| Variable    | `<name>`                           | `x`       | a variable named "x"                          |
| Function    | `λ<parameters>.<body>`             | `λx.x`    | a function with parameter "x" and body "x"    |
| Application | `<function><variable or function>` | `(λx.x)a` | calling the function "λx.x" with argument "a" |

The most basic function is the identity function: `λx.x` which is equivalent to
`f(x) = x`. The first "x" is the function's argument, and the second is the
body of the function.

## Free vs. Bound Variables:

- In the function `λx.x`, "x" is called a bound variable because it is both in
the body of the function and a parameter.
- In `λx.y`, "y" is called a free variable because it is never declared before hand.

## Evaluation:

Evaluation is done via 
[β-Reduction](https://en.wikipedia.org/wiki/Lambda_calculus#Beta_reduction),
which is essentially lexically-scoped substitution.

When evaluating the
expression `(λx.x)a`, we replace all occurrences of "x" in the function's body
with "a".

- `(λx.x)a` evaluates to: `a`
- `(λx.y)a` evaluates to: `y`

You can even create higher-order functions:

- `(λx.(λy.x))a` evaluates to: `λy.a`

Although lambda calculus traditionally supports only single parameter 
functions, we can create multi-parameter functions using a technique called 
[currying](https://en.wikipedia.org/wiki/Currying).

- `(λx.λy.λz.xyz)` is equivalent to `f(x, y, z) = ((x y) z)`

Sometimes `λxy.<body>` is used interchangeably with: `λx.λy.<body>`

----

It's important to recognize that traditional **lambda calculus doesn't have
numbers, characters, or any non-function datatype!**

## Boolean Logic:

There is no "True" or "False" in lambda calculus. There isn't even a 1 or 0.

Instead:

`T` is represented by: `λx.λy.x`

`F` is represented by: `λx.λy.y`

First, we can define an "if" function `λbtf` that
returns `t` if `b` is True and `f` if `b` is False

`IF` is equivalent to: `λb.λt.λf.b t f`

Using `IF`, we can define the basic boolean logic operators:

`a AND b` is equivalent to: `λab.IF a b F`

`a OR b` is equivalent to: `λab.IF a T b`

`NOT a` is equivalent to: `λa.IF a F T`

*Note: `IF a b c` is essentially saying: `IF((a b) c)`*

## Numbers:

Although there are no numbers in lambda calculus, we can encode numbers using
[Church numerals](https://en.wikipedia.org/wiki/Church_encoding).

For any number n: <code>n = λf.f<sup>n</sup></code> so:

`0 = λf.λx.x`

`1 = λf.λx.f x`

`2 = λf.λx.f(f x)`

`3 = λf.λx.f(f(f x))`

To increment a Church numeral,
we use the successor function `S(n) = n + 1` which is:

`S = λn.λf.λx.f((n f) x)`

Using successor, we can define add:

`ADD = λab.(a S)b`

**Challenge:** try defining your own multiplication function!

## Get even smaller: SKI, SK and Iota

### SKI Combinator Calculus

Let S, K, I be the following functions:

`I x = x`

`K x y =  x`

`S x y z = x z (y z)`

We can convert an expression in the lambda calculus to an expression
in the SKI combinator calculus:

1. `λx.x = I`
2. `λx.c = Kc` provided that `x` does not occur free in `c`
3. `λx.(y z) = S (λx.y) (λx.z)`

Take the church number 2 for example:

`2 = λf.λx.f(f x)`

For the inner part `λx.f(f x)`:

```
  λx.f(f x)
= S (λx.f) (λx.(f x))          (case 3)
= S (K f)  (S (λx.f) (λx.x))   (case 2, 3)
= S (K f)  (S (K f) I)         (case 2, 1)
```

So:

```
  2
= λf.λx.f(f x)
= λf.(S (K f) (S (K f) I))
= λf.((S (K f)) (S (K f) I))
= S (λf.(S (K f))) (λf.(S (K f) I)) (case 3)
```

For the first argument `λf.(S (K f))`:

```
  λf.(S (K f))
= S (λf.S) (λf.(K f))       (case 3)
= S (K S) (S (λf.K) (λf.f)) (case 2, 3)
= S (K S) (S (K K) I)       (case 2, 3)
```

For the second argument `λf.(S (K f) I)`:

```
  λf.(S (K f) I)
= λf.((S (K f)) I)
= S (λf.(S (K f))) (λf.I)             (case 3)
= S (S (λf.S) (λf.(K f))) (K I)       (case 2, 3)
= S (S (K S) (S (λf.K) (λf.f))) (K I) (case 1, 3)
= S (S (K S) (S (K K) I)) (K I)       (case 1, 2)
```

Merging them up:

```
  2
= S (λf.(S (K f))) (λf.(S (K f) I))
= S (S (K S) (S (K K) I)) (S (S (K S) (S (K K) I)) (K I))
```

Expanding this, we would end up with the same expression for the
church number 2 again.

### SK Combinator Calculus

The SKI combinator calculus can still be reduced further. We can
remove the I combinator by noting that `I = SKK`. We can substitute
all `I`'s with `SKK`.

### Iota Combinator

The SK combinator calculus is still not minimal. Defining:

```
ι = λf.((f S) K)
```

We have:

```
I = ιι
K = ι(ιI) = ι(ι(ιι))
S = ι(K) = ι(ι(ι(ιι)))
```

## For more advanced reading:

1. [A Tutorial Introduction to the Lambda Calculus](http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf)
2. [Cornell CS 312 Recitation 26: The Lambda Calculus](http://www.cs.cornell.edu/courses/cs3110/2008fa/recitations/rec26.html)
3. [Wikipedia - Lambda Calculus](https://en.wikipedia.org/wiki/Lambda_calculus)
4. [Wikipedia - SKI combinator calculus](https://en.wikipedia.org/wiki/SKI_combinator_calculus)
5. [Wikipedia - Iota and Jot](https://en.wikipedia.org/wiki/Iota_and_Jot)