summaryrefslogtreecommitdiffhomepage
path: root/pt-br/common-lisp-pt.html.markdown
blob: b0755bc71ced80aeb0db9736a87f40df1a435bdd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
---
language: "Common Lisp"
filename: commonlisp-pt.lisp
contributors:
  - ["Paul Nathan", "https://github.com/pnathan"]
translators:
  - ["Édipo Luis Féderle", "https://github.com/edipofederle"]
lang: pt-br
---

ANSI Common Lisp é uma linguagem de uso geral, multi-paradigma, designada
para uma variedade de aplicações na indústria. É frequentemente citada
como uma linguagem de programação programável.


O ponto inicial clássico é [Practical Common Lisp e livremente disponível](http://www.gigamonkeys.com/book/)

Outro livro recente e popular é o
[Land of Lisp](http://landoflisp.com/).


```lisp
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; 0. Sintaxe
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; "Form" Geral


;; Lisp tem dois pedaços fundamentais de sintaxe: o ATOM e S-expression.
;; Tipicamente, S-expressions agrupadas são chamadas de `forms`.


10  ; um atom; é avaliado para ele mesmo

:THING ;Outro atom; avaliado para o símbolo :thing.

t ; outro atom, denotado true.

(+ 1 2 3 4) ; uma s-expression

'(4 :foo  t)  ;outra s-expression


;;; Comentários

;; Comentários de uma única linha começam com ponto e vírgula; usar dois para
;; comentários normais, três para comentários de seção, e quadro para comentários
;; em nível de arquivo.

#| Bloco de comentário
   pode abranger várias linhas e...
    #|
       eles podem ser aninhados
    |#
|#

;;; Ambiente

;; Existe uma variedade de implementações; a maioria segue o padrão.
;; CLISP é um bom ponto de partida.

;; Bibliotecas são gerenciadas através do Quicklisp.org's Quicklisp sistema.

;; Common Lisp é normalmente desenvolvido com um editor de texto e um REPL
;; (Read Evaluate Print Loop) rodando ao mesmo tempo. O REPL permite exploração
;; interativa do programa como ele é "ao vivo" no sistema.


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; 1. Tipos Primitivos e Operadores
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Símbolos

'foo ; => FOO Perceba que um símbolo é automáticamente convertido para maiúscula.

;; Intern manualmente cria um símbolo a partir de uma string.

(intern "AAAA") ; => AAAA

(intern "aaa") ; => |aaa|

;;; Números
9999999999999999999999 ; inteiro
#b111                  ; binário => 7
#o111                  ; octal => 73
#x111                  ; hexadecimal => 273
3.14159s0              ; single
3.14159d0              ; double
1/2                    ; ratios
#C(1 2)                ; números complexos


;; Funções são escritas como (f x y z ...)
;; onde f é uma função e x, y, z, ... são operadores
;; Se você quiser criar uma lista literal de dados, use ' para evitar 
;; que a lista seja avaliada - literalmente, "quote" os dados.
'(+ 1 2) ; => (+ 1 2)
;; Você também pode chamar uma função manualmente:
(funcall #'+ 1 2 3) ; => 6
;; O mesmo para operações aritiméticas
(+ 1 1)              ; => 2
(- 8 1)              ; => 7
(* 10 2)             ; => 20
(expt 2 3)           ; => 8
(mod 5 2)            ; => 1
(/ 35 5)             ; => 7
(/ 1 3)              ; => 1/3
(+ #C(1 2) #C(6 -4)) ; => #C(7 -2)

                     ;;; Booleans
t                    ; para true (qualquer valor não nil é true)
nil                  ; para false - e para lista vazia
(not nil)            ; => t
(and 0 t)            ; => t
(or 0 nil)           ; => 0

                     ;;; Caracteres
#\A                  ; => #\A
#\λ                  ; => #\GREEK_SMALL_LETTER_LAMDA
#\u03BB              ; => #\GREEK_SMALL_LETTER_LAMDA

;;; String são arrays de caracteres com tamanho fixo.
"Hello, world!"
"Benjamin \"Bugsy\" Siegel"   ; barra é um escape de caracter

;; String podem ser concatenadas também!
(concatenate 'string "Hello " "world!") ; => "Hello world!"

;; Uma String pode ser tratada como uma sequência de caracteres
(elt "Apple" 0) ; => #\A

;; format pode ser usado para formatar strings
(format nil "~a can be ~a" "strings" "formatted")

;; Impimir é bastante fácil; ~% indica nova linha
(format t "Common Lisp is groovy. Dude.~%")


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 2. Variáveis
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Você pode criar uma global (escopo dinâmico) usando defparameter
;; um nome de variável pode conter qualquer caracter, exceto: ()",'`;#|\

;; Variáveis de escopo dinâmico devem ter asteriscos em seus nomes!

(defparameter *some-var* 5)
*some-var* ; => 5

;; Você pode usar caracteres unicode também.
(defparameter *AΛB* nil)


;; Acessando uma variável anteriormente não ligada é um
;; comportamento não definido (mas possível). Não faça isso.

;; Ligação local: `me` é vinculado com "dance with you" somente dentro
;; de (let ... ). Let permite retornar o valor do último `form` no form let.

(let ((me "dance with you"))
  me)
;; => "dance with you"

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 3. Estruturas e Coleções
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Estruturas
(defstruct dog name breed age)
(defparameter *rover*
    (make-dog :name "rover"
              :breed "collie"
              :age 5))
*rover* ; => #S(DOG :NAME "rover" :BREED "collie" :AGE 5)

(dog-p *rover*) ; => t  ;; ewww)
(dog-name *rover*) ; => "rover"

;; Dog-p, make-dog, e dog-name foram todas criadas por defstruct!

;;; Pares
;; `cons' constroi pares, `car' and `cdr' extrai o primeiro
;; e o segundo elemento
(cons 'SUBJECT 'VERB) ; => '(SUBJECT . VERB)
(car (cons 'SUBJECT 'VERB)) ; => SUBJECT
(cdr (cons 'SUBJECT 'VERB)) ; => VERB

;;; Listas

;; Listas são estruturas de dados do tipo listas encadeadas, criadas com `cons'
;; pares e terminam `nil' (ou '()) para marcar o final da lista
(cons 1 (cons 2 (cons 3 nil))) ; => '(1 2 3)
;; `list' é um construtor conveniente para listas
(list 1 2 3) ; => '(1 2 3)
;; e a quote (') também pode ser usado para um valor de lista literal
'(1 2 3) ; => '(1 2 3)

;; Ainda pode-se usar `cons' para adicionar um item no começo da lista.
(cons 4 '(1 2 3)) ; => '(4 1 2 3)

;; Use `append' para - surpreendentemente - juntar duas listas
(append '(1 2) '(3 4)) ; => '(1 2 3 4)

;; Ou use concatenate -

(concatenate 'list '(1 2) '(3 4))

;; Listas são um tipo muito central, então existe uma grande variedade de
;; funcionalidades para eles, alguns exemplos:
(mapcar #'1+ '(1 2 3))             ; => '(2 3 4)
(mapcar #'+ '(1 2 3) '(10 20 30))  ; => '(11 22 33)
(remove-if-not #'evenp '(1 2 3 4)) ; => '(2 4)
(every #'evenp '(1 2 3 4))         ; => nil
(some #'oddp '(1 2 3 4))           ; => T
(butlast '(subject verb object))   ; => (SUBJECT VERB)


;;; Vetores

;; Vector's literais são arrays de tamanho fixo.
#(1 2 3) ; => #(1 2 3)

;; Use concatenate para juntar dois vectors
(concatenate 'vector #(1 2 3) #(4 5 6)) ; => #(1 2 3 4 5 6)

;;; Arrays

;; Ambos vetores e strings são um caso especial de arrays.

;; 2D arrays

(make-array (list 2 2))

;; (make-array '(2 2)) também funciona.

; => #2A((0 0) (0 0))

(make-array (list 2 2 2))

; => #3A(((0 0) (0 0)) ((0 0) (0 0)))

;; Cuidado - os valores de inicialição padrões são
;; definidos pela implementção. Aqui vai como defini-lós.

(make-array '(2) :initial-element 'unset)

; => #(UNSET UNSET)

;; E, para acessar o element em 1,1,1 -
(aref (make-array (list 2 2 2)) 1 1 1)

; => 0

;;; Vetores Ajustáveis

;; Vetores ajustáveis tem a mesma representação impressa que os vectores
;;  de tamanho fixo
(defparameter *adjvec* (make-array '(3) :initial-contents '(1 2 3)
      :adjustable t :fill-pointer t))
      
*adjvec* ; => #(1 2 3)

;; Adicionando novo elemento
(vector-push-extend 4 *adjvec*) ; => 3

*adjvec* ; => #(1 2 3 4)



;;; Ingenuamente, conjuntos são apenas listas:

(set-difference '(1 2 3 4) '(4 5 6 7)) ; => (3 2 1)
(intersection '(1 2 3 4) '(4 5 6 7)) ; => 4
(union '(1 2 3 4) '(4 5 6 7))        ; => (3 2 1 4 5 6 7)
(adjoin 4 '(1 2 3 4))     ; => (1 2 3 4)

;; Mas você irá querer usar uma estrutura de dados melhor que uma lista encadeada.
;; para performance.

;;; Dicionários são implementados como hash tables

;; Cria um hash table
(defparameter *m* (make-hash-table))

;; seta um valor
(setf (gethash 'a *m*) 1)

;; Recupera um valor
(gethash 'a *m*) ; => 1, t

;; Detalhe - Common Lisp  tem multiplos valores de retorno possíveis. gethash
;; retorna t no segundo valor se alguma coisa foi encontrada, e nil se não.

;; Recuperando um valor não presente retorna nil
 (gethash 'd *m*) ;=> nil, nil

;; Você pode fornecer um valor padrão para uma valores não encontrados
(gethash 'd *m* :not-found) ; => :NOT-FOUND

;; Vamos tratas múltiplos valores de rotorno aqui.

(multiple-value-bind
      (a b)
    (gethash 'd *m*)
  (list a b))
; => (NIL NIL)

(multiple-value-bind
      (a b)
    (gethash 'a *m*)
  (list a b))
; => (1 T)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 3. Funções
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Use `lambda' para criar funções anônimas
;; Uma função sempre retorna um valor da última expressão avaliada.
;; A representação exata impressão de uma função varia de acordo ...

(lambda () "Hello World") ; => #<FUNCTION (LAMBDA ()) {1004E7818B}>

;; Use funcall para chamar uma função lambda.
(funcall (lambda () "Hello World")) ; => "Hello World"

;; Ou Apply
(apply (lambda () "Hello World") nil) ; => "Hello World"

;; "De-anonymize" a função
(defun hello-world ()
   "Hello World")
(hello-world) ; => "Hello World"

;; O () acima é a lista de argumentos da função.
(defun hello (name)
   (format nil "Hello, ~a " name))

(hello "Steve") ; => "Hello, Steve"

;; Funções podem ter argumentos opcionais; eles são nil por padrão

(defun hello (name &optional from)
    (if from
        (format t "Hello, ~a, from ~a" name from)
        (format t "Hello, ~a" name)))

 (hello "Jim" "Alpacas") ;; => Hello, Jim, from Alpacas

;; E os padrões podem ser configurados...
(defun hello (name &optional (from "The world"))
   (format t "Hello, ~a, from ~a" name from))

(hello "Steve")
; => Hello, Steve, from The world

(hello "Steve" "the alpacas")
; => Hello, Steve, from the alpacas


;; E é claro, palavras-chaves são permitidas também... frequentemente mais
;; flexivel que &optional.

(defun generalized-greeter (name &key (from "the world") (honorific "Mx"))
    (format t "Hello, ~a ~a, from ~a" honorific name from))

(generalized-greeter "Jim")   ; => Hello, Mx Jim, from the world

(generalized-greeter "Jim" :from "the alpacas you met last summer" :honorific "Mr")
; => Hello, Mr Jim, from the alpacas you met last summer

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 4. Igualdade
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Common Lisp tem um sistema sofisticado de igualdade. Alguns são cobertos aqui.

;; Para número use `='
(= 3 3.0) ; => t
(= 2 1) ; => nil

;; para identidade de objeto (aproximadamente) use `eql`
(eql 3 3) ; => t
(eql 3 3.0) ; => nil
(eql (list 3) (list 3)) ; => nil

;; para listas, strings, e para pedaços de vetores use `equal'
(equal (list 'a 'b) (list 'a 'b)) ; => t
(equal (list 'a 'b) (list 'b 'a)) ; => nil

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 5. Fluxo de Controle
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Condicionais

(if t                ; testa a expressão
    "this is true"   ; então expressão
    "this is false") ; senão expressão
; => "this is true"

;; Em condicionais, todos valores não nulos são tratados como true
(member 'Groucho '(Harpo Groucho Zeppo)) ; => '(GROUCHO ZEPPO)
(if (member 'Groucho '(Harpo Groucho Zeppo))
    'yep
    'nope)
; => 'YEP

;; `cond' encadeia uma série de testes para selecionar um resultado
(cond ((> 2 2) (error "wrong!"))
      ((< 2 2) (error "wrong again!"))
      (t 'ok)) ; => 'OK

;; Typecase é um condicional que escolhe uma de seus cláusulas com base do tipo
;; do seu valor

(typecase 1
  (string :string)
  (integer :int))

; => :int

;;; Interação

;; Claro que recursão é suportada:

(defun walker (n)
  (if (zerop n)
      :walked
      (walker (1- n))))

(walker 5) ; => :walked

;; Na maioria das vezes, nós usamos DOTLISO ou LOOP

(dolist (i '(1 2 3 4))
  (format t "~a" i))

; => 1234

(loop for i from 0 below 10
      collect i)

; => (0 1 2 3 4 5 6 7 8 9)


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 6. Mutação
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Use `setf' para atribuir um novo valor para uma variável existente. Isso foi
;; demonstrado anteriormente no exemplo da hash table.

(let ((variable 10))
    (setf variable 2))
 ; => 2


;; Um bom estilo Lisp é para minimizar funções destrutivas e para evitar 
;; mutação quando razoável.


;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 7. Classes e Objetos
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Sem clases Animal, vamos usar os veículos de transporte de tração
;; humana mecânicos.

(defclass human-powered-conveyance ()
  ((velocity
    :accessor velocity
    :initarg :velocity)
   (average-efficiency
    :accessor average-efficiency
   :initarg :average-efficiency))
  (:documentation "A human powered conveyance"))

;; defcalss, seguido do nome, seguido por uma list de superclass,
;; seguido por um uma 'slot list', seguido por qualidades opcionais como
;; :documentation

;; Quando nenhuma lista de superclasse é setada, uma lista padrão para
;; para o objeto padrão é usada. Isso *pode* ser mudado, mas não até você
;; saber o que está fazendo. Olhe em Art of the Metaobject Protocol
;; para maiores informações.

(defclass bicycle (human-powered-conveyance)
  ((wheel-size
    :accessor wheel-size
    :initarg :wheel-size
    :documentation "Diameter of the wheel.")
   (height
    :accessor height
    :initarg :height)))

(defclass recumbent (bicycle)
  ((chain-type
    :accessor chain-type
    :initarg  :chain-type)))

(defclass unicycle (human-powered-conveyance) nil)

(defclass canoe (human-powered-conveyance)
  ((number-of-rowers
    :accessor number-of-rowers
    :initarg :number-of-rowers)))


;; Chamando DESCRIBE na classe human-powered-conveyance no REPL dá:

(describe 'human-powered-conveyance)

; COMMON-LISP-USER::HUMAN-POWERED-CONVEYANCE
;  [symbol]
;
; HUMAN-POWERED-CONVEYANCE names the standard-class #<STANDARD-CLASS
;                                                    HUMAN-POWERED-CONVEYANCE>:
;  Documentation:
;    A human powered conveyance
;  Direct superclasses: STANDARD-OBJECT
;  Direct subclasses: UNICYCLE, BICYCLE, CANOE
;  Not yet finalized.
;  Direct slots:
;    VELOCITY
;      Readers: VELOCITY
;      Writers: (SETF VELOCITY)
;    AVERAGE-EFFICIENCY
;      Readers: AVERAGE-EFFICIENCY
;      Writers: (SETF AVERAGE-EFFICIENCY)

;; Note o comportamento reflexivo disponível para você! Common Lisp é
;; projetada para ser um sistema interativo.

;; Para definir um métpdo, vamos encontrar o que nossa cirunferência da
;; roda da bicicleta usando a equação: C = d * pi

(defmethod circumference ((object bicycle))
  (* pi (wheel-size object)))

;; pi já é definido para a gente em Lisp!

;; Vamos supor que nós descobrimos que o valor da eficiência do número
;; de remadores em uma canoa é aproximadamente logarítmica. Isso provavelmente
;; deve ser definido no construtor / inicializador.

;; Veja como initializar sua instância após Common Lisp ter construído isso:

(defmethod initialize-instance :after ((object canoe) &rest args)
  (setf (average-efficiency object)  (log (1+ (number-of-rowers object)))))

;; Em seguida, para a construção de uma ocorrência e verificar a eficiência média ...

(average-efficiency (make-instance 'canoe :number-of-rowers 15))
; => 2.7725887




;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; 8. Macros
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Macros permitem que você estenda a sintaxe da lingaugem

;; Common Lisp não vem com um loop WHILE - vamos adicionar um.
;; Se obedecermos nossos instintos 'assembler', acabamos com:

(defmacro while (condition &body body)
    "Enquanto `condition` é verdadeiro, `body` é executado.

`condition` é testado antes de cada execução do `body`"
    (let ((block-name (gensym)))
        `(tagbody
           (unless ,condition
               (go ,block-name))
           (progn
           ,@body)
           ,block-name)))

;; Vamos dar uma olhada em uma versão alto nível disto:


(defmacro while (condition &body body)
    "Enquanto `condition` for verdadeira, `body` é executado.

`condition` é testado antes de cada execução do `body`"
  `(loop while ,condition
         do
         (progn
            ,@body)))

;; Entretanto, com um compilador moderno, isso não é preciso; o LOOP
;; 'form' compila igual e é bem mais fácil de ler.

;; Noteq ue ``` é usado , bem como `,` e `@`. ``` é um operador 'quote-type'
;; conhecido como 'quasiquote'; isso permite o uso de `,` . `,` permite "unquoting"
;; e variáveis. @ interpolará listas.

;; Gensym cria um símbolo único garantido que não existe em outras posições
;; o sistema. Isto é porque macros são expandidas em tempo de compilação e
;; variáveis declaradas na macro podem colidir com as variáveis usadas na
;; código regular.

;; Veja Practical Common Lisp para maiores informações sobre macros.
```


## Leitura Adicional

[Continua em frente com  Practical Common Lisp book.](http://www.gigamonkeys.com/book/)


## Créditos

Muitos  agradecimentos ao pessoal de Schema por fornecer um grande ponto de partida
o que facilitou muito a migração para Common Lisp.

- [Paul Khuong](https://github.com/pkhuong) pelas grandes revisões.