1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
|
---
category: Algorithms & Data Structures
name: Dynamic Programming
contributors:
- ["Akashdeep Goel", "http://github.com/akashdeepgoel"]
translators:
- ["Claudson Martins", "https://github.com/claudsonm"]
lang: pt-br
---
# Programação Dinâmica
## Introdução
Programação Dinâmica é uma técnica poderosa utilizada para resolver uma classe
particular de problemas como veremos. A ideia é bastante simples, se você
solucionou um problema com uma dada entrada, então salve o resultado para
referência futura, e também para evitar resolver o mesmo problema novamente.
Sempre se lembre!!
"Aqueles que não conseguem lembrar o passado estão condenados a repeti-lo"
## Maneiras de Solucionar tais Problemas
1. Top-Down (De cima para baixo): Comece solucionando o problema quebrando-o em
partes. Se você perceber que o problema já foi resolvido, então simplemente
pegue a resposta salva. Se ainda não foi resolvido, solucione-o e salve a
resposta. Isso é geralmente fácil de pensar e muito intuitivo. É geralmente
referenciado como Memorização.
2. Bottom-Up (De baixo para cima): Analise o problema e veja a ordem em que os
subproblemas são resolvidos e começe a solucionar dos problemas mais triviais,
até o problema dado. Neste processo, é garantido que os subproblemas são
resolvidos antes de resoler o problema. Isto é referenciado como Programação Dinâmica.
## Exemplo de Programação Dinâmica
O problema da subsequência crescente máxima consiste em encontrar a maior
subsequência crescente de uma dada sequência. Dada uma sequência
S= {a1 , a2 , a3, a4, ... , an-1, an} nós temos que encontrar o maior subconjunto
de forma que para todo j e i, j < i no subconjunto aj < ai. Antes de mais nada
nós temos que encontrar o valor das maiores subsequências (LSi) para cada índice
i com o último elemento da sequência sendo ai. Então a maior LSi será a maior
subsequência na sequência dada. Para começar LSi é atribuído a um pois ai é
elemento da sequência (último elemento). Então para todo j tal que j < i e aj <
ai, nós procuramos o maior LSj e o adicionamos a LSi. Portanto o algoritmo tem
complexidade de tempo O(n2). O pseudocódigo para procurar o comprimento da
subsequência crescente máxima: A complexidade desse algoritmo poderia ser
reduzida utilizando uma estrutura de dados melhor que um array. Armazenando o
array antecedente e uma variável como maiorSequenciasAteAgora e seu índice
ajudariam a poupar muito tempo.
Um conceito similar poderia ser aplicado ao procurar o maior caminho em um
grafo acíclico dirigido.
---------------------------------------------------------------------------
```
for i=0 to n-1
LS[i]=1
for j=0 to i-1
if (a[i] > a[j] and LS[i]<LS[j])
LS[i] = LS[j]+1
for i=0 to n-1
if (largest < LS[i])
```
### Alguns Problemas Famosos de Programação Dinâmica
```
Floyd Warshall Algorithm - Tutorial and C Program source code:http://www.thelearningpoint.net/computer-science/algorithms-all-to-all-shortest-paths-in-graphs---floyd-warshall-algorithm-with-c-program-source-code
Integer Knapsack Problem - Tutorial and C Program source code: http://www.thelearningpoint.net/computer-science/algorithms-dynamic-programming---the-integer-knapsack-problem
Longest Common Subsequence - Tutorial and C Program source code : http://www.thelearningpoint.net/computer-science/algorithms-dynamic-programming---longest-common-subsequence
```
## Recursos Online (EN)
* [codechef](https://www.codechef.com/wiki/tutorial-dynamic-programming)
|