1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
|
---
language: Elixir
contributors:
- ["Joao Marques", "http://github.com/mrshankly"]
- ["Dzianis Dashkevich", "https://github.com/dskecse"]
translators:
- ["Rodrigo Muniz", "http://github.com/muniz95"]
lang: pt-br
filename: learnelixir-pt.ex
---
Elixir é uma linguagem funcional moderna construída no topo da Erlang VM.
É totalmente compatível com Erlang, porém conta com uma sintaxe mais padronizada
e muitos outros recursos.
```elixir
# Comentários de linha única começam com um símbolo de número.
# Não há comentários de múltiplas linhas,
# mas você pode empilhar os comentários.
# Para usar o shell do Elixir use o comando `iex`.
# Compile seus módulos com o comando `elixirc`.
# Ambos devem estar em seu path se você instalou o Elixir corretamente.
## ---------------------------
## -- Tipos Básicos
## ---------------------------
# Há números
3 # integer
0x1F # integer
3.0 # float
# Atoms, que são literais, uma constante com nome. Elas começam com `:`.
:hello # atom
# Tuplas que são guardadas contiguamente em memória.
{1,2,3} # tupla
# Podemos acessar um elemento de uma tupla com a função `elem`:
elem({1, 2, 3}, 0) #=> 1
# Listas que são implementadas como listas ligadas.
[1,2,3] # lista
# Podemos acessar a primeira posição (head) e o resto (tail) de uma lista como a seguir:
[head | tail] = [1,2,3]
head #=> 1
tail #=> [2,3]
# Em Elixir, bem como em Erlang, o sinal `=` denota pattern match,
# e não uma atribuição.
#
# Isto significa que o que estiver à esquerda (pattern) é comparado com o que
# estiver à direita.
#
# É assim que o exemplo acima de acesso à head e tail de uma lista funciona.
# Um pattern match retornará erro quando os lados não conferem, como neste exemplo
# onde as tuplas tem diferentes tamanhos.
# {a, b, c} = {1, 2} #=> ** (MatchError) no match of right hand side value: {1,2}
# Também há binários
<<1,2,3>> # binary
# Strings e char lists
"hello" # string
'hello' # char list
# Strings de múltiplas linhas
"""
Strings
de múltiplas
linhas.
"""
#=> "Strings\nde múltiplas\nlinhas"
# Strings são sempre codificadas em UTF-8:
"héllò" #=> "héllò"
# Strings são de fato apenas binários, e char lists apenas listas.
<<?a, ?b, ?c>> #=> "abc"
[?a, ?b, ?c] #=> 'abc'
# `?a` em Elixir retorna o valor ASCII para a letra `a`
?a #=> 97
# Para concatenar listas use `++`, para binários use `<>`
[1,2,3] ++ [4,5] #=> [1,2,3,4,5]
'hello ' ++ 'world' #=> 'hello world'
<<1,2,3>> <> <<4,5>> #=> <<1,2,3,4,5>>
"hello " <> "world" #=> "hello world"
# Ranges são representados como `início..fim` (ambos inclusivos)
1..10 #=> 1..10
menor..maior = 1..10 # Pattern matching pode ser usada em ranges também
[menor, maior] #=> [1, 10]
## ---------------------------
## -- Operadores
## ---------------------------
# Matemática básica
1 + 1 #=> 2
10 - 5 #=> 5
5 * 2 #=> 10
10 / 2 #=> 5.0
# Em Elixir o operador `/` sempre retorna um float.
# Para divisão de inteiros use `div`
div(10, 2) #=> 5
# Para obter o resto da divisão use `rem`
rem(10, 3) #=> 1
# Há também operadores booleanos: `or`, `and` e `not`.
# Estes operadores esperam um booleano como primeiro argumento.
true and true #=> true
false or true #=> true
# 1 and true #=> ** (ArgumentError) argument error
# Elixir também fornece `||`, `&&` e `!` que aceitam argumentos de qualquer tipo.
# Todos os valores exceto `false` e `nil` serão avaliados como true.
1 || true #=> 1
false && 1 #=> false
nil && 20 #=> nil
!true #=> false
# Para comparações temos: `==`, `!=`, `===`, `!==`, `<=`, `>=`, `<` e `>`
1 == 1 #=> true
1 != 1 #=> false
1 < 2 #=> true
# `===` e `!==` são mais estritos ao comparar integers e floats:
1 == 1.0 #=> true
1 === 1.0 #=> false
# Podemos comparar também dois tipos de dados diferentes:
1 < :hello #=> true
# A regra de ordenação no geral é definida abaixo:
# number < atom < reference < functions < port < pid < tuple < list < bit string
# Ao citar Joe Armstrong nisto: "A ordem de fato não é importante,
# mas que uma ordem total esteja bem definida é importante."
## ---------------------------
## -- Fluxo de Controle
## ---------------------------
# expressão `if`
if false do
"Isso nunca será visto"
else
"Isso será"
end
# Também há `unless`
unless true do
"Isso nunca será visto"
else
"Isso será"
end
# Lembra do pattern matching? Muitas estruturas de fluxo de controle em Elixir contam com ela.
# `case` nos permite comparar um valor com muitos patterns:
case {:um, :dois} do
{:quatro, :cinco} ->
"Isso não corresponde"
{:um, x} ->
"Isso corresponde e vincula `x` a `:dois`"
_ ->
"Isso corresponde a qualquer valor"
end
# É comum vincular o valor a `_` se não precisamos dele.
# Por exemplo, se apenas a head de uma lista nos interessa:
[head | _] = [1,2,3]
head #=> 1
# Para melhor legibilidade podemos fazer o seguinte:
[head | _tail] = [:a, :b, :c]
head #=> :a
# `cond` nos permite verificar várias condições ao mesmo tempo.
# Use `cond` em vez de aninhar vários `if`'s.
cond do
1 + 1 == 3 ->
"Nunca serei visto"
2 * 5 == 12 ->
"Nem eu"
1 + 2 == 3 ->
"Mas eu serei"
end
# É comum definir a última condição igual a `true`, que sempre irá corresponder.
cond do
1 + 1 == 3 ->
"Nunca serei visto"
2 * 5 == 12 ->
"Nem eu"
true ->
"Mas eu serei (isso é essencialmente um else)"
end
# `try/catch` é usado para capturar valores que são lançados, também suporta uma
# cláusula `after` que é invocada havendo um valor capturado ou não.
try do
throw(:hello)
catch
message -> "Deu #{mensagem}."
after
IO.puts("Sou o after.")
end
#=> Sou o after
# "Deu :hello"
## ---------------------------
## -- Módulos e Funções
## ---------------------------
# Funções Anônimas (repare o ponto)
square = fn(x) -> x * x end
square.(5) #=> 25
# Elas também aceitam várias cláusulas e guards.
# Guards permitem ajustes finos de pattern matching,
# sendo indicados pela palavra `when`:
f = fn
x, y when x > 0 -> x + y
x, y -> x * y
end
f.(1, 3) #=> 4
f.(-1, 3) #=> -3
# Elixir também fornece várias funções embutidas.
# Estas estão disponíveis no escopo atual.
is_number(10) #=> true
is_list("ola") #=> false
elem({1,2,3}, 0) #=> 1
# Você pode agrupar algumas funções em um módulo. Dentro de um módulo use `def`
# para definir suas funções.
defmodule Math do
def sum(a, b) do
a + b
end
def square(x) do
x * x
end
end
Math.sum(1, 2) #=> 3
Math.square(3) #=> 9
# Para compilar o módulo Math salve-o como `math.ex` e use `elixirc`
# em seu terminal: elixirc math.ex
# Dentro de um módulo podemos definir funções com `def` e funções privadas com `defp`.
# Uma função definida com `def` pode ser invocada por outros módulos,
# já uma função privada pode ser invocada apenas localmente.
defmodule PrivateMath do
def sum(a, b) do
do_sum(a, b)
end
defp do_sum(a, b) do
a + b
end
end
PrivateMath.sum(1, 2) #=> 3
# PrivateMath.do_sum(1, 2) #=> ** (UndefinedFunctionError)
# Declarações de funções também suportam guards cláusulas múltiplas:
defmodule Geometry do
def area({:rectangle, w, h}) do
w * h
end
def area({:circle, r}) when is_number(r) do
3.14 * r * r
end
end
Geometry.area({:rectangle, 2, 3}) #=> 6
Geometry.area({:circle, 3}) #=> 28.25999999999999801048
# Geometry.area({:circle, "not_a_number"})
#=> ** (FunctionClauseError) no function clause matching in Geometry.area/1
# Devido à imutabilidade, recursão é uma grande parte do Elixir
defmodule Recursion do
def sum_list([head | tail], acc) do
sum_list(tail, acc + head)
end
def sum_list([], acc) do
acc
end
end
Recursion.sum_list([1,2,3], 0) #=> 6
# Módulos do Elixir suportam atributos, hpa atributos embutidos e você
# pode também adicionar os seus próprios.
defmodule MyMod do
@moduledoc """
Este é um atributo embutido em um módulo de exemplo.
"""
@my_data 100 # Este é um atributo customizado.
IO.inspect(@my_data) #=> 100
end
## ---------------------------
## -- Structs e Exceptions
## ---------------------------
# Structs são extensões no topo de mapas que trazem valores padrão,
# garantias em tempo de compilação e polimorfismo para o Elixir.
defmodule Pessoa do
defstruct nome: nil, idade: 0, peso: 0
end
joe_info = %Pessoa{ nome: "Joe", idade: 30, peso: 180 }
#=> %Pessoa{idade: 30, peso: 180, nome: "Joe"}
# Acessa o valor de nome
joe_info.name #=> "Joe"
# Atualiza o valor de idade
older_joe_info = %{ joe_info | idade: 31 }
#=> %Pessoa{idade: 31, peso: 180, nome: "Joe"}
# O bloco `try` com a palavra `rescue` é usado para manipular exceções
try do
raise "algum erro"
rescue
RuntimeError -> "resgatado um erro em tempo de execução"
_error -> "isso resgatará qualquer erro"
end
# Toda exceção possui uma mensagem
try do
raise "algum erro"
rescue
x in [RuntimeError] ->
x.message
end
## ---------------------------
## -- Concorrência
## ---------------------------
# Elixir conta com o modelo de ator para concorrência. Tudo o que precisamos para
# escrever programas concorrentes em Elixir são três primitivos: spawning processes,
# sending messages e receiving messages.
# Para iniciar um novo processo usamos a função `spawn`, a qual leva uma função
# como argumento.
f = fn -> 2 * 2 end #=> #Function<erl_eval.20.80484245>
spawn(f) #=> #PID<0.40.0>
# `spawn` retorna um pid (process identifier), você pode usar esse pid para enviar
# mensagens ao processo. Para envio de mensagens usamos o operador `send`.
# Para tudo isso ser útil precisamos estar aptos a receber mensagens. Isto é
# realizado com o mecanismo `receive`:
defmodule Geometry do
def area_loop do
receive do
{:rectangle, w, h} ->
IO.puts("Area = #{w * h}")
area_loop()
{:circle, r} ->
IO.puts("Area = #{3.14 * r * r}")
area_loop()
end
end
end
# Compile o módulo e crie um processo que avalie `area_loop` no shell
pid = spawn(fn -> Geometry.area_loop() end) #=> #PID<0.40.0>
# Envia uma mensagem ao `pid` correspondente a um pattern na declaração de recebimento
send pid, {:rectangle, 2, 3}
#=> Area = 6
# {:rectangle,2,3}
send pid, {:circle, 2}
#=> Area = 12.56000000000000049738
# {:circle,2}
# O shell também é um processo, você pode usar `self` para obter o pid atual
self() #=> #PID<0.27.0>
```
## Referências
* [Getting started guide](http://elixir-lang.org/getting_started/1.html) da [página do elixir](http://elixir-lang.org)
* [Elixir Documentation](http://elixir-lang.org/docs/master/)
* ["Programming Elixir"](https://pragprog.com/book/elixir/programming-elixir) por Dave Thomas
* [Elixir Cheat Sheet](http://media.pragprog.com/titles/elixir/ElixirCheat.pdf)
* ["Learn You Some Erlang for Great Good!"](http://learnyousomeerlang.com/) por Fred Hebert
* ["Programming Erlang: Software for a Concurrent World"](https://pragprog.com/book/jaerlang2/programming-erlang) por Joe Armstrong
|