1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
|
---
language: swift
contributors:
- ["Grant Timmerman", "http://github.com/grant"],
- ["Christopher Bess", "http://github.com/cbess"]
translators:
- ["Mariane Siqueira Machado", "https://twitter.com/mariane_sm"]
lang: pt-br
filename: learnswift.swift
---
Swift é uma linguagem de programação para desenvolvimento de aplicações no iOS e OS X criada pela Apple. Criada para
coexistir com Objective-C e para ser mais resiliente a código com erros, Swift foi apresentada em 2014 na Apple's
developer conference WWDC. Foi construída com o compilador LLVM já incluído no Xcode 6 beta.
O livro oficial [Swift Programming Language] (https://itunes.apple.com/us/book/swift-programming-language/id881256329) da
Apple já está disponível via IBooks (apenas em inglês).
Confira também o tutorial completo de Swift da Apple [getting started guide](https://developer.apple.com/library/prerelease/ios/referencelibrary/GettingStarted/LandingPage/index.html), também disponível apenas em inglês.
```swift
// importa um módulo
import UIKit
//
// MARK: Noções básicas
//
// Xcode supporta anotações para seu código e lista elas na barra de atalhos
// MARK: Marca uma sessão
// TODO: Faça algo logo
// FIXME: Conserte esse código
println("Hello, world")
// Valores em variáveis (var) podem ter seu valor alterado depois de declarados.
// Valores em constantes (let) NÃO podem ser alterados depois de declarados.
var myVariable = 42
let øπΩ = "value" // nomes de variáveis em unicode
let π = 3.1415926
let convenience = "keyword" // nome de variável contextual
let weak = "keyword"; let override = "another keyword" // comandos podem ser separados por uma ponto e vírgula
let `class` = "keyword" // Crases permitem que palavras-chave seja usadas como nome de variáveis
let explicitDouble: Double = 70
let intValue = 0007 // 7
let largeIntValue = 77_000 // 77000
let label = "some text " + String(myVariable) // Coerção
let piText = "Pi = \(π), Pi 2 = \(π * 2)" // Interpolação de strings
// Constrói valores específicos
// Utiliza configuração de build -D
#if false
println("Not printed")
let buildValue = 3
#else
let buildValue = 7
#endif
println("Build value: \(buildValue)") // Build value: 7
/*
Optionals fazem parte da linguagem e permitem que você armazene um
valor `Some` (algo) ou `None` (nada).
Como Swift requer que todas as propriedades tenham valores, até mesmo nil deve
ser explicitamente armazenado como um valor Optional.
Optional<T> é uma enum.
*/
var someOptionalString: String? = "optional" // Pode ser nil
// o mesmo acima, mas ? é um operador pós-fixado (açúcar sintático)
var someOptionalString2: Optional<String> = "optional"
if someOptionalString != nil {
// Eu não sou nil
if someOptionalString!.hasPrefix("opt") {
println("has the prefix")
}
let empty = someOptionalString?.isEmpty
}
someOptionalString = nil
// Optional implicitamente desempacotado (unwrapped)
var unwrappedString: String! = "Valor é esperado."
// o mesmo acima, mas ? é um operador pósfixado (açúcar sintático)
var unwrappedString2: ImplicitlyUnwrappedOptional<String> = "Valor é esperado."
if let someOptionalStringConstant = someOptionalString {
// Tem `Some` (algum) valor, não nil
if !someOptionalStringConstant.hasPrefix("ok") {
// não possui o prefixo
}
}
// Swift tem suporte para armazenar um valor de qualquer tipo.
// AnyObject == id
// Ao contrário de Objective-C `id`, AnyObject funciona com qualquer valor (Class, Int, struct, etc)
var anyObjectVar: AnyObject = 7
anyObjectVar = "Mudou o valor para string, não é uma boa prática, mas é possível."
/*
Comentário aqui
/*
Comentários aninhados também são suportados
*/
*/
//
// MARK: Coleções
//
/*
Tipos Array e Dicionário são structs. Portanto `let` e `var`
também indicam se são mutáveis (var) ou imutáveis (let) quando declarados
com esses tipos.
*/
// Array
var shoppingList = ["catfish", "water", "lemons"]
shoppingList[1] = "bottle of water"
let emptyArray = [String]() // imutável
var emptyMutableArray = [String]() // mutável
// Dicionário
var occupations = [
"Malcolm": "Captain",
"kaylee": "Mechanic"
]
occupations["Jayne"] = "Public Relations"
let emptyDictionary = [String: Float]() // imutável
var emptyMutableDictionary = [String: Float]() // mutável
//
// MARK: Controle de fluxo
//
// laço for (array)
let myArray = [1, 1, 2, 3, 5]
for value in myArray {
if value == 1 {
println("One!")
} else {
println("Not one!")
}
}
// laço for (dicionário)
var dict = ["one": 1, "two": 2]
for (key, value) in dict {
println("\(key): \(value)")
}
// laço for (alcance)
for i in -1...shoppingList.count {
println(i)
}
shoppingList[1...2] = ["steak", "peacons"]
// use ..< para excluir o último número
// laço while (enquanto)
var i = 1
while i < 1000 {
i *= 2
}
// laço do-while
do {
println("hello")
} while 1 == 2
// Switch
let vegetable = "red pepper"
switch vegetable {
case "celery":
let vegetableComment = "Add some raisins and make ants on a log."
case "cucumber", "watercress":
let vegetableComment = "That would make a good tea sandwich."
case let x where x.hasSuffix("pepper"):
let vegetableComment = "Is it a spicy \(x)?"
default: // required (in order to cover all possible input)
let vegetableComment = "Everything tastes good in soup."
}
//
// MARK: Funções
//
// Funções são tipos de primeira classe, o que significa que eles podem ser aninhados
// em funções e podem ser passados como parâmetros
// Funções Swift com cabeçalhos doc (formato como reStructedText)
/**
Uma operação de saudação
- Um bullet em documentos
- Outro bullet
:param: nome A nome
:param: dia A dia
:returns: Uma string contendo o nome e o dia.
*/
func greet(name: String, day: String) -> String {
return "Hello \(name), today is \(day)."
}
greet("Bob", "Tuesday")
// Função que retorna múltiplos items em uma tupla
func getGasPrices() -> (Double, Double, Double) {
return (3.59, 3.69, 3.79)
}
let pricesTuple = getGasPrices()
let price = pricesTuple.2 // 3.79
// Ignore valores de Tuplas (ou outros valores) usando _ (underscore)
let (_, price1, _) = pricesTuple // price1 == 3.69
println(price1 == pricesTuple.1) // true
println("Gas price: \(price)")
// Número variável de argumentos
func setup(numbers: Int...) {
// its an array
let number = numbers[0]
let argCount = numbers.count
}
// Passando e retornando funções
func makeIncrementer() -> (Int -> Int) {
func addOne(number: Int) -> Int {
return 1 + number
}
return addOne
}
var increment = makeIncrementer()
increment(7)
// passagem por referência
func swapTwoInts(inout a: Int, inout b: Int) {
let tempA = a
a = b
b = tempA
}
var someIntA = 7
var someIntB = 3
swapTwoInts(&someIntA, &someIntB)
println(someIntB) // 7
//
// MARK: Closures
//
var numbers = [1, 2, 6]
// Funções são casos especiais de closures ({})
// Exemplo de closure.
// `->` separa argumentos e tipo de retorno
// `in` separa o cabeçalho do closure do seu corpo
numbers.map({
(number: Int) -> Int in
let result = 3 * number
return result
})
// Quando o tipo é conhecido, como abaixo, nós podemos fazer o seguinte
numbers = numbers.map({ number in 3 * number })
// Ou até mesmo isso
//numbers = numbers.map({ $0 * 3 })
print(numbers) // [3, 6, 18]
// Closure restante
numbers = sorted(numbers) { $0 > $1 }
print(numbers) // [18, 6, 3]
// Super atalho, já que o operador < infere os tipos
numbers = sorted(numbers, < )
print(numbers) // [3, 6, 18]
//
// MARK: Estruturas
//
// Estruturas e classes tem funcionalidades muito similares
struct NamesTable {
let names: [String]
// Custom subscript
subscript(index: Int) -> String {
return names[index]
}
}
// Estruturas possuem um inicializador auto-gerado automático (implícito)
let namesTable = NamesTable(names: ["Me", "Them"])
//let name = namesTable[2]
//println("Name is \(name)") // Name is Them
//
// MARK: Classes
//
// Classes, Estruturas e seus membros possuem três níveis de modificadores de acesso
// Eles são: internal (default), public, private
public class Shape {
public func getArea() -> Int {
return 0;
}
}
// Todos os métodos e propriedades de uma classe são públicos.
// Se você só precisa armazenar dados em um objeto estruturado, use `struct`
internal class Rect: Shape {
var sideLength: Int = 1
// Getter e setter personalizado
private var perimeter: Int {
get {
return 4 * sideLength
}
set {
// `newValue` é uma variável implicita disponível para os setters
sideLength = newValue / 4
}
}
// Carregue uma propriedade sob demanda (lazy)
// subShape permanece nil (não inicializado) até seu getter ser chamado
lazy var subShape = Rect(sideLength: 4)
// Se você não precisa de um getter e setter personalizado,
// mas ainda quer roda código antes e depois de configurar
// uma propriedade, você pode usar `willSet` e `didSet`
var identifier: String = "defaultID" {
// o argumento `willSet` será o nome da variável para o novo valor
willSet(someIdentifier) {
print(someIdentifier)
}
}
init(sideLength: Int) {
self.sideLength = sideLength
// sempre chame super.init por último quand inicializar propriedades personalizadas (custom)
super.init()
}
func shrink() {
if sideLength > 0 {
--sideLength
}
}
override func getArea() -> Int {
return sideLength * sideLength
}
}
// Uma classe básica `Square` que estende `Rect`
class Square: Rect {
convenience init() {
self.init(sideLength: 5)
}
}
var mySquare = Square()
print(mySquare.getArea()) // 25
mySquare.shrink()
print(mySquare.sideLength) // 4
// Compara instâncias, não é o mesmo que == o qual compara objetos
if mySquare === mySquare {
println("Yep, it's mySquare")
}
//
// MARK: Enums
//
// Enums podem opcionalmente ser de um tipo específico ou não.
// Podem conter métodos do mesmo jeito que classes.
enum Suit {
case Spades, Hearts, Diamonds, Clubs
func getIcon() -> String {
switch self {
case .Spades: return "♤"
case .Hearts: return "♡"
case .Diamonds: return "♢"
case .Clubs: return "♧"
}
}
}
//
// MARK: Protocolos
//
// `protocol` pode requerer que os tipos que se adequam tenham
// propriedades de instância, métodos, operadores e subscripts.
protocol ShapeGenerator {
var enabled: Bool { get set }
func buildShape() -> Shape
}
// Protocolos declarados com @objc permitem funções opcionais,
// que permitem verificar a confomidade
@objc protocol TransformShape {
optional func reshaped()
optional func canReshape() -> Bool
}
class MyShape: Rect {
var delegate: TransformShape?
func grow() {
sideLength += 2
if let allow = self.delegate?.canReshape?() {
// test for delegate then for method
// testa por delegação e então por método
self.delegate?.reshaped?()
}
}
}
//
// MARK: Outros
//
// `extension`s: Adicionam uma funcionalidade extra para um tipo já existente.
// Square agora "segue" o protocolo `Printable`
extension Square: Printable {
var description: String {
return "Area: \(self.getArea()) - ID: \(self.identifier)"
}
}
println("Square: \(mySquare)")
// Você pode também estender tipos embutidos (built-in)
extension Int {
var customProperty: String {
return "This is \(self)"
}
func multiplyBy(num: Int) -> Int {
return num * self
}
}
println(7.customProperty) // "This is 7"
println(14.multiplyBy(2)) // 42
// Generics: Similar com Java e C#. Use a palavra-chave `where` para
// especificar os requisitos do generics.
func findIndex<T: Equatable>(array: [T], valueToFind: T) -> Int? {
for (index, value) in enumerate(array) {
if value == valueToFind {
return index
}
}
return nil
}
let foundAtIndex = findIndex([1, 2, 3, 4], 3)
println(foundAtIndex == 2) // true
// Operadores:
// Operadores personalizados (custom) podem começar com os seguintes caracteres:
// / = - + * % < > ! & | ^ . ~
// ou
// Unicode math, símbolo, seta, e caracteres tipográficos ou de desenho.
prefix operator !!! {}
// Um operador de prefixo que triplica o comprimento do lado do quadrado
// quando usado
prefix func !!! (inout shape: Square) -> Square {
shape.sideLength *= 3
return shape
}
// valor atual
println(mySquare.sideLength) // 4
// Troca o comprimento do lado usando um operador personalizado !!!, aumenta o lado por 3
!!!mySquare
println(mySquare.sideLength) // 12
```
|