summaryrefslogtreecommitdiffhomepage
path: root/qsharp.html.markdown
blob: f778aea7ea62baec140d77eadce228e9904856c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
---
language: Q#
contributors:
    - ["Vincent van Wingerden", "https://github.com/vivanwin"]
    - ["Mariia Mykhailova", "https://github.com/tcNickolas"]
filename: LearnQSharp.qs
---

Q# is a high-level domain-specific language which enables developers to write quantum algorithms. Q# programs can be executed on a quantum simulator running on a classical computer and (in future) on quantum computers.

This is the new outline

```C#
// Single-line comments start with //

/////////////////////////////////////
// 1. Quantum data types and operators

// The most important part of quantum programs is qubits. 
// In Q# type Qubit represents the qubits which can be used.
// This will allocate an array of two new qubits as the variable qs.
using (qs = Qubit[2]) {

    // The qubits have internal state that you cannot access to read or modify directly.
    // You can inspect the current state of your quantum program if you're running it on a classical simulator.
    // Note that this will not work on actual quantum hardware!
    DumpMachine();

    // If you want to change the state of a qubit, you have to do this by applying quantum gates to the qubit.
    H(q[0]);    // This changes the state of the first qubit from |0⟩ (the initial state of allocated qubits) to (|0⟩ + |1⟩) / sqrt(2).
    // q[1] = |1⟩; - this does NOT work, you have to manipulate a qubit by using gates.

    // You can apply multi-qubit gates to several qubits.
    CNOT(qs[0], qs[1]);

    // You can also apply a controlled version of a gate: a gate that is applied if all control qubits are in |1⟩ state.
    // The first argument is an array of control qubits, the second argument is the target qubit.
    Controlled Y([qs[0]], qs[1]); 

    // If you want to apply an anti-controlled gate (a gate that is applied if all control qubits are in |0⟩ state), you can use a library function.
    ApplyControlledOnInt(0, X, [qs[0]], qs[1]);

    // To read the information from the quantum system, you use measurements.
    // Measurements return a value of Result data type: Zero or One.
    // You can print measurement results as a classical value.
    Message($"Measured {M(qs[0])}, {M(qs[1])}");
}


/////////////////////////////////////
// 2. Classical data types and operators

// Numbers in Q# can be stored in Int, BigInt or Double.
let i = 1;            // This defines an Int variable i equal to 1
let bi = 1L;          // This defines a BigInt variable bi equal to 1
let d = 1.0;          // This defines a Double variable d equal to 1

// Arithmetic is done as expected, as long as the types are the same
let n = 2 * 10;                // = 20
// Q# does not have implicit type cast, so to perform arithmetic on values of different types, you need to cast type explicitly
let nd = IntAsDouble(2) * 1.0; // = 20.0

// Boolean type is called Bool
let trueBool = true;
let falseBool = false;

// Logic operators work as expected
let andBool = true and false;
let orBool = true or false;
let notBool = not false;

// Strings
let str = "Hello World!";

// Equality is ==
let x = 10 == 15; // is false

// Range is a sequence of integers and can be defined like: start..step..stop
let xi = 1..2..7; // Gives the sequence 1,3,5,7

// Assigning new value to a variable:
// by default all Q# variables are immutable;
// if the variable was defined using let, you cannot reassign its value.

// When you want to make a variable mutable, you have to declare it as such, 
// and use the set word to update value
mutable xii = true;
set xii = false;

// You can create an array for any data type like this
let xiii = new Double[10];

// Getting an element from an array 
let xiv = xiii[8];

// Assigning a new value to an array element
mutable xv = new Double[10];
set xv w/= 5 <- 1;


/////////////////////////////////////
// 3. Control flow

// If structures work a little different than most languages
if (a == 1) {
    // ...
} elif (a == 2) {
    // ... 
} else {
    // ...
}

// Foreach loops can be used to iterate over an array
for (qubit in qubits) {
    X(qubit);
}

// Regular for loops can be used to iterate over a range of numbers
for (index in 0 .. Length(qubits) - 1) {
    X(qubits[index]);
}

// While loops are restricted for use in classical context only
mutable index = 0;
while (index < 10) {
    set index += 1;
}

// Quantum equivalent of a while loop is a repeat-until-success loop.
// Because of the probabilistic nature of quantum computing sometimes
// you want to repeat a certain sequence of operations until a specific condition is achieved; you can use this loop to express this.
repeat {
    // Your operation here
}
until (success criteria) // This could be a measurement to check if the state is reached
fixup {
    // Resetting to the initial conditions, if required
}


/////////////////////////////////////
// 4. Putting it all together

// Q# code is written in operations and functions
operation ApplyXGate(source : Qubit) : Unit {
    X(source);
}

// If the operation implements a unitary transformation, you can define 
// adjoint and controlled variants of it. 
// The easiest way to do that is to add "is Adj + Ctl" after Unit. 
// This will tell the compiler to generate the variants automatically.
operation ApplyXGateCA (source : Qubit) : Unit is Adj + Ctl {
    X(source);
}

// Now you can call Adjoint ApplyXGateCA and Controlled ApplyXGateCA.


// To run Q# code, you can put @EntryPoint() before the operation you want to run first
@EntryPoint()
operation XGateDemo() : Unit {
    using (q = Qubit()) {
        ApplyXGate(q);
    }
}

// Here is a simple example: a quantum random number generator. 
// We will generate a classical array of random bits using quantum code.
@EntryPoint()
operation QRNGDemo() : Unit {
    mutable bits = new Int[5];                // Array we'll use to store bits
    using (q = Qubit()) {                     // Allocate a qubit
        for (i in 0 .. 4) {                   // Generate each bit independently
            H(q);                             // Apply Hadamard gate to prepare equal superposition
            let result = M(q);                // Measure the qubit to get Zero or One with 50/50 probability
            let bit = result == Zero ? 0 | 1; // Convert measurement result to an integer
            set bits w/= i <- bit;            // Write generated bit to an array
        }
    }
    Message($"{bits}");                       // Print the result
}
```


## Further Reading

The [Quantum Katas][1] offer great self-paced tutorials and programming exercises to learn quantum computing and Q#. 

[Q# Documentation][2] is official Q# documentation, including language reference and user guides.

[1]: https://github.com/microsoft/QuantumKatas
[2]: https://docs.microsoft.com/quantum/