summaryrefslogtreecommitdiffhomepage
path: root/ru-ru/python-ru.html.markdown
blob: 204eb357fecf30f0dacd4175d619ed90e7d45483 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
---
language: python
lang: ru-ru
contributors:
    - ["Louie Dinh", "http://ldinh.ca"]
translators:
    - ["Yury Timofeev", "http://twitter.com/gagar1n"]
filename: learnpython-ru.py
---

Язык Python был создан Гвидо ван Россумом в начале 90-х. Сейчас это один из самых популярных 
языков. Я люблю его за его понятный и доходчивый синтаксис - это почти что исполняемый псевдокод.

С благодарностью жду ваших отзывов: [@louiedinh](http://twitter.com/louiedinh) или louiedinh [at] [google's email service]

Замечание: Эта статья относится к Python 2.7, но должно работать и в Python 2.x. Скоро будет версия и для Python 3!

```python
# Однострочные комментарии начинаются с hash-символа.
""" Многострочный текст может быть 
    записан, используя 3 знака " и обычно используется
    в качестве комментария
"""

####################################################
## 1. Примитивные типы данных и операторов
####################################################

# У вас есть числа
3 #=> 3

# Математика работает вполне ожидаемо
1 + 1 #=> 2
8 - 1 #=> 7
10 * 2 #=> 20
35 / 5 #=> 7

# А вот деление немного сложнее. В этом случае происходит деление 
# целых чисел и результат автоматически округляется в меньшую сторону.
5 / 2 #=> 2

# Чтобы научиться делить, сначала нужно немного узнать о дробных числах.
2.0     # Это дробное число
11.0 / 4.0 #=> 2.75 Вооот... Так гораздо лучше

# Приоритет операций указывается скобками
(1 + 3) * 2 #=> 8

# Логические значения являются примитивами
True
False

# Для отрицания используется ключевое слово not
not True #=> False
not False #=> True

# Равенство это ==
1 == 1 #=> True
2 == 1 #=> False

# Неравенство это !=
1 != 1 #=> False
2 != 1 #=> True

# Еще немного сравнений
1 < 10 #=> True
1 > 10 #=> False
2 <= 2 #=> True
2 >= 2 #=> True

# Сравнения могут быть соединены в цепь!
1 < 2 < 3 #=> True
2 < 3 < 2 #=> False

# Строки определяются символом " или '
"Это строка."
'Это тоже строка.'

# И строки тоже могут складываться!
"Привет " + "мир!" #=> "Привет мир!"

# Со строкой можно работать, как со списком символов
"Это строка"[0] #=> 'Э'

# Символ % используется для форматирования строк, например:
"%s могут быть %s" % ("строки", "интерполированы")

# Новый метод форматирования строк - использование метода format.
# Это предпочитаемый способ.
"{0} могут быть {1}".format("строки", "форматированы")
# Если вы не хотите считать, можете использовать ключевые слова.
"{name} хочет есть {food}".format(name="Боб", food="лазанью")

# None является объектом
None #=> None

# Не используйте оператор равенства '=='' для сравнения 
# объектов с None. Используйте для этого 'is'
"etc" is None #=> False
None is None  #=> True

# Оператор 'is' проверяет идентичность объектов. Он не 
# очень полезен при работе с примитивными типами, но 
# зато просто незаменим при работе с объектами.

# None, 0, и пустые строки/списки равны False.
# Все остальные значения равны True
0 == False  #=> True
"" == False #=> True


####################################################
## 2. Переменные и коллекции
####################################################

# Печатать довольно просто
print "Я Python. Приятно познакомиться!"


# Необязательно объявлять переменные перед их инициализацией.
some_var = 5    # По соглашению используется нижний_регистр_с_подчеркиваниями
some_var #=> 5

# При попытке доступа к неинициализированной переменной,
# выбрасывается исключение.
# См. раздел "Поток управления" для информации об исключениях.
some_other_var  # Выбрасывает ошибку именования

# if может быть использован как выражение
"yahoo!" if 3 > 2 else 2 #=> "yahoo!"

# Списки хранят последовательности
li = []
# Можно сразу начать с заполненным списком
other_li = [4, 5, 6]

# Объекты добавляются в конец списка методом append
li.append(1)    # [1]
li.append(2)    # [1, 2]
li.append(4)    # [1, 2, 4]
li.append(3)    # [1, 2, 4, 3]
# И удаляются с конца методом pop
li.pop()        #=> возвращает 3 и li становится равен [1, 2, 4]
# Положим элемент обратно
li.append(3)    # [1, 2, 4, 3].

# Обращайтесь со списком, как с обычным массивом
li[0] #=> 1
# Обратимся к последнему элементу
li[-1] #=> 3

# Попытка выйти за границы массива приведет к IndexError
li[4] # Выдает IndexError

# Можно обращаться к диапазону, используя "кусочный синтаксис" (slice syntax)
# (Для тех, кто любит математику, это называется замкнуто/открытый интервал.)
li[1:3] #=> [2, 4]
# Опускаем начало
li[2:] #=> [4, 3]
# Опускаем конец
li[:3] #=> [1, 2, 4]

# Удаляем произвольные элементы из списка оператором del
del li[2] # [1, 2, 3]

# Вы можете складывать списки
li + other_li #=> [1, 2, 3, 4, 5, 6] - Замечание: li и other_li остаются нетронутыми

# Конкатенировать списки можно методом extend
li.extend(other_li) # Теперь li содержит [1, 2, 3, 4, 5, 6]

# Проверить элемент на вхождение в список можно оператором in
1 in li #=> True

# Длина списка вычисляется функцией len
len(li) #=> 6


# Кортежи - это такие списки, только неизменяемые
tup = (1, 2, 3)
tup[0] #=> 1
tup[0] = 3  # Выдает TypeError

# Все то же самое можно делать и с кортежами
len(tup) #=> 3
tup + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6)
tup[:2] #=> (1, 2)
2 in tup #=> True

# Вы можете распаковывать кортежи (или списки) в переменные
a, b, c = (1, 2, 3)     # a == 1, b == 2 и c == 3
# Кортежи создаются по умолчанию, если опущены скобки
d, e, f = 4, 5, 6
# Обратите внимание, как легко поменять местами значения двух переменных
e, d = d, e     # теперь d == 5, а e == 4


#  Словари содержат ассоциативные массивы
empty_dict = {}
# Вот так описывается предзаполненный словарь
filled_dict = {"one": 1, "two": 2, "three": 3}

# Значения ищутся по ключу с помощью оператора []
filled_dict["one"] #=> 1

# Можно получить все ключи в виде списка
filled_dict.keys() #=> ["three", "two", "one"]
# Замечание - сохранение порядка ключей в словаре не гарантируется
# Ваши результаты могут не совпадать с этими.

# Можно получить и все значения в виде списка
filled_dict.values() #=> [3, 2, 1]
# То же самое замечание насчет порядка ключей справедливо и здесь

# При помощи оператора in можно проверять ключи на вхождение в словарь
"one" in filled_dict #=> True
1 in filled_dict #=> False

# Попытка получить значение по несуществующему ключу выбросит KeyError
filled_dict["four"] # KeyError

# Чтобы избежать этого, используйте метод get
filled_dict.get("one") #=> 1
filled_dict.get("four") #=> None
# Метод get также принимает аргумент default, значение которого будет
# возвращено при отсутствии указанного ключа
filled_dict.get("one", 4) #=> 1
filled_dict.get("four", 4) #=> 4

# Метод setdefault - это безопасный способ добавить новую пару ключ-значение в словарь
filled_dict.setdefault("five", 5) #filled_dict["five"] возвращает 5
filled_dict.setdefault("five", 6) #filled_dict["five"] по прежнему возвращает 5


# Множества содержат... ну, в общем, множества
empty_set = set()
# Инициализация множества набором значений
some_set = set([1,2,2,3,4]) # some_set теперь равно set([1, 2, 3, 4])

# Начиная с Python 2.7, вы можете использовать {} чтобы обьявить множество
filled_set = {1, 2, 2, 3, 4} # => {1 2 3 4}

# Добавление новых элементов в множество
filled_set.add(5) # filled_set равно {1, 2, 3, 4, 5}

# Пересечение множеств: &
other_set = {3, 4, 5, 6}
filled_set & other_set #=> {3, 4, 5}

# Объединение множеств: |
filled_set | other_set #=> {1, 2, 3, 4, 5, 6}

# Разность множеств: -
{1,2,3,4} - {2,3,5} #=> {1, 4}

# Проверка на вхождение во множество: in
2 in filled_set #=> True
10 in filled_set #=> False


####################################################
## 3. Поток управления
####################################################

# Для начала заведем переменную
some_var = 5

# Так выглядит выражение if. Отступы в python очень важны!
# результат: "some_var меньше, чем 10"
if some_var > 10:
    print "some_var намного больше, чем 10."
elif some_var < 10:    # Выражение elif необязательно.
    print "some_var меньше, чем 10."
else:           # Это тоже необязательно.
    print "some_var равно 10."


"""
Циклы For проходят по спискам

Результат:
    собака это млекопитающее
    кошка это млекопитающее
    мышь это млекопитающее
"""
for animal in ["собака", "кошка", "мышь"]:
    # Можете использовать оператор % для интерполяции форматированных строк
    print "%s это млекопитающее" % animal
    
"""
`range(number)` возвращает список чисел
от нуля до заданного числа
Результат:
    0
    1
    2
    3
"""
for i in range(4):
    print i

"""
Циклы while продолжаются до тех пор, пока указанное условие не станет ложным.
Результат:
    0
    1
    2
    3
"""
x = 0
while x < 4:
    print x
    x += 1  # То же самое, что x = x + 1

# Обрабывайте исключения блоками try/except

# Работает в Python 2.6 и выше:
try:
    # Для выбора ошибки используется raise
    raise IndexError("Это IndexError")
except IndexError as e:
    # pass это просто отсутствие оператора. Обычно здесь происходит
    # восстановление от ошибки.
    pass


####################################################
## 4. Функции
####################################################

# Используйте def для создания новых функций
def add(x, y):
    print "x равен %s, а y равен %s" % (x, y)
    return x + y    # Возвращайте результат выражением return

# Вызов функции с аргументами
add(5, 6) #=> prints out "x равен 5, а y равен 6" и возвращает 11

# Другой способ вызова функции с аргументами
add(y=6, x=5)   # Именованные аргументы можно указывать в любом порядке.

# Вы можете определить функцию, принимающую неизвестное количество аргументов
def varargs(*args):
    return args

varargs(1, 2, 3) #=> (1,2,3)


# А также можете определить функцию, принимающую изменяющееся количество 
# именованных аргументов
def keyword_args(**kwargs):
    return kwargs

# Вызовем эту функцию и посмотрим, что из этого получится
keyword_args(big="foot", loch="ness") #=> {"big": "foot", "loch": "ness"}

# Если хотите, можете использовать оба способа одновременно
def all_the_args(*args, **kwargs):
    print args
    print kwargs
"""
all_the_args(1, 2, a=3, b=4) выводит:
    (1, 2)
    {"a": 3, "b": 4}
"""

# Вызывая функции, можете сделать наоборот!
# Используйте символ * для передачи кортежей и ** для передачи словарей
args = (1, 2, 3, 4)
kwargs = {"a": 3, "b": 4}
all_the_args(*args) # эквивалент foo(1, 2, 3, 4)
all_the_args(**kwargs) # эквивалент foo(a=3, b=4)
all_the_args(*args, **kwargs) # эквивалент foo(1, 2, 3, 4, a=3, b=4)

# Python имеет функции первого класса
def create_adder(x):
    def adder(y):
        return x + y
    return adder

add_10 = create_adder(10)
add_10(3) #=> 13

# Также есть и анонимные функции
(lambda x: x > 2)(3) #=> True

# Есть встроенные функции высшего порядка
map(add_10, [1,2,3]) #=> [11, 12, 13]
filter(lambda x: x > 5, [3, 4, 5, 6, 7]) #=> [6, 7]

# Мы можем использовать списки для удобного отображения и фильтрации
[add_10(i) for i in [1, 2, 3]]  #=> [11, 12, 13]
[x for x in [3, 4, 5, 6, 7] if x > 5] #=> [6, 7]

####################################################
## 5. Классы
####################################################

# Чтобы получить класс, мы наследуемся от object.
class Human(object):

    # Атрибут класса. Он разделяется всеми экземплярами этого класса
    species = "H. sapiens"

    # Обычный конструктор
    def __init__(self, name):
        # Присваивание значения аргумента атрибуту класса name
        self.name = name

    # Метод экземпляра. Все методы принимают self в качестве первого аргумента
    def say(self, msg):
       return "%s: %s" % (self.name, msg)

    # Метод класса разделяется между всеми экземплярами
    # Они вызываются с указыванием вызывающего класса в качестве первого аргумента
    @classmethod
    def get_species(cls):
        return cls.species

    # Статический метод вызывается без ссылки на класс или экземпляр
    @staticmethod
    def grunt():
        return "*grunt*"


# Инстанцирование класса
i = Human(name="Иван")
print i.say("привет")     # "Иван: привет"

j = Human("Петр")
print j.say("Привет")  # "Петр: привет"

# Вызов метода класса
i.get_species() #=> "H. sapiens"

# Присвоение разделяемому атрибуту
Human.species = "H. neanderthalensis"
i.get_species() #=> "H. neanderthalensis"
j.get_species() #=> "H. neanderthalensis"

# Вызов статического метода
Human.grunt() #=> "*grunt*"


####################################################
## 6. Модули
####################################################

# Вы можете импортировать модули
import math
print math.sqrt(16) #=> 4

# Вы можете импортировать отдельные функции модуля
from math import ceil, floor
print ceil(3.7)  #=> 4.0
print floor(3.7) #=> 3.0

# Можете импортировать все функции модуля.
# (Хотя это и не рекомендуется)
from math import *

# Можете сокращать имена модулей
import math as m
math.sqrt(16) == m.sqrt(16) #=> True

# Модули в Python это обычные файлы с кодом python. Вы
# можете писать свои модули и импортировать их. Название
# модуля совпадает с названием файла.

# Вы можете узнать, какие функции и атрибуты определены 
# в модуле
import math
dir(math)


```

## Хотите еще?

### Бесплатные онлайн-материалы

* [Learn Python The Hard Way](http://learnpythonthehardway.org/book/)
* [Dive Into Python](http://www.diveintopython.net/)
* [The Official Docs](http://docs.python.org/2.6/)
* [Hitchhiker's Guide to Python](http://docs.python-guide.org/en/latest/)
* [Python Module of the Week](http://pymotw.com/2/)

### Платные

* [Programming Python](http://www.amazon.com/gp/product/0596158106/ref=as_li_qf_sp_asin_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0596158106&linkCode=as2&tag=homebits04-20)
* [Dive Into Python](http://www.amazon.com/gp/product/1441413022/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1441413022&linkCode=as2&tag=homebits04-20)
* [Python Essential Reference](http://www.amazon.com/gp/product/0672329786/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0672329786&linkCode=as2&tag=homebits04-20)