1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
|
---
language: Julia
filename: learn-julia-zh.jl
contributors:
- ["Jichao Ouyang", "http://oyanglul.us"]
translators:
- ["Jichao Ouyang", "http://oyanglul.us"]
lang: zh-cn
---
```ruby
# 单行注释只需要一个井号
#= 多行注释
只需要以 '#=' 开始 '=#' 结束
还可以嵌套.
=#
####################################################
## 1. 原始类型与操作符
####################################################
# Julia 中一切皆是表达式。
# 这是一些基本数字类型.
3 # => 3 (Int64)
3.2 # => 3.2 (Float64)
2 + 1im # => 2 + 1im (Complex{Int64})
2//3 # => 2//3 (Rational{Int64})
# 支持所有的普通中缀操作符。
1 + 1 # => 2
8 - 1 # => 7
10 * 2 # => 20
35 / 5 # => 7.0
5 / 2 # => 2.5 # 用 Int 除 Int 永远返回 Float
div(5, 2) # => 2 # 使用 div 截断小数点
5 \ 35 # => 7.0
2 ^ 2 # => 4 # 次方, 不是二进制 xor
12 % 10 # => 2
# 用括号提高优先级
(1 + 3) * 2 # => 8
# 二进制操作符
~2 # => -3 # 非
3 & 5 # => 1 # 与
2 | 4 # => 6 # 或
2 $ 4 # => 6 # 异或
2 >>> 1 # => 1 # 逻辑右移
2 >> 1 # => 1 # 算术右移
2 << 1 # => 4 # 逻辑/算术 右移
# 可以用函数 bits 查看二进制数。
bits(12345)
# => "0000000000000000000000000000000000000000000000000011000000111001"
bits(12345.0)
# => "0100000011001000000111001000000000000000000000000000000000000000"
# 布尔值是原始类型
true
false
# 布尔操作符
!true # => false
!false # => true
1 == 1 # => true
2 == 1 # => false
1 != 1 # => false
2 != 1 # => true
1 < 10 # => true
1 > 10 # => false
2 <= 2 # => true
2 >= 2 # => true
# 比较可以串联
1 < 2 < 3 # => true
2 < 3 < 2 # => false
# 字符串可以由 " 创建
"This is a string."
# 字符字面量可用 ' 创建
'a'
# 可以像取数组取值一样用 index 取出对应字符
"This is a string"[1] # => 'T' # Julia 的 index 从 1 开始 :(
# 但是对 UTF-8 无效,
# 因此建议使用遍历器 (map, for loops, 等).
# $ 可用于字符插值:
"2 + 2 = $(2 + 2)" # => "2 + 2 = 4"
# 可以将任何 Julia 表达式放入括号。
# 另一种格式化字符串的方式是 printf 宏.
@printf "%d is less than %f" 4.5 5.3 # 5 is less than 5.300000
# 打印字符串很容易
println("I'm Julia. Nice to meet you!")
####################################################
## 2. 变量与集合
####################################################
# 给变量赋值就是声明变量
some_var = 5 # => 5
some_var # => 5
# 访问未声明变量会抛出异常
try
some_other_var # => ERROR: some_other_var not defined
catch e
println(e)
end
# 变量名需要以字母开头.
# 之后任何字母,数字,下划线,叹号都是合法的。
SomeOtherVar123! = 6 # => 6
# 甚至可以用 unicode 字符
☃ = 8 # => 8
# 用数学符号非常方便
2 * π # => 6.283185307179586
# 注意 Julia 的命名规约:
#
# * 变量名为小写,单词之间以下划线连接('\_')。
#
# * 类型名以大写字母开头,单词以 CamelCase 方式连接。
#
# * 函数与宏的名字小写,无下划线。
#
# * 会改变输入的函数名末位为 !。
# 这类函数有时被称为 mutating functions 或 in-place functions.
# 数组存储一列值,index 从 1 开始。
a = Int64[] # => 0-element Int64 Array
# 一维数组可以以逗号分隔值的方式声明。
b = [4, 5, 6] # => 包含 3 个 Int64 类型元素的数组: [4, 5, 6]
b[1] # => 4
b[end] # => 6
# 二维数组以分号分隔维度。
matrix = [1 2; 3 4] # => 2x2 Int64 数组: [1 2; 3 4]
# 使用 push! 和 append! 往数组末尾添加元素
push!(a,1) # => [1]
push!(a,2) # => [1,2]
push!(a,4) # => [1,2,4]
push!(a,3) # => [1,2,4,3]
append!(a,b) # => [1,2,4,3,4,5,6]
# 用 pop 弹出末尾元素
pop!(b) # => 6 and b is now [4,5]
# 可以再放回去
push!(b,6) # b 又变成了 [4,5,6].
a[1] # => 1 # 永远记住 Julia 的 index 从 1 开始!
# 用 end 可以直接取到最后索引. 可用作任何索引表达式
a[end] # => 6
# 还支持 shift 和 unshift
shift!(a) # => 返回 1,而 a 现在时 [2,4,3,4,5,6]
unshift!(a,7) # => [7,2,4,3,4,5,6]
# 以叹号结尾的函数名表示它会改变参数的值
arr = [5,4,6] # => 包含三个 Int64 元素的数组: [5,4,6]
sort(arr) # => [4,5,6]; arr 还是 [5,4,6]
sort!(arr) # => [4,5,6]; arr 现在是 [4,5,6]
# 越界会抛出 BoundsError 异常
try
a[0] # => ERROR: BoundsError() in getindex at array.jl:270
a[end+1] # => ERROR: BoundsError() in getindex at array.jl:270
catch e
println(e)
end
# 错误会指出发生的行号,包括标准库
# 如果你有 Julia 源代码,你可以找到这些地方
# 可以用 range 初始化数组
a = [1:5] # => 5-element Int64 Array: [1,2,3,4,5]
# 可以切割数组
a[1:3] # => [1, 2, 3]
a[2:end] # => [2, 3, 4, 5]
# 用 splice! 切割原数组
arr = [3,4,5]
splice!(arr,2) # => 4 ; arr 变成了 [3,5]
# 用 append! 连接数组
b = [1,2,3]
append!(a,b) # a 变成了 [1, 2, 3, 4, 5, 1, 2, 3]
# 检查元素是否在数组中
in(1, a) # => true
# 用 length 获得数组长度
length(a) # => 8
# Tuples 是 immutable 的
tup = (1, 2, 3) # => (1,2,3) # an (Int64,Int64,Int64) tuple.
tup[1] # => 1
try:
tup[1] = 3 # => ERROR: no method setindex!((Int64,Int64,Int64),Int64,Int64)
catch e
println(e)
end
# 大多数组的函数同样支持 tuples
length(tup) # => 3
tup[1:2] # => (1,2)
in(2, tup) # => true
# 可以将 tuples 元素分别赋给变量
a, b, c = (1, 2, 3) # => (1,2,3) # a is now 1, b is now 2 and c is now 3
# 不用括号也可以
d, e, f = 4, 5, 6 # => (4,5,6)
# 单元素 tuple 不等于其元素值
(1,) == 1 # => false
(1) == 1 # => true
# 交换值
e, d = d, e # => (5,4) # d is now 5 and e is now 4
# 字典Dictionaries store mappings
empty_dict = Dict() # => Dict{Any,Any}()
# 也可以用字面量创建字典
filled_dict = ["one"=> 1, "two"=> 2, "three"=> 3]
# => Dict{ASCIIString,Int64}
# 用 [] 获得键值
filled_dict["one"] # => 1
# 获得所有键
keys(filled_dict)
# => KeyIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
# 注意,键的顺序不是插入时的顺序
# 获得所有值
values(filled_dict)
# => ValueIterator{Dict{ASCIIString,Int64}}(["three"=>3,"one"=>1,"two"=>2])
# 注意,值的顺序也一样
# 用 in 检查键值是否已存在,用 haskey 检查键是否存在
in(("one", 1), filled_dict) # => true
in(("two", 3), filled_dict) # => false
haskey(filled_dict, "one") # => true
haskey(filled_dict, 1) # => false
# 获取不存在的键的值会抛出异常
try
filled_dict["four"] # => ERROR: key not found: four in getindex at dict.jl:489
catch e
println(e)
end
# 使用 get 可以提供默认值来避免异常
# get(dictionary,key,default_value)
get(filled_dict,"one",4) # => 1
get(filled_dict,"four",4) # => 4
# 用 Sets 表示无序不可重复的值的集合
empty_set = Set() # => Set{Any}()
# 初始化一个 Set 并定义其值
filled_set = Set(1,2,2,3,4) # => Set{Int64}(1,2,3,4)
# 添加值
push!(filled_set,5) # => Set{Int64}(5,4,2,3,1)
# 检查是否存在某值
in(2, filled_set) # => true
in(10, filled_set) # => false
# 交集,并集,差集
other_set = Set(3, 4, 5, 6) # => Set{Int64}(6,4,5,3)
intersect(filled_set, other_set) # => Set{Int64}(3,4,5)
union(filled_set, other_set) # => Set{Int64}(1,2,3,4,5,6)
setdiff(Set(1,2,3,4),Set(2,3,5)) # => Set{Int64}(1,4)
####################################################
## 3. 控制流
####################################################
# 声明一个变量
some_var = 5
# 这是一个 if 语句,缩进不是必要的
if some_var > 10
println("some_var is totally bigger than 10.")
elseif some_var < 10 # elseif 是可选的.
println("some_var is smaller than 10.")
else # else 也是可选的.
println("some_var is indeed 10.")
end
# => prints "some var is smaller than 10"
# For 循环遍历
# Iterable 类型包括 Range, Array, Set, Dict, 以及 String.
for animal=["dog", "cat", "mouse"]
println("$animal is a mammal")
# 可用 $ 将 variables 或 expression 转换为字符串into strings
end
# prints:
# dog is a mammal
# cat is a mammal
# mouse is a mammal
# You can use 'in' instead of '='.
for animal in ["dog", "cat", "mouse"]
println("$animal is a mammal")
end
# prints:
# dog is a mammal
# cat is a mammal
# mouse is a mammal
for a in ["dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal"]
println("$(a[1]) is a $(a[2])")
end
# prints:
# dog is a mammal
# cat is a mammal
# mouse is a mammal
for (k,v) in ["dog"=>"mammal","cat"=>"mammal","mouse"=>"mammal"]
println("$k is a $v")
end
# prints:
# dog is a mammal
# cat is a mammal
# mouse is a mammal
# While 循环
x = 0
while x < 4
println(x)
x += 1 # x = x + 1
end
# prints:
# 0
# 1
# 2
# 3
# 用 try/catch 处理异常
try
error("help")
catch e
println("caught it $e")
end
# => caught it ErrorException("help")
####################################################
## 4. 函数
####################################################
# 用关键字 'function' 可创建一个新函数
#function name(arglist)
# body...
#end
function add(x, y)
println("x is $x and y is $y")
# 最后一行语句的值为返回
x + y
end
add(5, 6) # => 在 "x is 5 and y is 6" 后会打印 11
# 还可以定义接收可变长参数的函数
function varargs(args...)
return args
# 关键字 return 可在函数内部任何地方返回
end
# => varargs (generic function with 1 method)
varargs(1,2,3) # => (1,2,3)
# 省略号 ... 被称为 splat.
# 刚刚用在了函数定义中
# 还可以用在函数的调用
# Array 或者 Tuple 的内容会变成参数列表
Set([1,2,3]) # => Set{Array{Int64,1}}([1,2,3]) # 获得一个 Array 的 Set
Set([1,2,3]...) # => Set{Int64}(1,2,3) # 相当于 Set(1,2,3)
x = (1,2,3) # => (1,2,3)
Set(x) # => Set{(Int64,Int64,Int64)}((1,2,3)) # 一个 Tuple 的 Set
Set(x...) # => Set{Int64}(2,3,1)
# 可定义可选参数的函数
function defaults(a,b,x=5,y=6)
return "$a $b and $x $y"
end
defaults('h','g') # => "h g and 5 6"
defaults('h','g','j') # => "h g and j 6"
defaults('h','g','j','k') # => "h g and j k"
try
defaults('h') # => ERROR: no method defaults(Char,)
defaults() # => ERROR: no methods defaults()
catch e
println(e)
end
# 还可以定义键值对的参数
function keyword_args(;k1=4,name2="hello") # note the ;
return ["k1"=>k1,"name2"=>name2]
end
keyword_args(name2="ness") # => ["name2"=>"ness","k1"=>4]
keyword_args(k1="mine") # => ["k1"=>"mine","name2"=>"hello"]
keyword_args() # => ["name2"=>"hello","k1"=>4]
# 可以组合各种类型的参数在同一个函数的参数列表中
function all_the_args(normal_arg, optional_positional_arg=2; keyword_arg="foo")
println("normal arg: $normal_arg")
println("optional arg: $optional_positional_arg")
println("keyword arg: $keyword_arg")
end
all_the_args(1, 3, keyword_arg=4)
# prints:
# normal arg: 1
# optional arg: 3
# keyword arg: 4
# Julia 有一等函数
function create_adder(x)
adder = function (y)
return x + y
end
return adder
end
# 这是用 "stabby lambda syntax" 创建的匿名函数
(x -> x > 2)(3) # => true
# 这个函数和上面的 create_adder 一模一样
function create_adder(x)
y -> x + y
end
# 你也可以给内部函数起个名字
function create_adder(x)
function adder(y)
x + y
end
adder
end
add_10 = create_adder(10)
add_10(3) # => 13
# 内置的高阶函数有
map(add_10, [1,2,3]) # => [11, 12, 13]
filter(x -> x > 5, [3, 4, 5, 6, 7]) # => [6, 7]
# 还可以使用 list comprehensions 替代 map
[add_10(i) for i=[1, 2, 3]] # => [11, 12, 13]
[add_10(i) for i in [1, 2, 3]] # => [11, 12, 13]
####################################################
## 5. 类型
####################################################
# Julia 有类型系统
# 所有的值都有类型;但变量本身没有类型
# 你可以用 `typeof` 函数获得值的类型
typeof(5) # => Int64
# 类型是一等值
typeof(Int64) # => DataType
typeof(DataType) # => DataType
# DataType 是代表类型的类型,也代表他自己的类型
# 类型可用作文档化,优化,以及调度
# 并不是静态检查类型
# 用户还可以自定义类型
# 跟其他语言的 records 或 structs 一样
# 用 `type` 关键字定义新的类型
# type Name
# field::OptionalType
# ...
# end
type Tiger
taillength::Float64
coatcolor # 不附带类型标注的相当于 `::Any`
end
# 构造函数参数是类型的属性
tigger = Tiger(3.5,"orange") # => Tiger(3.5,"orange")
# 用新类型作为构造函数还会创建一个类型
sherekhan = typeof(tigger)(5.6,"fire") # => Tiger(5.6,"fire")
# struct 类似的类型被称为具体类型
# 他们可被实例化但不能有子类型
# 另一种类型是抽象类型
# abstract Name
abstract Cat # just a name and point in the type hierarchy
# 抽象类型不能被实例化,但是可以有子类型
# 例如,Number 就是抽象类型
subtypes(Number) # => 6-element Array{Any,1}:
# Complex{Float16}
# Complex{Float32}
# Complex{Float64}
# Complex{T<:Real}
# ImaginaryUnit
# Real
subtypes(Cat) # => 0-element Array{Any,1}
# 所有的类型都有父类型; 可以用函数 `super` 得到父类型.
typeof(5) # => Int64
super(Int64) # => Signed
super(Signed) # => Real
super(Real) # => Number
super(Number) # => Any
super(super(Signed)) # => Number
super(Any) # => Any
# 所有这些类型,除了 Int64, 都是抽象类型.
# <: 是类型集成操作符
type Lion <: Cat # Lion 是 Cat 的子类型
mane_color
roar::String
end
# 可以继续为你的类型定义构造函数
# 只需要定义一个同名的函数
# 并调用已有的构造函数设置一个固定参数
Lion(roar::String) = Lion("green",roar)
# 这是一个外部构造函数,因为他再类型定义之外
type Panther <: Cat # Panther 也是 Cat 的子类型
eye_color
Panther() = new("green")
# Panthers 只有这个构造函数,没有默认构造函数
end
# 使用内置构造函数,如 Panther,可以让你控制
# 如何构造类型的值
# 应该尽可能使用外部构造函数而不是内部构造函数
####################################################
## 6. 多分派
####################################################
# 在Julia中, 所有的具名函数都是类属函数
# 这意味着他们都是有很大小方法组成的
# 每个 Lion 的构造函数都是类属函数 Lion 的方法
# 我们来看一个非构造函数的例子
# Lion, Panther, Tiger 的 meow 定义为
function meow(animal::Lion)
animal.roar # 使用点符号访问属性
end
function meow(animal::Panther)
"grrr"
end
function meow(animal::Tiger)
"rawwwr"
end
# 试试 meow 函数
meow(tigger) # => "rawwr"
meow(Lion("brown","ROAAR")) # => "ROAAR"
meow(Panther()) # => "grrr"
# 再看看层次结构
issubtype(Tiger,Cat) # => false
issubtype(Lion,Cat) # => true
issubtype(Panther,Cat) # => true
# 定义一个接收 Cats 的函数
function pet_cat(cat::Cat)
println("The cat says $(meow(cat))")
end
pet_cat(Lion("42")) # => prints "The cat says 42"
try
pet_cat(tigger) # => ERROR: no method pet_cat(Tiger,)
catch e
println(e)
end
# 在面向对象语言中,通常都是单分派
# 这意味着分派方法是通过第一个参数的类型决定的
# 在Julia中, 所有参数类型都会被考虑到
# 让我们定义有多个参数的函数,好看看区别
function fight(t::Tiger,c::Cat)
println("The $(t.coatcolor) tiger wins!")
end
# => fight (generic function with 1 method)
fight(tigger,Panther()) # => prints The orange tiger wins!
fight(tigger,Lion("ROAR")) # => prints The orange tiger wins!
# 让我们修改一下传入具体为 Lion 类型时的行为
fight(t::Tiger,l::Lion) = println("The $(l.mane_color)-maned lion wins!")
# => fight (generic function with 2 methods)
fight(tigger,Panther()) # => prints The orange tiger wins!
fight(tigger,Lion("ROAR")) # => prints The green-maned lion wins!
# 把 Tiger 去掉
fight(l::Lion,c::Cat) = println("The victorious cat says $(meow(c))")
# => fight (generic function with 3 methods)
fight(Lion("balooga!"),Panther()) # => prints The victorious cat says grrr
try
fight(Panther(),Lion("RAWR")) # => ERROR: no method fight(Panther,Lion)
catch
end
# 在试试让 Cat 在前面
fight(c::Cat,l::Lion) = println("The cat beats the Lion")
# => Warning: New definition
# fight(Cat,Lion) at none:1
# is ambiguous with
# fight(Lion,Cat) at none:2.
# Make sure
# fight(Lion,Lion)
# is defined first.
#fight (generic function with 4 methods)
# 警告说明了无法判断使用哪个 fight 方法
fight(Lion("RAR"),Lion("brown","rarrr")) # => prints The victorious cat says rarrr
# 结果在老版本 Julia 中可能会不一样
fight(l::Lion,l2::Lion) = println("The lions come to a tie")
fight(Lion("RAR"),Lion("brown","rarrr")) # => prints The lions come to a tie
# Under the hood
# 你还可以看看 llvm 以及生成的汇编代码
square_area(l) = l * l # square_area (generic function with 1 method)
square_area(5) #25
# 给 square_area 一个整形时发生什么
code_native(square_area, (Int32,))
# .section __TEXT,__text,regular,pure_instructions
# Filename: none
# Source line: 1 # Prologue
# push RBP
# mov RBP, RSP
# Source line: 1
# movsxd RAX, EDI # Fetch l from memory?
# imul RAX, RAX # Square l and store the result in RAX
# pop RBP # Restore old base pointer
# ret # Result will still be in RAX
code_native(square_area, (Float32,))
# .section __TEXT,__text,regular,pure_instructions
# Filename: none
# Source line: 1
# push RBP
# mov RBP, RSP
# Source line: 1
# vmulss XMM0, XMM0, XMM0 # Scalar single precision multiply (AVX)
# pop RBP
# ret
code_native(square_area, (Float64,))
# .section __TEXT,__text,regular,pure_instructions
# Filename: none
# Source line: 1
# push RBP
# mov RBP, RSP
# Source line: 1
# vmulsd XMM0, XMM0, XMM0 # Scalar double precision multiply (AVX)
# pop RBP
# ret
#
# 注意 只要参数中又浮点类型,Julia 就使用浮点指令
# 让我们计算一下圆的面积
circle_area(r) = pi * r * r # circle_area (generic function with 1 method)
circle_area(5) # 78.53981633974483
code_native(circle_area, (Int32,))
# .section __TEXT,__text,regular,pure_instructions
# Filename: none
# Source line: 1
# push RBP
# mov RBP, RSP
# Source line: 1
# vcvtsi2sd XMM0, XMM0, EDI # Load integer (r) from memory
# movabs RAX, 4593140240 # Load pi
# vmulsd XMM1, XMM0, QWORD PTR [RAX] # pi * r
# vmulsd XMM0, XMM0, XMM1 # (pi * r) * r
# pop RBP
# ret
#
code_native(circle_area, (Float64,))
# .section __TEXT,__text,regular,pure_instructions
# Filename: none
# Source line: 1
# push RBP
# mov RBP, RSP
# movabs RAX, 4593140496
# Source line: 1
# vmulsd XMM1, XMM0, QWORD PTR [RAX]
# vmulsd XMM0, XMM1, XMM0
# pop RBP
# ret
#
```
|