summaryrefslogtreecommitdiffhomepage
path: root/zh-cn/r-cn.html.markdown
blob: 9a1414bb8ea3012d795e093cd22443bed14611bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
# 评论以 # 开始

# R 语言原生不支持 多行注释
# 但是你可以像这样来多行注释

# 在窗口里按回车键可以执行一条命令


###################################################################
# 不用懂编程就可以开始动手了
###################################################################

data()	# 浏览内建的数据集
data(rivers)	# 北美主要河流的长度(数据集)
ls()	# 在工作空间中查看「河流」是否出现
head(rivers)	# 撇一眼数据集
# 735 320 325 392 524 450
length(rivers)	# 我们测量了多少条河流?
# 141
summary(rivers)
#   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
#  135.0   310.0   425.0   591.2   680.0  3710.0
stem(rivers)	# 茎叶图(一种类似于直方图的展现形式)
#
#  The decimal point is 2 digit(s) to the right of the |
#
#   0 | 4
#   2 | 011223334555566667778888899900001111223333344455555666688888999
#   4 | 111222333445566779001233344567
#   6 | 000112233578012234468
#   8 | 045790018
#  10 | 04507
#  12 | 1471
#  14 | 56
#  16 | 7
#  18 | 9
#  20 |
#  22 | 25
#  24 | 3
#  26 |
#  28 |
#  30 |
#  32 |
#  34 |
#  36 | 1


stem(log(rivers))	# 查看数据集的方式既不是标准形式,也不是取log后的结果! 看起来,是钟形曲线形式的基本数据集

#  The decimal point is 1 digit(s) to the left of the |
#
#  48 | 1
#  50 |
#  52 | 15578
#  54 | 44571222466689
#  56 | 023334677000124455789
#  58 | 00122366666999933445777
#  60 | 122445567800133459
#  62 | 112666799035
#  64 | 00011334581257889
#  66 | 003683579
#  68 | 0019156
#  70 | 079357
#  72 | 89
#  74 | 84
#  76 | 56
#  78 | 4
#  80 |
#  82 | 2


hist(rivers, col="#333333", border="white", breaks=25)	# 试试用这些参数画画 (译者注:给 river 做统计频数直方图,包含了这些参数:数据源,颜色,边框,空格)
hist(log(rivers), col="#333333", border="white", breaks=25)	#你还可以做更多式样的绘图

# 还有其他一些简单的数据集可以被用来加载。R 语言包括了大量这种 data()
data(discoveries)
plot(discoveries, col="#333333", lwd=3, xlab="Year", main="Number of important discoveries per year")
# 译者注:参数为(数据源,颜色,线条宽度,X 轴名称,标题)
plot(discoveries, col="#333333", lwd=3, type = "h", xlab="Year", main="Number of important discoveries per year")


# 除了按照默认的年份排序,我们还可以排序来发现特征
sort(discoveries)
#  [1]  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  2  2  2  2
# [26]  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  3  3  3
# [51]  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  4  4  4  4  4  4  4  4
# [76]  4  4  4  4  5  5  5  5  5  5  5  6  6  6  6  6  6  7  7  7  7  8  9 10 12

stem(discoveries, scale=2) # 译者注:茎叶图(数据,放大系数)
#
#  The decimal point is at the |
#
#   0 | 000000000
#   1 | 000000000000
#   2 | 00000000000000000000000000
#   3 | 00000000000000000000
#   4 | 000000000000
#   5 | 0000000
#   6 | 000000
#   7 | 0000
#   8 | 0
#   9 | 0
#  10 | 0
#  11 |
#  12 | 0

max(discoveries)
# 12

summary(discoveries)
#   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
#    0.0     2.0     3.0     3.1     4.0    12.0




#基本的统计学操作也不需要任何编程知识

#随机生成数据
round(runif(7, min=.5, max=6.5))
# 译者注:runif 产生随机数,round 四舍五入
# 1 4 6 1 4 6 4

# 你输出的结果会和我们给出的不同,除非我们设置了相同的随机种子 random.seed(31337)


#从标准高斯函数中随机生成 9 次
rnorm(9)
# [1]  0.07528471  1.03499859  1.34809556 -0.82356087  0.61638975 -1.88757271
# [7] -0.59975593  0.57629164  1.08455362









#########################
# 基础编程
#########################

# 数值

#“数值”指的是双精度的浮点数
5	# 5
class(5)	# "numeric"
5e4	# 50000				# 用科学技术法方便的处理极大值、极小值或者可变的量级
6.02e23	# 阿伏伽德罗常数#
1.6e-35	# 布朗克长度

# 长整数并用 L 结尾
5L	# 5
#输出5L
class(5L)	# "integer"

# 可以自己试一试?用 class() 函数获取更多信息
# 事实上,你可以找一些文件查阅 `xyz` 以及xyz的差别
# `xyz` 用来查看源码实现,?xyz 用来看帮助

# 算法
10 + 66	# 76
53.2 - 4	# 49.2
2 * 2.0	# 4
3L / 4	# 0.75
3 %% 2	# 1

# 特殊数值类型
class(NaN)	# "numeric"
class(Inf)	# "numeric"
class(-Inf)	# "numeric"		# 在以下场景中会用到 integrate( dnorm(x), 3, Inf ) -- 消除 Z 轴数据

# 但要注意,NaN 并不是唯一的特殊数值类型……
class(NA)	# 看上面
class(NULL)	# NULL


# 简单列表
c(6, 8, 7, 5, 3, 0, 9)	# 6 8 7 5 3 0 9
c('alef', 'bet', 'gimmel', 'dalet', 'he')
c('Z', 'o', 'r', 'o') == "Zoro"	# FALSE FALSE FALSE FALSE

# 一些优雅的内置功能
5:15	# 5  6  7  8  9 10 11 12 13 14 15

seq(from=0, to=31337, by=1337)
#  [1]     0  1337  2674  4011  5348  6685  8022  9359 10696 12033 13370 14707
# [13] 16044 17381 18718 20055 21392 22729 24066 25403 26740 28077 29414 30751

letters
#  [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
# [20] "t" "u" "v" "w" "x" "y" "z"

month.abb	# "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"


# Access the n'th element of a list with list.name[n] or sometimes list.name[[n]]
# 使用 list.name[n] 来访问第 n 个列表元素,有时候需要使用 list.name[[n]]
letters[18]	# "r"
LETTERS[13]	# "M"
month.name[9]	# "September"
c(6, 8, 7, 5, 3, 0, 9)[3]	# 7



# 字符串

# 字符串和字符在 R 语言中没有区别
"Horatio"	# "Horatio"
class("Horatio") # "character"
substr("Fortuna multis dat nimis, nulli satis.", 9, 15)	# "multis "
gsub('u', 'ø', "Fortuna multis dat nimis, nulli satis.")	# "Fortøna møltis dat nimis, nølli satis."



# 逻辑值

# 布尔值
class(TRUE)	# "logical"
class(FALSE)	# "logical"
# 和我们预想的一样
TRUE == TRUE	# TRUE
TRUE == FALSE	# FALSE
FALSE != FALSE	# FALSE
FALSE != TRUE	# TRUE
# 缺失数据(NA)也是逻辑值
class(NA)	# "logical"
#定义NA为逻辑型



# 因子
# 因子是为数据分类排序设计的(像是排序小朋友们的年级或性别)
levels(factor(c("female", "male", "male", "female", "NA", "female")))	# "female" "male"   "NA"

factor(c("female", "female", "male", "NA", "female"))
#  female female male   NA     female
# Levels: female male NA

data(infert)	# 自然以及引产导致的不育症
levels(infert$education)	# "0-5yrs"  "6-11yrs" "12+ yrs"



# 变量

# 有许多种方式用来赋值
x = 5 # 这样可以
y <- "1" # 更推荐这样
TRUE -> z # 这样可行,但是很怪

#我们还可以使用强制转型
as.numeric(y)	# 1
as.character(x)	# "5"

# 循环

# for 循环语句
for (i in 1:4) {
  print(i)
}

# while 循环
a <- 10
while (a > 4) {
	cat(a, "...", sep = "")
	a <- a - 1
}

# 记住,在 R 语言中 for / while 循环都很慢
# 建议使用 apply()(我们一会介绍)来错做一串数据(比如一列或者一行数据)

# IF/ELSE

# 再来看这些优雅的标准
if (4 > 3) {
	print("Huzzah! It worked!")
} else {
	print("Noooo! This is blatantly illogical!")
}

# =>
# [1] "Huzzah! It worked!"

# 函数

# 定义如下
jiggle <- function(x) {
	x + rnorm(x, sd=.1)	#add in a bit of (controlled) noise
	return(x)
}

# 和其他 R 语言函数一样调用
jiggle(5)	# 5±ε. 使用 set.seed(2716057) 后, jiggle(5)==5.005043

#########################
# 数据容器:vectors, matrices, data frames, and arrays
#########################

# 单维度
# 你可以将目前我们学习到的任何类型矢量化,只要它们拥有相同的类型
vec <- c(8, 9, 10, 11)
vec	#  8  9 10 11
# 矢量的类型是这一组数据元素的类型
class(vec)	# "numeric"
# If you vectorize items of different classes, weird coercions happen
#如果你强制的将不同类型数值矢量化,会出现特殊值
c(TRUE, 4)	# 1 4
c("dog", TRUE, 4)	# "dog"  "TRUE" "4"

#我们这样来取内部数据,(R 的下标索引顺序 1 开始)
vec[1]	# 8
# 我们可以根据条件查找特定数据
which(vec %% 2 == 0)	# 1 3
# 抓取矢量中第一个和最后一个字符
head(vec, 1)	# 8
tail(vec, 1)	# 11
#如果下标溢出或不存会得到 NA
vec[6]	# NA
# 你可以使用 length() 获取矢量的长度
length(vec)	# 4

# 你可以直接操作矢量或者矢量的子集
vec * 4	# 16 20 24 28
vec[2:3] * 5	# 25 30
# 这里有许多内置的函数,来表现向量
mean(vec)	# 9.5
var(vec)	# 1.666667
sd(vec)	# 1.290994
max(vec)	# 11
min(vec)	# 8
sum(vec)	# 38

# 二维(相同元素类型)

#你可以为同样类型的变量建立矩阵
mat <- matrix(nrow = 3, ncol = 2, c(1,2,3,4,5,6))
mat
# =>
#      [,1] [,2]
# [1,]    1    4
# [2,]    2    5
# [3,]    3    6
# 和 vector 不一样的是,一个矩阵的类型真的是 「matrix」,而不是内部元素的类型
class(mat) # => "matrix"
# 访问第一行的字符
mat[1,]	# 1 4
# 操作第一行数据
3 * mat[,1]	# 3 6 9
# 访问一个特定数据
mat[3,2]	# 6
# 转置整个矩阵(译者注:变成 2 行 3 列)
t(mat)
# =>
#      [,1] [,2] [,3]
# [1,]    1    2    3
# [2,]    4    5    6

# 使用 cbind() 函数把两个矩阵按列合并,形成新的矩阵
mat2 <- cbind(1:4, c("dog", "cat", "bird", "dog"))
mat2
# =>
#      [,1] [,2]
# [1,] "1"  "dog"
# [2,] "2"  "cat"
# [3,] "3"  "bird"
# [4,] "4"  "dog"
class(mat2)	# matrix
# Again, note what happened!
# 注意
# 因为矩阵内部元素必须包含同样的类型
# 所以现在每一个元素都转化成字符串
c(class(mat2[,1]), class(mat2[,2]))

# 按行合并两个向量,建立新的矩阵
mat3 <- rbind(c(1,2,4,5), c(6,7,0,4))
mat3
# =>
#      [,1] [,2] [,3] [,4]
# [1,]    1    2    4    5
# [2,]    6    7    0    4
# 哈哈,数据类型都一样的,没有发生强制转换,生活真美好

# 二维(不同的元素类型)

# 利用 data frame 可以将不同类型数据放在一起
dat <- data.frame(c(5,2,1,4), c("dog", "cat", "bird", "dog"))
names(dat) <- c("number", "species") # 给数据列命名
class(dat)	# "data.frame"
dat
# =>
#   number species
# 1      5     dog
# 2      2     cat
# 3      1    bird
# 4      4     dog
class(dat$number)	# "numeric"
class(dat[,2])	# "factor"
# The data.frame() function converts character vectors to factor vectors
# data.frame() 会将字符向量转换为 factor 向量

# 有很多精妙的方法来获取 data frame 的子数据集
dat$number	# 5 2 1 4
dat[,1]	# 5 2 1 4
dat[,"number"]	# 5 2 1 4

# 多维(相同元素类型)

# 利用数组创造一个 n 维的表格
# You can make a two-dimensional table (sort of like a matrix)
#你可以建立一个2维表格(类型和矩阵相似)
array(c(c(1,2,4,5),c(8,9,3,6)), dim=c(2,4))
#数组(c(c(1,2,4,5),c(8,9,3,6)),有前两个向量组成,2行4列
# =>
#      [,1] [,2] [,3] [,4]
# [1,]    1    4    8    3
# [2,]    2    5    9    6
# You can use array to make three-dimensional matrices too
#你也可以利用数组建立一个三维的矩阵
array(c(c(c(2,300,4),c(8,9,0)),c(c(5,60,0),c(66,7,847))), dim=c(3,2,2))
# =>
# , , 1
#
#      [,1] [,2]
# [1,]    2    8
# [2,]  300    9
# [3,]    4    0
#
# , , 2
#
#      [,1] [,2]
# [1,]    5   66
# [2,]   60    7
# [3,]    0  847

# LISTS (MULTI-DIMENSIONAL, POSSIBLY RAGGED, OF DIFFERENT TYPES)
#列表(多维的,不同类型的)

# Finally, R has lists (of vectors)
#R语言有列表的形式
list1 <- list(time = 1:40)
list1$price = c(rnorm(40,.5*list1$time,4)) # random
list1

# You can get items in the list like so
#你可以获得像上面列表的形式
list1$time
# You can subset list items like vectors
#你也可以获取他们的子集,一种类似于矢量的形式
list1$price[4]

#########################
# The apply() family of functions
#apply()函数家族的应用
#########################

# Remember mat?
#输出mat矩阵
mat
# =>
#      [,1] [,2]
# [1,]    1    4
# [2,]    2    5
# [3,]    3    6
# Use apply(X, MARGIN, FUN) to apply function FUN to a matrix X
#使用(X, MARGIN, FUN)将一个function功能函数根据其特征应用到矩阵x中
# over rows (MAR = 1) or columns (MAR = 2)
#规定行列,其边界分别为1,2
# That is, R does FUN to each row (or column) of X, much faster than a
#即就是,R定义一个function使每一行/列的x快于一个for或者while循环
# for or while loop would do
apply(mat, MAR = 2, myFunc)
# =>
#      [,1] [,2]
# [1,]    3   15
# [2,]    7   19
# [3,]   11   23
# Other functions: ?lapply, ?sapply
其他的功能函数,

# Don't feel too intimidated; everyone agrees they are rather confusing
#不要被这些吓到,许多人在此都会容易混淆
# The plyr package aims to replace (and improve upon!) the *apply() family.
#plyr程序包的作用是用来改进family函数家族

install.packages("plyr")
require(plyr)
?plyr

#########################
# Loading data
#########################

# "pets.csv" is a file on the internet
#"pets.csv" 是网上的一个文本
pets <- read.csv("http://learnxinyminutes.com/docs/pets.csv")
#首先读取这个文本
pets
head(pets, 2) # first two rows
#显示前两行
tail(pets, 1) # last row
#显示最后一行

# To save a data frame or matrix as a .csv file
#以.csv格式来保存数据集或者矩阵
write.csv(pets, "pets2.csv") # to make a new .csv file
#输出新的文本pets2.csv
# set working directory with setwd(), look it up with getwd()
#改变工作路径setwd(),查找工作路径getwd()

# Try ?read.csv and ?write.csv for more information
#试着做一做以上学到的,或者运行更多的信息

#########################
# Plots
#画图
#########################

# Scatterplots!
#散点图
plot(list1$time, list1$price, main = "fake data")
#作图,横轴list1$time,纵轴list1$price,主题fake data
# Regressions!
#退回
linearModel <- lm(price  ~ time, data = list1)
# 线性模型,数据集为list1,以价格对时间做相关分析模型
linearModel # outputs result of regression
#输出拟合结果,并退出
# Plot regression line on existing plot
#将拟合结果展示在图上,颜色设为红色
abline(linearModel, col = "red")
# Get a variety of nice diagnostics
#也可以获取各种各样漂亮的分析图
plot(linearModel)

# Histograms!
#直方图
hist(rpois(n = 10000, lambda = 5), col = "thistle")
#统计频数直方图()

# Barplots!
#柱状图
barplot(c(1,4,5,1,2), names.arg = c("red","blue","purple","green","yellow"))
#作图,柱的高度负值c(1,4,5,1,2),各个柱子的名称"red","blue","purple","green","yellow"

# Try the ggplot2 package for more and better graphics
#可以尝试着使用ggplot2程序包来美化图片
install.packages("ggplot2")
require(ggplot2)
?ggplot2