1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
|
# 评论以 # 开始
# R 语言原生不支持 多行注释
# 但是你可以像这样来多行注释
# 在窗口里按回车键可以执行一条命令
###################################################################
# 不用懂编程就可以开始动手了
###################################################################
data() # 浏览内建的数据集
data(rivers) # 北美主要河流的长度(数据集)
ls() # 在工作空间中查看「河流」是否出现
head(rivers) # 撇一眼数据集
# 735 320 325 392 524 450
length(rivers) # 我们测量了多少条河流?
# 141
summary(rivers)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 135.0 310.0 425.0 591.2 680.0 3710.0
stem(rivers) # 茎叶图(一种类似于直方图的展现形式)
#
# The decimal point is 2 digit(s) to the right of the |
#
# 0 | 4
# 2 | 011223334555566667778888899900001111223333344455555666688888999
# 4 | 111222333445566779001233344567
# 6 | 000112233578012234468
# 8 | 045790018
# 10 | 04507
# 12 | 1471
# 14 | 56
# 16 | 7
# 18 | 9
# 20 |
# 22 | 25
# 24 | 3
# 26 |
# 28 |
# 30 |
# 32 |
# 34 |
# 36 | 1
stem(log(rivers)) # 查看数据集的方式既不是标准形式,也不是取log后的结果! 看起来,是钟形曲线形式的基本数据集
# The decimal point is 1 digit(s) to the left of the |
#
# 48 | 1
# 50 |
# 52 | 15578
# 54 | 44571222466689
# 56 | 023334677000124455789
# 58 | 00122366666999933445777
# 60 | 122445567800133459
# 62 | 112666799035
# 64 | 00011334581257889
# 66 | 003683579
# 68 | 0019156
# 70 | 079357
# 72 | 89
# 74 | 84
# 76 | 56
# 78 | 4
# 80 |
# 82 | 2
hist(rivers, col="#333333", border="white", breaks=25) # 试试用这些参数画画 (译者注:给 river 做统计频数直方图,包含了这些参数:数据源,颜色,边框,空格)
hist(log(rivers), col="#333333", border="white", breaks=25) #你还可以做更多式样的绘图
# 还有其他一些简单的数据集可以被用来加载。R 语言包括了大量这种 data()
data(discoveries)
plot(discoveries, col="#333333", lwd=3, xlab="Year", main="Number of important discoveries per year")
# 译者注:参数为(数据源,颜色,线条宽度,X 轴名称,标题)
plot(discoveries, col="#333333", lwd=3, type = "h", xlab="Year", main="Number of important discoveries per year")
# 除了按照默认的年份排序,我们还可以排序来发现特征
sort(discoveries)
# [1] 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
# [26] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
# [51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4
# [76] 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 8 9 10 12
stem(discoveries, scale=2) # 译者注:茎叶图(数据,放大系数)
#
# The decimal point is at the |
#
# 0 | 000000000
# 1 | 000000000000
# 2 | 00000000000000000000000000
# 3 | 00000000000000000000
# 4 | 000000000000
# 5 | 0000000
# 6 | 000000
# 7 | 0000
# 8 | 0
# 9 | 0
# 10 | 0
# 11 |
# 12 | 0
max(discoveries)
# 12
summary(discoveries)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.0 2.0 3.0 3.1 4.0 12.0
#基本的统计学操作也不需要任何编程知识
#随机生成数据
round(runif(7, min=.5, max=6.5))
# 译者注:runif 产生随机数,round 四舍五入
# 1 4 6 1 4 6 4
# 你输出的结果会和我们给出的不同,除非我们设置了相同的随机种子 random.seed(31337)
#从标准高斯函数中随机生成 9 次
rnorm(9)
# [1] 0.07528471 1.03499859 1.34809556 -0.82356087 0.61638975 -1.88757271
# [7] -0.59975593 0.57629164 1.08455362
#########################
# 基础编程
#########################
# 数值
#“数值”指的是双精度的浮点数
5 # 5
class(5) # "numeric"
5e4 # 50000 # 用科学技术法方便的处理极大值、极小值或者可变的量级
6.02e23 # 阿伏伽德罗常数#
1.6e-35 # 布朗克长度
# 长整数并用 L 结尾
5L # 5
#输出5L
class(5L) # "integer"
# 可以自己试一试?用 class() 函数获取更多信息
# 事实上,你可以找一些文件查阅 `xyz` 以及xyz的差别
# `xyz` 用来查看源码实现,?xyz 用来看帮助
# 算法
10 + 66 # 76
53.2 - 4 # 49.2
2 * 2.0 # 4
3L / 4 # 0.75
3 %% 2 # 1
# 特殊数值类型
class(NaN) # "numeric"
class(Inf) # "numeric"
class(-Inf) # "numeric" # 在以下场景中会用到 integrate( dnorm(x), 3, Inf ) -- 消除 Z 轴数据
# 但要注意,NaN 并不是唯一的特殊数值类型……
class(NA) # 看上面
class(NULL) # NULL
# 简单列表
c(6, 8, 7, 5, 3, 0, 9) # 6 8 7 5 3 0 9
c('alef', 'bet', 'gimmel', 'dalet', 'he')
c('Z', 'o', 'r', 'o') == "Zoro" # FALSE FALSE FALSE FALSE
# 一些优雅的内置功能
5:15 # 5 6 7 8 9 10 11 12 13 14 15
seq(from=0, to=31337, by=1337)
# [1] 0 1337 2674 4011 5348 6685 8022 9359 10696 12033 13370 14707
# [13] 16044 17381 18718 20055 21392 22729 24066 25403 26740 28077 29414 30751
letters
# [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
# [20] "t" "u" "v" "w" "x" "y" "z"
month.abb # "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
# Access the n'th element of a list with list.name[n] or sometimes list.name[[n]]
# 使用 list.name[n] 来访问第 n 个列表元素,有时候需要使用 list.name[[n]]
letters[18] # "r"
LETTERS[13] # "M"
month.name[9] # "September"
c(6, 8, 7, 5, 3, 0, 9)[3] # 7
# CHARACTERS
#特性
# There's no difference between strings and characters in R
# 字符串和字符在R语言中没有区别
"Horatio" # "Horatio"
#字符输出"Horatio"
class("Horatio") # "character"
#字符串输出("Horatio") # "character"
substr("Fortuna multis dat nimis, nulli satis.", 9, 15) # "multis "
#提取字符串("Fortuna multis dat nimis, nulli satis.", 第9个到15个之前并输出)
gsub('u', 'ø', "Fortuna multis dat nimis, nulli satis.") # "Fortøna møltis dat nimis, nølli satis."
#替换字符春,用ø替换u
# LOGICALS
#逻辑值
# booleans
#布尔运算
class(TRUE) # "logical"
#定义为真,逻辑型
class(FALSE) # "logical"
#定义为假,逻辑型
# Behavior is normal
#表现的标准形式
TRUE == TRUE # TRUE
TRUE == FALSE # FALSE
FALSE != FALSE # FALSE
FALSE != TRUE # TRUE
# Missing data (NA) is logical, too
#缺失数据也是逻辑型的
class(NA) # "logical"
#定义NA为逻辑型
# FACTORS
#因子
# The factor class is for categorical data
#因子是分类数据的定义函数
# which can be ordered (like childrens' grade levels)
#可以使有序的(就像儿童的等级水平)
# or unordered (like gender)
#也可以是无序的(就像性别)
levels(factor(c("female", "male", "male", "female", "NA", "female"))) # "female" "male" "NA"
#c("female", "male", "male", "female", "NA", "female")向量,变量是字符型,levels factor()因子的等级水平
factor(c("female", "female", "male", "NA", "female"))
# female female male NA female
# Levels: female male NA
data(infert) #Infertility after Spontaneous and Induced Abortion
#数据集(感染) 自然以及引产导致的不育症
levels(infert$education) # "0-5yrs" "6-11yrs" "12+ yrs"
#等级(感染与教育程度) 输出
# VARIABLES
#变量
# Lots of way to assign stuff
#许多种方式用来分配素材
x = 5 # this is possible
#x = 5可能的
y <- "1" # this is preferred
#y <- "1" 优先级的
TRUE -> z # this works but is weird
#输出真实的,存在一个超自然数满足条件
# We can use coerce variables to different classes
#我们还可以使用枪支变量去进行不同的定义
as.numeric(y) # 1
#定义数值型
as.character(x) # "5"
#字符型
# LOOPS
#循环
# We've got for loops
#循环语句
for (i in 1:4) {
print(i)
}
#定义一个i,从1-4输出
# We've got while loops
#我们可以获取循环结构
a <- 10
while (a > 4) {
cat(a, "...", sep = "")
a <- a - 1
}
#把10负值为a,a<4,输出文件(a,"...",sep="" ),跳出继续下一个循环取a=a-1,如此循环,直到a=10终止
# Keep in mind that for and while loops run slowly in R
#在R语言中牢记 for和它的循环结构
# Operations on entire vectors (i.e. a whole row, a whole column)
#牢记矢量中附带的操作(例如,整行和整列)
# or apply()-type functions (we'll discuss later) are preferred
#或者优先使用()-函数,稍后会进行讨论
# IF/ELSE
#判断分支
# Again, pretty standard
#再一次,看这些优雅的标准
if (4 > 3) {
print("Huzzah! It worked!")
} else {
print("Noooo! This is blatantly illogical!")
}
# =>
# [1] "Huzzah! It worked!"
# FUNCTIONS
#功能函数
# Defined like so:
#定义如下
jiggle <- function(x) {
x+ rnorm(x, sd=.1) #add in a bit of (controlled) noise
return(x)
}
#把功能函数x负值给jiggle,
# Called like any other R function:
jiggle(5) # 5±ε. After set.seed(2716057), jiggle(5)==5.005043
#########################
# Fun with data: vectors, matrices, data frames, and arrays
# 数据参数:向量,矩阵,数据框,数组,
#########################
# ONE-DIMENSIONAL
#单维度
# You can vectorize anything, so long as all components have the same type
#你可以将任何东西矢量化,因此所有的组分都有相同的类型
vec <- c(8, 9, 10, 11)
vec # 8 9 10 11
# The class of a vector is the class of its components
#矢量class表示这一组分的类型
class(vec) # "numeric"
# If you vectorize items of different classes, weird coercions happen
#如果你强制的将不同类型的classes矢量化,会发生超自然形式的函数,例如都转变成数值型、字符型
c(TRUE, 4) # 1 4
c("dog", TRUE, 4) # "dog" "TRUE" "4"
# We ask for specific components like so (R starts counting from 1)
#我们可以找寻特定的组分,例如这个例子(R从1算起)
vec[1] # 8
# We can also search for the indices of specific components,
#我们也可以从这些特定组分中找寻这些指标
which(vec %% 2 == 0) # 1 3
# or grab just the first or last entry in the vector
#抓取矢量中第1个和最后一个字符
head(vec, 1) # 8
tail(vec, 1) # 11
#如果指数结束或不存在即"goes over" 可以获得NA
# If an index "goes over" you'll get NA:
vec[6] # NA
# You can find the length of your vector with length()
#你也可以找到矢量的长度
length(vec) # 4
# You can perform operations on entire vectors or subsets of vectors
#你可以将整个矢量或者子矢量集进行展示
vec * 4 # 16 20 24 28
#
vec[2:3] * 5 # 25 30
# and there are many built-in functions to summarize vectors
#这里有许多内置的功能函数,并且可对矢量特征进行总结
mean(vec) # 9.5
var(vec) # 1.666667
sd(vec) # 1.290994
max(vec) # 11
min(vec) # 8
sum(vec) # 38
# TWO-DIMENSIONAL (ALL ONE CLASS)
#二维函数
# You can make a matrix out of entries all of the same type like so:
#你可以建立矩阵,保证所有的变量形式相同
mat <- matrix(nrow = 3, ncol = 2, c(1,2,3,4,5,6))
#建立mat矩阵,3行2列,从1到6排列,默认按列排布
mat
# =>
# [,1] [,2]
# [1,] 1 4
# [2,] 2 5
# [3,] 3 6
# Unlike a vector, the class of a matrix is "matrix", no matter what's in it
class(mat) # => "matrix"
# Ask for the first row
#访问第一行的字符
mat[1,] # 1 4
# Perform operation on the first column
#优先输入第一列,分别×3输出
3 * mat[,1] # 3 6 9
# Ask for a specific cell
#访问特殊的单元,第3行第二列
mat[3,2] # 6
# Transpose the whole matrix
#转置整个矩阵,变成2行3列
t(mat)
# =>
# [,1] [,2] [,3]
# [1,] 1 2 3
# [2,] 4 5 6
# cbind() sticks vectors together column-wise to make a matrix
把两个矩阵按列合并,形成新的矩阵
mat2 <- cbind(1:4, c("dog", "cat", "bird", "dog"))
mat2
# =>
# [,1] [,2]
# [1,] "1" "dog"
# [2,] "2" "cat"
# [3,] "3" "bird"
# [4,] "4" "dog"
class(mat2) # matrix
#定义mat2矩阵
# Again, note what happened!
#同样的注释
# Because matrices must contain entries all of the same class,
#矩阵必须包含同样的形式
# everything got converted to the character class
#每一个变量都可以转化成字符串形式
c(class(mat2[,1]), class(mat2[,2]))
# rbind() sticks vectors together row-wise to make a matrix
#按行合并两个向量,建立新的矩阵
mat3 <- rbind(c(1,2,4,5), c(6,7,0,4))
mat3
# =>
# [,1] [,2] [,3] [,4]
# [1,] 1 2 4 5
# [2,] 6 7 0 4
# Aah, everything of the same class. No coercions. Much better.
# TWO-DIMENSIONAL (DIFFERENT CLASSES)
##二维函数(不同的变量类型)
# For columns of different classes, use the data frame
利用数组可以将不同类型放在一起
dat <- data.frame(c(5,2,1,4), c("dog", "cat", "bird", "dog"))
#dat<-数据集(c(5,2,1,4), c("dog", "cat", "bird", "dog"))
names(dat) <- c("number", "species") # name the columns
#给每一个向量命名
class(dat) # "data.frame"
#建立数据集dat
dat
# =>
# number species
# 1 5 dog
# 2 2 cat
# 3 1 bird
# 4 4 dog
class(dat$number) # "numeric"
class(dat[,2]) # "factor"
# The data.frame() function converts character vectors to factor vectors
#数据集,将字符特征转化为因子矢量
# There are many twisty ways to subset data frames, all subtly unalike
#这里有许多种生成数据集的方法,所有的都很巧妙但又不相似
dat$number # 5 2 1 4
dat[,1] # 5 2 1 4
dat[,"number"] # 5 2 1 4
# MULTI-DIMENSIONAL (ALL OF ONE CLASS)
#多维函数
# Arrays creates n-dimensional tables
#利用数组创造一个n维的表格
# You can make a two-dimensional table (sort of like a matrix)
#你可以建立一个2维表格(类型和矩阵相似)
array(c(c(1,2,4,5),c(8,9,3,6)), dim=c(2,4))
#数组(c(c(1,2,4,5),c(8,9,3,6)),有前两个向量组成,2行4列
# =>
# [,1] [,2] [,3] [,4]
# [1,] 1 4 8 3
# [2,] 2 5 9 6
# You can use array to make three-dimensional matrices too
#你也可以利用数组建立一个三维的矩阵
array(c(c(c(2,300,4),c(8,9,0)),c(c(5,60,0),c(66,7,847))), dim=c(3,2,2))
# =>
# , , 1
#
# [,1] [,2]
# [1,] 2 8
# [2,] 300 9
# [3,] 4 0
#
# , , 2
#
# [,1] [,2]
# [1,] 5 66
# [2,] 60 7
# [3,] 0 847
# LISTS (MULTI-DIMENSIONAL, POSSIBLY RAGGED, OF DIFFERENT TYPES)
#列表(多维的,不同类型的)
# Finally, R has lists (of vectors)
#R语言有列表的形式
list1 <- list(time = 1:40)
list1$price = c(rnorm(40,.5*list1$time,4)) # random
list1
# You can get items in the list like so
#你可以获得像上面列表的形式
list1$time
# You can subset list items like vectors
#你也可以获取他们的子集,一种类似于矢量的形式
list1$price[4]
#########################
# The apply() family of functions
#apply()函数家族的应用
#########################
# Remember mat?
#输出mat矩阵
mat
# =>
# [,1] [,2]
# [1,] 1 4
# [2,] 2 5
# [3,] 3 6
# Use apply(X, MARGIN, FUN) to apply function FUN to a matrix X
#使用(X, MARGIN, FUN)将一个function功能函数根据其特征应用到矩阵x中
# over rows (MAR = 1) or columns (MAR = 2)
#规定行列,其边界分别为1,2
# That is, R does FUN to each row (or column) of X, much faster than a
#即就是,R定义一个function使每一行/列的x快于一个for或者while循环
# for or while loop would do
apply(mat, MAR = 2, myFunc)
# =>
# [,1] [,2]
# [1,] 3 15
# [2,] 7 19
# [3,] 11 23
# Other functions: ?lapply, ?sapply
其他的功能函数,
# Don't feel too intimidated; everyone agrees they are rather confusing
#不要被这些吓到,许多人在此都会容易混淆
# The plyr package aims to replace (and improve upon!) the *apply() family.
#plyr程序包的作用是用来改进family函数家族
install.packages("plyr")
require(plyr)
?plyr
#########################
# Loading data
#########################
# "pets.csv" is a file on the internet
#"pets.csv" 是网上的一个文本
pets <- read.csv("http://learnxinyminutes.com/docs/pets.csv")
#首先读取这个文本
pets
head(pets, 2) # first two rows
#显示前两行
tail(pets, 1) # last row
#显示最后一行
# To save a data frame or matrix as a .csv file
#以.csv格式来保存数据集或者矩阵
write.csv(pets, "pets2.csv") # to make a new .csv file
#输出新的文本pets2.csv
# set working directory with setwd(), look it up with getwd()
#改变工作路径setwd(),查找工作路径getwd()
# Try ?read.csv and ?write.csv for more information
#试着做一做以上学到的,或者运行更多的信息
#########################
# Plots
#画图
#########################
# Scatterplots!
#散点图
plot(list1$time, list1$price, main = "fake data")
#作图,横轴list1$time,纵轴list1$price,主题fake data
# Regressions!
#退回
linearModel <- lm(price ~ time, data = list1)
# 线性模型,数据集为list1,以价格对时间做相关分析模型
linearModel # outputs result of regression
#输出拟合结果,并退出
# Plot regression line on existing plot
#将拟合结果展示在图上,颜色设为红色
abline(linearModel, col = "red")
# Get a variety of nice diagnostics
#也可以获取各种各样漂亮的分析图
plot(linearModel)
# Histograms!
#直方图
hist(rpois(n = 10000, lambda = 5), col = "thistle")
#统计频数直方图()
# Barplots!
#柱状图
barplot(c(1,4,5,1,2), names.arg = c("red","blue","purple","green","yellow"))
#作图,柱的高度负值c(1,4,5,1,2),各个柱子的名称"red","blue","purple","green","yellow"
# Try the ggplot2 package for more and better graphics
#可以尝试着使用ggplot2程序包来美化图片
install.packages("ggplot2")
require(ggplot2)
?ggplot2
|