summaryrefslogtreecommitdiffhomepage
path: root/zh-cn/matlab-cn.html.markdown
blob: 009020ff66eebb67f06c143ff0235b18b08097b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
---
language: MATLAB
filename: matlab-cn.m
contributors:
    - ["mendozao", "http://github.com/mendozao"]
    - ["jamesscottbrown", "http://jamesscottbrown.com"]
translators:
    - ["sunxb10", "https://github.com/sunxb10"]
lang: zh-cn
---

MATLAB 是 MATrix LABoratory(矩阵实验室)的缩写。
它是一种功能强大的数值计算语言,在工程和数学领域中应用广泛。

```matlab
% 以百分号作为注释符

%{
多行注释
可以
这样
表示
%}

% 指令可以随意跨行,但需要在跨行处用 '...' 标明:
 a = 1 + 2 + ...
 + 4

% 可以在MATLAB中直接向操作系统发出指令
!ping google.com

who  % 显示内存中的所有变量
whos  % 显示内存中的所有变量以及它们的类型
clear  % 清除内存中的所有变量
clear('A')  % 清除指定的变量
openvar('A')  % 在变量编辑器中编辑指定变量

clc  % 清除命令窗口中显示的所有指令
diary  % 将命令窗口中的内容写入本地文件
ctrl-c  % 终止当前计算

edit('myfunction.m')  % 在编辑器中打开指定函数或脚本
type('myfunction.m')  % 在命令窗口中打印指定函数或脚本的源码

profile on  % 打开 profile 代码分析工具
profile off % 关闭 profile 代码分析工具
profile viewer  % 查看 profile 代码分析工具的分析结果

help command    % 在命令窗口中显示指定命令的帮助文档
doc command     % 在帮助窗口中显示指定命令的帮助文档
lookfor command  % 在所有 MATLAB 内置函数的头部注释块的第一行中搜索指定命令
lookfor command -all  % 在所有 MATLAB 内置函数的整个头部注释块中搜索指定命令


% 输出格式
format short    % 浮点数保留 4 位小数
format long     % 浮点数保留 15 位小数
format bank     % 金融格式,浮点数只保留 2 位小数
fprintf('text') % 在命令窗口中显示 "text"
disp('text')    % 在命令窗口中显示 "text"


% 变量与表达式
myVariable = 4  % 命令窗口中将新创建的变量
myVariable = 4; % 加上分号可使命令窗口中不显示当前语句执行结果
4 + 6       % ans = 10
8 * myVariable  % ans = 32
2 ^ 3       % ans = 8
a = 2; b = 3;
c = exp(a)*sin(pi/2) % c = 7.3891


% 调用函数有两种方式:
% 标准函数语法:
load('myFile.mat', 'y') % 参数放在括号内,以英文逗号分隔
% 指令语法:
load myFile.mat y   % 不加括号,以空格分隔参数
% 注意在指令语法中参数不需要加引号:在这种语法下,所有输入参数都只能是文本文字,
% 不能是变量的具体值,同样也不能是输出变量
[V,D] = eig(A);  % 这条函数调用无法转换成等价的指令语法
[~,D] = eig(A);  % 如果结果中只需要 D 而不需要 V 则可以这样写



% 逻辑运算
1 > 5  % 假,ans = 0
10 >= 10  % 真,ans = 1
3 ~= 4  % 不等于 -> ans = 1
3 == 3  % 等于 -> ans = 1
3 > 1 && 4 > 1  % 与 -> ans = 1
3 > 1 || 4 > 1  % 或 -> ans = 1
~1  % 非 -> ans = 0

% 逻辑运算可直接应用于矩阵,运算结果也是矩阵
A > 5
% 对矩阵中每个元素做逻辑运算,若为真,则在运算结果的矩阵中对应位置的元素就是 1
A( A > 5 )
% 如此返回的向量,其元素就是 A 矩阵中所有逻辑运算为真的元素

% 字符串
a = 'MyString'
length(a)  % ans = 8
a(2)  % ans = y
[a,a]  % ans = MyStringMyString
b = '字符串'  % MATLAB目前已经可以支持包括中文在内的多种文字
length(b)  % ans = 3
b(2)  % ans = 符
[b,b]  % ans = 字符串字符串


% 元组(cell 数组)
a = {'one', 'two', 'three'}
a(1)  % ans = 'one' - 返回一个元组
a{1}  % ans = one - 返回一个字符串


% 结构体
A.b = {'one','two'};
A.c = [1 2];
A.d.e = false;


% 向量
x = [4 32 53 7 1]
x(2)  % ans = 32,MATLAB中向量的下标索引从1开始,不是0
x(2:3)  % ans = 32 53
x(2:end)  % ans = 32 53 7 1

x = [4; 32; 53; 7; 1]  % 列向量

x = [1:10]  % x = 1 2 3 4 5 6 7 8 9 10


% 矩阵
A = [1 2 3; 4 5 6; 7 8 9]
% 以分号分隔不同的行,以空格或逗号分隔同一行中的不同元素
% A =

%     1     2     3
%     4     5     6
%     7     8     9

A(2,3) % ans = 6,A(row, column)
A(6) % ans = 8
% (隐式地将 A 的三列首尾相接组成一个列向量,然后取其下标为 6 的元素)


A(2,3) = 42  % 将第 2 行第 3 列的元素设为 42
% A =

%     1     2     3
%     4     5     42
%     7     8     9

A(2:3,2:3)  % 取原矩阵中的一块作为新矩阵
%ans =

%     5     42
%     8     9

A(:,1)  % 第 1 列的所有元素
%ans =

%     1
%     4
%     7

A(1,:)  % 第 1 行的所有元素
%ans =

%     1     2     3

[A ; A]  % 将两个矩阵上下相接构成新矩阵
%ans =

%     1     2     3
%     4     5    42
%     7     8     9
%     1     2     3
%     4     5    42
%     7     8     9

% 等价于
vertcat(A, A);


[A , A]  % 将两个矩阵左右相接构成新矩阵

%ans =

%     1     2     3     1     2     3
%     4     5    42     4     5    42
%     7     8     9     7     8     9

% 等价于
horzcat(A, A);


A(:, [3 1 2])  % 重新排布原矩阵的各列
%ans =

%     3     1     2
%    42     4     5
%     9     7     8

size(A)  % 返回矩阵的行数和列数,ans = 3 3

A(1, :) =[]  % 删除矩阵的第 1 行
A(:, 1) =[]  % 删除矩阵的第 1 列

transpose(A)  % 矩阵(非共轭)转置,等价于 A.' (注意!有个点)
ctranspose(A)  % 矩阵的共轭转置(对矩阵中的每个元素取共轭复数),等价于 A'


% 元素运算 vs. 矩阵运算
% 单独运算符就是对矩阵整体进行矩阵运算
% 在运算符加上英文句点就是对矩阵中的元素进行元素计算
% 示例如下:
A * B  % 矩阵乘法,要求 A 的列数等于 B 的行数
A .* B  % 元素乘法,要求 A 和 B 形状一致,即两矩阵行列数完全一致
        % 元素乘法的结果是与 A 和 B 形状一致的矩阵
        % 其每个元素等于 A 对应位置的元素乘 B 对应位置的元素

% 以下函数中,函数名以 m 结尾的执行矩阵运算,其余执行元素运算:
exp(A)  % 对矩阵中每个元素做指数运算
expm(A)  % 对矩阵整体做指数运算
sqrt(A)  % 对矩阵中每个元素做开方运算
sqrtm(A)  % 对矩阵整体做开方运算(即试图求出一个矩阵,该矩阵与自身的乘积等于 A 矩阵)


% 绘图
x = 0:0.1:2*pi; % 生成一向量,其元素从 0 开始,以 0.1 的间隔一直递增到 2*pi
                % 其中 pi 为圆周率
y = sin(x);
plot(x,y)
xlabel('x axis')
ylabel('y axis')
title('Plot of y = sin(x)')
axis([0 2*pi -1 1])  % x 轴范围是从 0 到 2*pi,y 轴范围是从 -1 到 1

plot(x,y1,'-',x,y2,'--',x,y3,':')  % 在同一张图中绘制多条曲线
legend('Line 1 label', 'Line 2 label')  % 为图片加注图例
% 图例数量应当小于或等于实际绘制的曲线数目,从 plot 绘制的第一条曲线开始对应

% 在同一张图上绘制多条曲线的另一种方法:
% 使用 hold on,令系统保留前次绘图结果并在其上直接叠加新的曲线,
% 如果没有 hold on,则每个 plot 都会首先清除之前的绘图结果再进行绘制。
% 在 hold on 和 hold off 中可以放置任意多的 plot 指令,
% 它们和 hold on 前最后一个 plot 指令的结果都将显示在同一张图中。
plot(x, y1)
hold on
plot(x, y2)
plot(x, y3)
plot(x, y4)
hold off

loglog(x, y)  % 对数—对数绘图
semilogx(x, y)  % 半对数(x 轴对数)绘图
semilogy(x, y)  % 半对数(y 轴对数)绘图

fplot (@(x) x^2, [2,5])  % 绘制函数 x^2 在 [2, 5] 区间的曲线

grid on  % 在绘制的图中显示网格,使用 grid off 可取消网格显示
axis square  % 将当前坐标系设定为正方形(保证在图形显示上各轴等长)
axis equal  % 将当前坐标系设定为相等(保证在实际数值上各轴等长)

scatter(x, y);  % 散点图
hist(x);  % 直方图

z = sin(x);
plot3(x,y,z);  % 绘制三维曲线

pcolor(A)  % 伪彩色图(热图)
contour(A)  % 等高线图
mesh(A)  % 网格曲面图

h = figure  % 创建新的图片对象并返回其句柄 h
figure(h)  % 将句柄 h 对应的图片作为当前图片
close(h)  % 关闭句柄 h 对应的图片
close all  % 关闭 MATLAB 中所用打开的图片
close  % 关闭当前图片

shg  % 显示图形窗口
clf clear  % 清除图形窗口中的图像,并重置图像属性

% 图像属性可以通过图像句柄进行设定
% 在创建图像时可以保存图像句柄以便于设置
% 也可以用 gcf 函数返回当前图像的句柄
h = plot(x, y);  % 在创建图像时显式地保存图像句柄
set(h, 'Color', 'r')
% 颜色代码:
%   'y' 黄色,'m' 洋红,'c' 青色
%   'r' 红色,'g' 绿色,'b' 蓝色
%   'w' 白色,'k' 黑色
set(h, 'Color', [0.5, 0.5, 0.4])
% 也可以使用 RGB 值指定颜色
set(h, 'LineStyle', '--')
% 线型代码:'--' 实线,'---' 虚线,':' 点线,'-.' 点划线,'none' 不划线
get(h, 'LineStyle')
% 获取当前句柄的线型


% 用 gca 函数返回当前图像的坐标轴句柄
set(gca, 'XDir', 'reverse');  % 令 x 轴反向

% 用 subplot 指令创建平铺排列的多张子图
subplot(2,3,1);  % 选择 2 x 3 排列的子图中的第 1 张图
plot(x1); title('First Plot')  % 在选中的图中绘图
subplot(2,3,2);  % 选择 2 x 3 排列的子图中的第 2 张图
plot(x2); title('Second Plot')  % 在选中的图中绘图


% 要调用函数或脚本,必须保证它们在你的当前工作目录中
path  % 显示当前工作目录
addpath /path/to/dir  % 将指定路径加入到当前工作目录中
rmpath /path/to/dir  % 将指定路径从当前工作目录中删除
cd /path/to/move/into  % 以制定路径作为当前工作目录


% 变量可保存到 .mat 格式的本地文件
save('myFileName.mat')  % 保存当前工作空间中的所有变量
load('myFileName.mat')  % 将指定文件中的变量载入到当前工作空间


% .m 脚本文件
% 脚本文件是一个包含多条 MATLAB 指令的外部文件,以 .m 为后缀名
% 使用脚本文件可以避免在命令窗口中重复输入冗长的指令


% .m 函数文件
% 与脚本文件类似,同样以 .m 作为后缀名
% 但函数文件可以接受用户输入的参数并返回运算结果
% 并且函数拥有自己的工作空间(变量域),不必担心变量名称冲突
% 函数文件的名称应当与其所定义的函数的名称一致
% 比如下面例子中函数文件就应命名为 double_input.m
% 使用 'help double_input.m' 可返回函数定义中第一行注释信息
function output = double_input(x)
    % double_input(x) 返回 x 的 2 倍
    output = 2*x;
end
double_input(6)  % ans = 12


% 同样还可以定义子函数和内嵌函数
% 子函数与主函数放在同一个函数文件中,且只能被这个主函数调用
% 内嵌函数放在另一个函数体内,可以直接访问被嵌套函数的各个变量


% 使用匿名函数可以不必创建 .m 函数文件
% 匿名函数适用于快速定义某函数以便传递给另一指令或函数(如绘图、积分、求根、求极值等)
% 下面示例的匿名函数返回输入参数的平方根,可以使用句柄 sqr 进行调用:
sqr = @(x) x.^2;
sqr(10) % ans = 100
doc function_handle % find out more


% 接受用户输入
a = input('Enter the value: ')


% 从文件中读取数据
fopen(filename)
% 类似函数还有 xlsread(excel 文件)、importdata(CSV 文件)、imread(图像文件)


% 输出
disp(a)  % 在命令窗口中打印变量 a 的值
disp('Hello World')  % 在命令窗口中打印字符串
fprintf  % 按照指定格式在命令窗口中打印内容

% 条件语句(if 和 elseif 语句中的括号并非必需,但推荐加括号避免混淆)
if (a > 15)
    disp('Greater than 15')
elseif (a == 23)
    disp('a is 23')
else
    disp('neither condition met')
end

% 循环语句
% 注意:对向量或矩阵使用循环语句进行元素遍历的效率很低!!
% 注意:只要有可能,就尽量使用向量或矩阵的整体运算取代逐元素循环遍历!!
% MATLAB 在开发时对向量和矩阵运算做了专门优化,做向量和矩阵整体运算的效率高于循环语句
for k = 1:5
    disp(k)
end

k = 0;
while (k < 5)
    k = k + 1;
end


% 程序运行计时:'tic' 是计时开始,'toc' 是计时结束并打印结果
tic
A = rand(1000);
A*A*A*A*A*A*A;
toc


% 链接 MySQL 数据库
dbname = 'database_name';
username = 'root';
password = 'root';
driver = 'com.mysql.jdbc.Driver';
dburl = ['jdbc:mysql://localhost:8889/' dbname];
javaclasspath('mysql-connector-java-5.1.xx-bin.jar');  % 此处 xx 代表具体版本号
% 这里的 mysql-connector-java-5.1.xx-bin.jar 可从 http://dev.mysql.com/downloads/connector/j/ 下载
conn = database(dbname, username, password, driver, dburl);
sql = ['SELECT * from table_name where id = 22']  % SQL 语句
a = fetch(conn, sql)  % a 即包含所需数据


% 常用数学函数
sin(x)
cos(x)
tan(x)
asin(x)
acos(x)
atan(x)
exp(x)
sqrt(x)
log(x)
log10(x)
abs(x)
min(x)
max(x)
ceil(x)
floor(x)
round(x)
rem(x)
rand  % 均匀分布的伪随机浮点数
randi  % 均匀分布的伪随机整数
randn  % 正态分布的伪随机浮点数

% 常用常数
pi
NaN
inf

% 求解矩阵方程(如果方程无解,则返回最小二乘近似解)
% \ 操作符等价于 mldivide 函数,/ 操作符等价于 mrdivide 函数
x=A\b  % 求解 Ax=b,比先求逆再左乘 inv(A)*b 更加高效、准确
x=b/A  % 求解 xA=b

inv(A)  % 逆矩阵
pinv(A)  % 伪逆矩阵


% 常用矩阵函数
zeros(m, n)  % m x n 阶矩阵,元素全为 0
ones(m, n)  % m x n 阶矩阵,元素全为 1
diag(A)  % 返回矩阵 A 的对角线元素
diag(x)  % 构造一个对角阵,对角线元素就是向量 x 的各元素
eye(m, n)  % m x n 阶单位矩阵
linspace(x1, x2, n)  % 返回介于 x1 和 x2 之间的 n 个等距节点
inv(A)  % 矩阵 A 的逆矩阵
det(A)  % 矩阵 A 的行列式
eig(A)  % 矩阵 A 的特征值和特征向量
trace(A)  % 矩阵 A 的迹(即对角线元素之和),等价于 sum(diag(A))
isempty(A)  % 测试 A 是否为空
all(A)  % 测试 A 中所有元素是否都非 0 或都为真(逻辑值)
any(A)  % 测试 A 中是否有元素非 0 或为真(逻辑值)
isequal(A, B)  % 测试 A 和 B是否相等
numel(A)  % 矩阵 A 的元素个数
triu(x)  % 返回 x 的上三角这部分
tril(x)  % 返回 x 的下三角这部分
cross(A, B)  % 返回 A 和 B 的叉积(矢量积、外积)
dot(A, B)  % 返回 A 和 B 的点积(数量积、内积),要求 A 和 B 必须等长
transpose(A)  % 矩阵(非共轭)转置,等价于 A.' (注意!有个点)
fliplr(A)  % 将一个矩阵左右翻转
flipud(A)  % 将一个矩阵上下翻转

% 矩阵分解
[L, U, P] = lu(A)   % LU 分解:PA = LU,L 是下三角阵,U 是上三角阵,P 是置换阵
[P, D]    = eig(A)  % 特征值分解:AP = PD
                    %   D 是由特征值构成的对角阵,P 的各列就是对应的特征向量
[U, S, V] = svd(X)  % 奇异值分解:XV = US
                    %   U 和 V 是酉矩阵,S 是由奇异值构成的半正定实数对角阵

% 常用向量函数
max     % 最大值
min     % 最小值
length  % 元素个数
sort    % 按升序排列
sum     % 各元素之和
prod    % 各元素之积
mode    % 众数
median  % 中位数
mean    % 平均值
std     % 标准差
perms(x) % x 元素的全排列
```

## 相关资料

* 官方网页:[MATLAB - 技术计算语言 - MATLAB & Simulink](https://ww2.mathworks.cn/products/matlab.html)
* 官方论坛:[MATLAB Answers - MATLAB Central](https://ww2.mathworks.cn/matlabcentral/answers/)